首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Clarification is an important step in the fruit juice processing industry. In this study, chitosan from shrimp shells is proposed as an alternative aid for passion fruit juice clarification being a natural and environmental friendly adsorbent. Experiments were carried out in Jar tests varying chitosan concentration, pH, and slow velocity speed and time. The obtained results were evaluated in terms of turbidity, color, total soluble solids (TSSs), and viscosity reductions. The best condition found in these tests for chitosan treatment was compared with centrifugation and enzymatic treatments. Two different rotation speeds (4000 and 12,000 rpm) were applied for the centrifugation process. Enzymatic treatment was carried out with 1 mL L?1 of Pectinex 3X L (Novo Nordisk, Switzerland) for 90 min, at 50 °C. The enzymatic treatment was reliable only for viscosity reduction, while the chitosan treatment after a mild centrifugation showed the best result for passion fruit clarification.  相似文献   

2.
Polyamidoamine dendrimer (PAMAM) is one of a number of dendritic polymers with a precise molecular structure, high geometric symmetry, and a large number of terminal groups. In this study, PAMAM was grafted onto the surface of silica by microwave irradiation and characterized by Fourier transform infrared spectroscopy and elemental analysis. A novel immobilized cellulase was developed based on enzyme immobilization onto the prepared PAMAM-grafted silica and applied in microwave-assisted chitosan enzymolysis. The results show that the efficiency of cellulase immobilization increased with increasing generations of PAMAM. A high enzymatic hydrolysis efficiency was obtained for a 7 mg ml?1 chitosan solution at pH 6.2 and 50 °C with 40 W microwave-assisted enzymolysis (20 min) compared with a conventional enzymolysis protocol (3 h). The experimental results indicate that this rapid and efficient enzymolysis method combines the advantages of both PAMAM and microwave-assisted technology, which can be adapted to high-throughput enzyme assay in biochemical and clinical research.  相似文献   

3.
The enzymatic decolorization process of manganese peroxidase (MnP) is a complex system, which is greatly affected by the concentrations of H2O2, Mn2+, dye and enzyme. This work aimed to study these factors and investigate the combined interactions between them by applying response surface methodology (RSM) for decolorization of Congo red with MnP from Schizophyllum sp. F17, meanwhile conventional one-factor-at-a-time analysis was carried out. Through the one-factor-at-a-time analysis the optimized H2O2, Mn2+, Congo red and MnP extract was 0.2 mM, 0.5 mM, 50 mg/l and 0.8 ml, respectively, and the maximum decolorization attained under such conditions was 24.2%. Response surface analysis was conducted through Box–Behnken design and a second-order polynomial model (R2 = 0.8565) was generated to describe the combined effect and the interactions quantificationally. ANOVA analysis indicated that the interactions between H2O2 and MnP, between dye and MnP were significant; the optimum condition through RSM was found to be 0.35 mM H2O2, 0.5 mM Mn2+, 75 mg/l Congo red and 1.4 ml MnP extract, for maximum decolorization of 30.8%.  相似文献   

4.
Olive stones are an agro-industrial by-product abundant in the Mediterranean area that is regarded as a potential lignocellulosic feedstock for sugar production. Statistical modeling of dilute-sulphuric acid hydrolysis of olive stones has been performed using a response surface methodology, with treatment temperature and process time as factors, to optimize the hydrolysis conditions aiming to attain maximum d-xylose extraction from hemicelluloses. Thus, solid yield and composition of solid and liquid phases were assessed by empirical modeling. The highest yield of d-xylose was found at a temperature of 195 °C for 5 min. Under these conditions, 89.7% of the total d-xylose was recovered from raw material. The resulting solids from optimal conditions were assayed as substrate for enzymatic hydrolysis, while fermentability of hemicellulosic hydrolysates was tested using the d-xylose-fermenting yeast Pachysolen tannophilus. Both bioprocesses were considerably influenced by enzyme loading and inoculum size. In the enzymatic hydrolysis step, about 56% of cellulose was converted into d-glucose by using an enzyme/solid ratio of 40 FPU g−1, while in the fermentation carried out with a cell concentration of 2 g L−1 a yield of 0.44 g xylitol/g d-xylose and a global volumetric productivity of 0.11 g L−1 h−1 were achieved.  相似文献   

5.
An immobilized enzyme bioreactor consisting of an agar gel-coated multidisk impeller was developed for the hydrolysis of highly viscous chitosan solutions, and the operating conditions for the production of physiologically active chitosan oligosaccharides (pentamers and hexamers) were investigated. Chitosanase was directly immobilized on the agar gel-coated multidisk impeller by a multipoint attachment method. The high stability of the immobilized enzyme was confirmed by means of five repetitions of a batch hydrolysis reaction. When the enzyme activity at the support surface was relatively high, the yield of the target products was higher at an impeller speed of 2 s−1 than at a speed of 1 s−1. However, no significant increase in yield was observed at impeller speeds higher than 2 s−1 in reactions at either of the two substrate concentrations tested (5 and 20 kg/m3). When the surface enzyme activity was low, the impeller speed did not affect the yield of the target products. The maximum yield of pentamers and hexamers increased as the surface enzyme activity decreased, and high yields (>30%) were obtained at activities below 160 U/m2. From the viewpoint of productivity, the optimal surface-enzyme activity was about 340 U/m2, and at that activity, the yield of target products was 22%. This yield was higher than that reported for conventional acid hydrolysis. To maximize both the productivity and the yield of the target products, the surface area for the immobilized enzyme should be increased. Our results suggest that it may be possible to obtain high yields of pentamers and hexamers of chitosan oligosaccharides from highly viscous chitosan solutions with this reactor.  相似文献   

6.
β-Glucosidase immobilized on magnetic chitosan microspheres for potential recycling usage in hydrolysis of cellulosic biomass was investigated. The immobilized enzyme had an activity of 6.4 U/g support under optimized condition when using cellobiose as substrate. Immobilization resulted in less increase of the apparent Km, low drift of the optimal pH, as well as improved stability relative to the free enzyme. The immobilized β-glucosidase was applied to enzymatic hydrolysis of corn straw to produce 60.2 g/l reducing sugar with a conversion rate of 78.2% over the course of a 32-h reaction. This conversion rate was maintained above 76.5% after recycling the enzyme for use in eight batches (total 256 h), showing favorable operational stability of the immobilized enzyme.  相似文献   

7.
Chitosan cross-linked cellulose fibers were prepared using non-toxic procedures in order to confer antimicrobial properties to cellulose fibers. Citric acid was used as the cross-linker and NaH2PO4 as catalyst in previously UV-irradiated cellulose fibers. Further heat dried-cure process and washing with detergent, water and acetic acid (0.1 M) gave a maximum incorporation of chitosan of 27 mg per gram of functionalized textile. The thermogravimetric analysis of the material with the highest chitosan content showed an increased thermal stability compared to cellulose and chitosan. The UV-irradiation induced morphological changes, such as less entangled cellulose fibers, as observed by scanning electron microscopy, which was prompted to enhance the chitosan incorporation. The biomass and spore germination percentage of Penicillium chrysogenum and colony forming units per millilitre for Escherichia coli decreased significantly on the composed materials as compared to raw cellulose fiber and it was similar to that obtained with a commercial antimicrobial cellulose fiber.  相似文献   

8.
BackgroundFluoroquinolones target bacterial type IIA topoisomerases, DNA gyrase and topoisomerase IV (Topo IV). Fluoroquinolones trap a topoisomerase–DNA covalent complex as a topoisomerase–fluoroquinolone–DNA ternary complex and ternary complex formation is critical for their cytotoxicity. A divalent metal ion is required for type IIA topoisomerase-catalyzed strand breakage and religation reactions. Recent studies have suggested that type IIA topoisomerases use two metal ions, one structural and one catalytic, to carry out the strand breakage reaction.MethodsWe conducted a series of DNA cleavage assays to examine the effects of fluoroquinolones and quinazolinediones on Mg2 +-, Mn2 +-, or Ca2 +-supported DNA cleavage activity of Escherichia coli Topo IV.ResultsIn the absence of any drug, 20–30 mM Mg2 + was required for the maximum levels of the DNA cleavage activity of Topo IV, whereas approximately 1 mM of either Mn2 + or Ca2 + was sufficient to support the maximum levels of the DNA cleavage activity of Topo IV. Fluoroquinolones promoted the Topo IV-catalyzed strand breakage reaction at low Mg2 + concentrations where Topo IV alone could not efficiently cleave DNA.Conclusions and general significanceAt low Mg2 + concentrations, fluoroquinolones may stimulate the Topo IV-catalyzed strand breakage reaction by promoting Mg2 + binding to metal binding site B through the structural distortion in DNA. As Mg2 + concentration increases, fluoroquinolones may inhibit the religation reaction by either stabilizing Mg2 + at site B or inhibition the binding of Mg2 + to site A. This study provides a molecular basis of how fluoroquinolones stimulate the Topo IV-catalyzed strand breakage reaction by modulating Mg2 + binding.  相似文献   

9.
Chitosan/carboxymethyl cashew gum microspheres (CH/CMCG) were prepared with carboxymethyl cashew gum with two different degrees of substitution (DS) and loaded with bovine serum albumin (BSA). In water, for microspheres formed using low molar mass chitosan (LCH) sample swelling was observed for both CMCG samples and CMCG sample with higher DS showed greater swelling. Using high molar mass chitosan (HCH) sample swelling was observed only for microsphere with high DS of CMCG (DS = 0.44). At pH 7.4, the HCH sample led to a lower degree of swelling. The diffusion coefficients Dv were higher for the higher DS of CMCG in both media and the HCH sample had a lower Dv than LCH one. Faster BSA release rates were observed for beads prepared with the higher DS, whereas those prepared with DS = 0.16 took twice the time to reach similar release profiles. All microsphere systems investigated had a non-Fickian BSA release mechanism.  相似文献   

10.
Crustacean waste is one of the most severe issues, posing significant environmental and health risks. This study aims to improve managing marine waste by isolating chitosan from Procambarus clarkii by devising a new methodology, incorporating technical steps, e.g., washing, decolorization and deacetylation under a reflexive condenser and dialysis purification. A comparison was made between the prepared P. clarkii chitosan and four types of shrimp chitosans: commercial, high, low, and nano. The obtained chitosan has a low molecular weight and viscosity compared to the commercial shrimp chitosan used in various applications. P. clarkii chitosan was prepared in high quality from a cheap source, as its color and quality were better than those of the commercial shrimp chitosan. The new methodology has successfully extracted chitosan from P. clarkii in a good quality and high purity, achieving 89% deacetylation, high solubility, high purity, and medium molecular weight. Analysis of the different chitosan samples with Fourier transform infrared spectroscopy (FTIR), atomic force microscopy, Raman spectrum referred indicated high similarity between the chitosan different types, regardless of its source. The 3D image of P. clarkii showed the distance between the highest and most profound points of extracted chitosan is 728.94 nm, revealing homogeneous, smooth surfaces, apparently free of pores and cracks. FTIR and Raman spectrum of P. clarkii indicated various functional groups, e.g., alcohol, amines, amides, and phenols. These active groups are responsible for about 60% of the antioxidant activity of that product. Evaluating the quality traits indicated the excellence of the chitosan prepared from P. clarkii, especially in color, viscosity, and antioxidant activity, nominating it for different food applications.  相似文献   

11.
Proteins containing reactive cysteine residues (protein-Cys) are receiving increased attention as mediators of hydrogen peroxide signaling. These proteins are mainly identified by mining the thiol proteomes of oxidized protein-Cys in cells and tissues. However, it is difficult to determine if oxidation occurs through a direct reaction with hydrogen peroxide or by thiol–disulfide exchange reactions. Kinetic studies with purified proteins provide invaluable information about the reactivity of protein-Cys residues with hydrogen peroxide. Previously, we showed that the characteristic UV–Vis spectrum of horseradish peroxidase compound I, produced from the oxidation of horseradish peroxidase by hydrogen peroxide, is a simple, reliable, and useful tool to determine the second-order rate constant of the reaction of reactive protein-Cys with hydrogen peroxide and peroxynitrite. Here, the method is fully described and extended to quantify reactive protein-Cys residues and micromolar concentrations of hydrogen peroxide. Members of the peroxiredoxin family were selected for the demonstration and validation of this methodology. In particular, we determined the pKa of the peroxidatic thiol of rPrx6 (5.2) and the second-order rate constant of its reactions with hydrogen peroxide ((3.4 ± 0.2) × 107 M? 1 s? 1) and peroxynitrite ((3.7 ± 0.4) × 105 M? 1 s? 1) at pH 7.4 and 25 °C.  相似文献   

12.
The insoluble complex formation between lipase from Aspergillus niger and the electrically charged polymers, polyacrylic acid (PAA), poly-vinil sulfonate (PVS) and chitosan (CHI), was studied by using turbidimetric and enzymatic methods on a commercial lyophilized (Ly) and a filtrate of solid culture medium (SCM). It could be shown that both electrostatic interactions as hydrophobic are involved in the formation of insoluble complexes. The kinetics of the complex formation were determined. Lipase enzymatic activity is maintained through time in the presence of polyelectrolytes.On the Ly the three polymers produced insoluble complex, with a stoichiometric ratio (polymer mass per mass of Ly from Aspergillus niger) of PAA/Ly: 0.035, PVS/Ly: 0.099 and CHI/Ly: 0.071 mg/mg Ly. For the anionic polyelectrolytes, the PAA presents slightly better results than PVS to be used when the protein concentration is similar to the lyophilized.The filtrate of the SCM has a total protein concentration much lower than commercial lyophilized. Working with CHI as cationic polymer a recovery of the activity in the re-dissolved precipitate higher than 80%, with purification factors greater than 3 were achieved, both at 8 and 20 °C. Therefore, this methodology could be used as a first step of purification.  相似文献   

13.
Methane production from two types of wool textile wastes (TW1 and TW2) was investigated. To improve the digestibility of these textiles, different pretreatments were applied, and comprised thermal treatment (at 120 °C for 10 min), enzymatic hydrolysis (using an alkaline endopeptidase at different levels of enzymatic loading, at 55 °C for 0, 2, and 8 h), and a combination of these two treatments. Soluble protein concentration and sCOD (soluble chemical oxygen demand) were measured to evaluate the effectivity of the different pretreatment conditions to degrade wool keratin. The sCOD as well as the soluble protein content had increased in both textile samples in comparison to untreated samples, as a response to the different pretreatments indicating breakdown of the wool keratin structure.The combined treatments and the thermal treatments were further evaluated by anaerobic batch digestion assays at 55 °C. Combined thermal and enzymatic treatment of TW1 and TW2 resulted in methane productions of 0.43 N m3/kg VS and 0.27 N m3/kg VS, i.e., 20 and 10 times higher yields, respectively, than that gained from untreated samples. The application of thermal treatment by itself was less effective and resulted in increasing the methane production by 10-fold for TW1 and showing no significant improvement for TW2.  相似文献   

14.
A biocatalyst with high activity retention of lipase was fabricated by the covalent immobilization of Candida rugosa lipase on a cellulose nanofiber membrane. This nanofiber membrane was composed of nonwoven fibers with 200 nm nominal fiber diameter. It was prepared by electrospinning of cellulose acetate (CA) and then modified with alkaline hydrolysis to convert the nanofiber surface into regenerated cellulose (RC). The nanofiber membrane was further oxidized by NaIO4. Aldehyde groups were simultaneously generated on the nanofiber surface for coupling with lipase. Response surface methodology (RSM) was applied to model and optimize the modification conditions, namely NaIO4 content (2–10 mg/mL), reaction time (2–10 h), reaction temperature (25–35 °C) and reaction pH (5.5–6.5). Well-correlating models were established for the residual activity of the immobilized enzyme (R2 = 0.9228 and 0.8950). We found an enzymatic activity of 29.6 U/g of the biocatalyst was obtained with optimum operational conditions. The immobilized lipase exhibited significantly higher thermal stability and durability than equivalent free enzyme.  相似文献   

15.
Human PrimPol is a recently discovered bifunctional enzyme that displays DNA template-directed primase and polymerase activities. PrimPol has been implicated in nuclear and mitochondrial DNA replication fork progression and restart as well as DNA lesion bypass. Published evidence suggests that PrimPol is a Mn2+-dependent enzyme as it shows significantly improved primase and polymerase activities when binding Mn2+, rather than Mg2+, as a divalent metal ion cofactor. Consistently, our fluorescence anisotropy assays determined that PrimPol binds to a primer/template DNA substrate with affinities of 29 and 979 nM in the presence of Mn2+ and Mg2+, respectively. Our pre-steady-state kinetic analysis revealed that PrimPol incorporates correct dNTPs with 100-fold higher efficiency with Mn2+ than with Mg2+. Notably, the substitution fidelity of PrimPol in the presence of Mn2+ was determined to be in the range of 3.4 × 10−2 to 3.8 × 10−1, indicating that PrimPol is an error-prone polymerase. Furthermore, we kinetically determined the sugar selectivity of PrimPol to be 57–1800 with Mn2+ and 150–4500 with Mg2+, and found that PrimPol was able to incorporate the triphosphates of two anticancer drugs (cytarabine and gemcitabine), but not two antiviral drugs (emtricitabine and lamivudine).  相似文献   

16.
A subcutaneous exenatide delivery system was developed and characterized in vitro and in vivo. The results clearly showed that the exenatide loaded PLGA microspheres prepared by using a non-aqueous processing medium had low burst release and high drug encapsulation efficiency. Exenatide loaded in the microspheres preserved its bioactivity. The pharmacokinetics parameters were determined after subcutaneous administration of microspheres to SD rats. The plasma concentration of the single dose of the sustained-release microspheres attained Cmax of 108.19 ± 14.92 ng/ml at tmax of 1.33 ± 0.58 h and the t1/2 was 120.65 ± 44.18 h. There was a linear correlation between the in vitro and in vivo release behavior (R2 = 0.888). Exenatide loaded microspheres may prove to have great potential for clinical use.  相似文献   

17.
Ortho-hydroxylation of cinnamates is a key step in coumarin biosynthesis in plants. Ortho-hydroxylated cinnamates undergo trans/cis isomerization of the side-chain and then lactonization to form coumarins. Sweet potato [Ipomoea batatas (L.) Lam.] accumulates umbelliferone and scopoletin after biotic and abiotic stresses. To elucidate molecular aspects of ortho-hydroxylation involved in umbelliferone formation in sweet potato, isolation and characterization of cDNAs encoding 2-oxoglutarate-dependent dioxygenases (2OGD) was performed from sweet potato tubers treated with a chitosan elicitor. Five cDNAs (designated as Ib) encoding a protein of 358 amino acid residues were cloned, and these were categorized into two groups, Ib1 and Ib2, based on their amino acid sequences. Whether the recombinant Ib proteins had any enzymatic activity toward cinnamates was examined. Ib1 proteins exhibited ortho-hydroxylation activity toward feruloyl coenzyme A (CoA) to form scopoletin (Km = ∼10 μM, kcat = ∼2.7 s−1). By contrast, Ib2 proteins catalyzed ortho-hydroxylation of feruloyl-CoA (Km = 7.3–14.0 μM, kcat = 0.28–0.55 s−1) and also of p-coumaroyl-CoA (Km = 6.1–15.2 μM, kcat = 0.28–0.64 s−1) to form scopoletin and umbelliferone, respectively. Fungal and chitosan treatments increased levels of umbelliferone and its glucoside (skimmin) in the tubers, and expression of the Ib2 gene was induced concomitantly.  相似文献   

18.
19.
Chitin and chitosan microparticles (MPs) are important immune system stimulators. The aim of this study was to evaluate the protective effects of these compounds in comparison with each other against Leishmania infection in BALB/c mice infected with Leishmania major (L. major).Female BALB/c mice were injected subcutaneously with 2 × 105 promastigotes. Chitin and/or chitosan MPs (< 40 μm) were subcutaneously injected in the BALB/c mice with two-day intervals until two weeks. Mice in all groups were sacrificed at 12 weeks post-infection. Enumeration of viable parasites was performed using limiting dilution assay. Furthermore, the animals (5 mice/group) were sacrificed two weeks post-infection. The lymph node cells were isolated and the effects of the chitinous MPs on the proliferation and production of cytokines such as tumor necrosis factor alpha (TNF-α) and interleukin-10 (IL-10) were determined. The mean sizes of lesions were significantly smaller in chitin (0.6 ± 0.12 mm) and chitosan treated groups (1.2 ± 0.8 mm) than in the control group (6.2 ± 1.7 mm) (P < 0.05). The parasite load in the lymph nodes of the treated mice was significantly lower than that in the lymph nodes of controls (1.31 × 106 vs 8.24 × 107 parasite/lymph node [P = 0.032] and 7.49 × 106 vs 8.24 × 107 parasite/lymph node [P = 0.05] for chitin and chitosan MPs treatment, respectively). We found that chitinous MPs induced cell proliferation and that chitin but not chitosan increased TNF-α and IL-10 production. Chitin appears that it has more effect than chitosan against leishmaniasis. The current study revealed that chitinous MPs had significant activity against L. major and could be considered as new therapeutic modality in leishmaniasis.  相似文献   

20.
l-Ascorbyl laurate is a fatty acid derivative of l-ascorbic acid which can be widely used as a natural antioxidant in both lipid containing food and cosmetic applications. To avoid any possible harmful effects from chemically synthesized product, the enzymatic synthesis appears to be the best way to satisfy the consumer demand for natural antioxidants. The ability of immobilized lipase from Candida antarctica (Novozym® 435) to catalyze the direct esterification between l-ascorbic acid and lauric acid was investigated. Response surface methodology (RSM) and 5-level-4-factor central composite rotatable design (CCRD) were employed to evaluate the effects of synthesis parameters, such as reaction time (2–10 h), temperature (25–65 °C), enzyme amount (10–50% w/w of l-ascorbic acid), and substrate molar ratio of l-ascorbic acid to lauric acid (1:1–1:5) on percentage molar conversion to l-ascorbyl laurate. Based on the analysis result of ridge max, the optimal enzymatic synthesis conditions were predicted as follows: reaction time 6.7 h, temperature 30.6 °C, enzyme amount 34.5%, substrate molar ratio 1:4.3; and the optimal actual yield was 93.2%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号