共查询到20条相似文献,搜索用时 15 毫秒
1.
Maintaining an adaptive seasonality, with life cycle events occurring at appropriate times of year and in synchrony with cohorts and ephemeral resources, is a basic ecological requisite for many cold-blooded organisms. There are many mechanisms for synchronizing developmental milestones, such as egg laying (oviposition), egg hatching, cocoon opening, and the emergence of adults. These are often irreversible, specific to particular life stages, and include diapause, an altered physiological state which can be reversed by some synchronizing environmental cue (e.g. photoperiod). However, many successful organisms display none of these mechanisms for maintaining adaptive seasonality. In this paper, we briefly review the mathematical relationship between environmental temperatures and developmental timing and discuss the consequences of viewing these models as circle maps from the cycle of yearly oviposition dates and temperatures to oviposition dates for subsequent generations. Of particular interest biologically are life cycles which are timed to complete in exactly 1 year, or univoltine cycles. Univoltinism, associated with reproductive success for many temperate species, is related to stable fixed points of the developmental circle map. Univoltine fixed points are stable and robust in broad temperature bands, but lose stability suddenly to maladaptive cycles at the edges of these bands. Adaptive seasonality may therefore break down with little warning with constantly increasing or decreasing temperature change, as in scenarios for global warming. These ideas are illustrated and explored in the context of Mountain Pine Beetle (Dendroctonus ponderosae Hopkins) occurring in the marginal thermal habitat of central Idaho's Rocky Mountains. Applications of these techniques have not been widely explored by the applied math community, but are likely to provide great insight into the response of biological systems to climate change. 相似文献
2.
In the opening lecture at a 2013 Banff International Research Station (BIRS) workshop on the impact of climate change on biological invasions and population distributions, Henri Berestycki (École des Hautes Études en Sciences Sociales) asked a crucial question: Can a species keep pace with a changing climate? “Species” in this context was generally understood to be all living things on Earth (except humans). But mounting scientific evidence suggests that it is time to pose the parallel question: Can Homo sapiens keep pace with a changing climate? Furthermore, should we merely “keep pace”, or should we strive to get ahead and then do our utmost to stop any further climate change?In this paper we document the very real potential for climate change to have devastating consequences before the end of this century. The urgency of the situation calls for concerted action by anyone who understands the problem, and mathematical ecologists are uniquely trained to contribute to such efforts. We ask modellers to deliberately incorporate the species H. sapiens into their modelling work, and offer suggestions as to how this might be done. Ultimately modellers must seek ways to provide guidance to citizens and policy-makers as we all wrestle with the most important existential threat of our time. 相似文献
3.
Adam M. Krause Philip A. Townsend Young Lee Kenneth F. Raffa 《Agricultural and Forest Entomology》2018,20(3):402-413
- The mountain pine beetle Dendroctonus ponderosae (Coleoptera: Curculionidae) is an irruptive tree‐killing bark beetle native to pine stands in western North America. The primary hosts are lodgepole and ponderosa pines. Recent rising temperatures, however, have allowed these beetles to survive at higher elevations more commonly than in the past, thus threatening whitebark pine, a keystone species of high elevation ecosystems and a highly susceptible host.
- The extent to which risk in whitebark pine stands may be mitigated by predators or competitors is unknown. We compared the communities of coleopteran predators and competitors of D. ponderosae in sites of varying elevation and species composition in Montana and Wyoming, U.S.A. Sites were selected for low to moderate levels of tree mortality, where the potential of natural enemies to prevent D. ponderosae from transitioning into outbreaks would be most relevant. Insect populations were evaluated using unbaited flight‐intercept panel traps and pheromone‐baited multiple funnel traps.
- Only the predatory beetle species Thanasimus undatulus (Coleoptera: Cleridae) was captured in these non‐outbreak stands. Based on the pheromone‐baited traps, predator load was higher at low‐elevation stands dominated by lodgepole pine than high‐elevation stands dominated by whitebark pine.
- Phloeophagous insects were more prevalent in the mid‐ and higher‐elevation sites, although most of the species captured would not likely compete substantially for resources with D. ponderosae. We also observed differences in species assemblages between the Montana and Wyoming sites, as well as differing utilities of baited and unbaited traps at low versus moderate tree mortality levels.
4.
Richard W. Hofstetter Monica L. Gaylord Sharon Martinson Michael R. Wagner 《Agricultural and Forest Entomology》2012,14(2):207-215
- 1 Bark beetles are significant mortality agents of conifers. Four beetle species, the pine engraver Ips pini, the six‐spined pine engraver Ips calligraphus sub. ponderosae, the southern pine beetle Dendroctonus frontalis, and the western pine beetle Dendroctonus brevicomis, cohabitate pines in Arizona.
- 2 A pheromone trapping study in ponderosa forests of Arizona determined the attraction of beetles to conspecific and heterospecific pheromone components in the presence and absence of host volatiles, and tested whether predators differ in their attraction to combinations of pheromone components and tree monoterpenes.
- 3 All four bark beetle species differed in their responses to heterospecific lures and monoterpenes. Ips calligraphus was the only species that increased in trap catches when heterospecific lures were added. Heterospecific lures did not inhibit the attraction of either Dendroctonus or Ips species. The replacement of myrcene with α‐pinene increased the attraction of Dendroctonus, whereas the addition of α‐pinene had mixed results for Ips. The prominent predators Temnochila chlorodia and Enoclerus lecontei were more attracted to the I. pini lure than the D. brevicomis lure, and the combination of the two lures with α‐pinene was most attractive to both predator species.
- 4 Cross attraction and limited inhibition of bark beetles to heterospecific pheromones suggest that some of these species might use heterospecific compounds to increase successful location and colonization of trees. Predator responses to treatments suggest that tree volatiles are used to locate potential prey and predators are more responsive to Ips than to Dendroctonus pheromone components in Arizona.
5.
The aim of this study was to develop DNA probes that could identify the major fungal species associated with mountain pine beetles (MPB). The beetles are closely associated with fungal species that include ophiostomatoid fungi that can be difficult to differentiate morphologically. The most frequently isolated associates are the pine pathogens Grosmannia clavigera and Leptographium longiclavatum, the less pathogenic Ophiostoma montium, and an undescribed Ceratocystiopsis species (Cop. sp.). Because growing, isolating and extracting DNA from fungi vectored by MPB can be time and labour intensive, we designed three rDNA primer sets that specifically amplify short rDNA amplicons from O. montium, Cop. sp. and the pine Leptographium clade. We also designed two primer sets on a gene of unknown function that can differentiate G. clavigera and L. longiclavatum. We tested the primers on 76 fungal isolates that included MPB associates. The primers reliably identified their targets from DNA obtained from pure fungal cultures, pulverized beetles, beetle galleries, and tree phloem inoculated with G. clavigera. The primers will facilitate large-scale work on the ecology of the MPB-fungal-lodgepole pine ecosystem, as well as phytosanitary/quarantine sample screening. 相似文献
6.
《Fungal Ecology》2019
Fungal volatile compounds can mediate fungal-insect interactions. Whether fungi can emit insect pheromones and how volatile chemicals change in response to chemicals the fungi naturally encounter is poorly understood. We analyzed volatiles emitted by Grosmannia clavigera (symbiont of the mountain pine beetle) and Ophiostoma ips (symbiont of the pine engraver beetle) growing in liquid media amended with compounds that the fungi naturally encounter: (−)-α-pinene, (+)-α-pinene, (−)-trans-verbenol, verbenone, or ipsdienol. Nine volatile compounds were identified among the fungal and amendment treatments. Volatiles qualitatively and quantitatively differed between fungal species and among amendment treatments. The bark beetle anti-aggregation pheromone (−)-verbenone was detected from both fungi growing in (−)-trans-verbenol-amended media. G. clavigera and O. ips can emit beetle pheromones and other beetle semiochemicals, suggesting that ophiostomatoid fungi could contribute to the chemical ecology of bark beetles. However, such contributions could be modulated by the presence of other environmental chemicals. 相似文献
7.
Evan R. Larson 《Journal of Biogeography》2011,38(3):453-470
Aim To understand how the biophysical environment influences patterns of infection by non‐native blister rust (caused by Cronartium ribicola) and mortality caused by native mountain pine beetles (Dendroctonus ponderosae) in whitebark pine (Pinus albicaulis) communities, to determine how these disturbances interact, and to gain insight into how climate change may influence these patterns in the future. Location High‐elevation forests in south‐west Montana, central Idaho, eastern and western Oregon, USA. Methods Stand inventory and dendroecological methods were used to assess stand structure and composition and to reconstruct forest history at sixty 0.1‐ha plots. Patterns of blister rust infection and mountain pine beetle‐caused mortality in whitebark pine trees were examined using nonparametric Kruskal–Wallis ANOVA, Mann–Whitney U‐tests, and Kolmogorov–Smirnov two‐sample tests. Stepwise regression was used to build models of blister rust infection and mountain pine beetle‐related mortality rates based on a suite of biophysical site variables. Results Occurrence of blister rust infections was significantly different among the mountain ranges, with a general gradient of decreasing blister rust occurrence from east to west. Evidence of mountain pine beetle‐caused mortality was identified on 83% of all dead whitebark pine trees and was relatively homogenous across the study area. Blister rust infected trees of all ages and sizes uniformly, while mountain pine beetles infested older, larger trees at all sites. Stepwise regressions explained 64% and 58% of the variance in blister rust infection and beetle‐caused mortality, respectively, indicating that these processes are strongly influenced by the biophysical environment. More open stand structures produced by beetle outbreaks may increase the exposure of surviving whitebark pine trees to blister rust infection. Main conclusions Variability in the patterns of blister rust infection and mountain pine beetle‐caused mortality elucidated the fundamental dynamics of these disturbance agents and suggests that the effects of climate change will be complex in whitebark pine communities and vary across the species’ range. Interactions between blister rust and beetle outbreaks may accelerate declines or facilitate the rise of rust resistance in whitebark pine depending on forest conditions at the time of the outbreak. 相似文献
8.
Heavy disturbance-induced mortality can negatively impact forest biota, functions, and services by drastically altering the forest structures that create stable environmental conditions. Disturbance impacts on forest structure can be assessed using structural sustainabilitythe degree of balance between living and dead portions of a tree populations size-class distributionwhich is the basis of baseline mortality analysis. This analysis uses a conditionally calibrated reference level (i.e., baseline mortality) against which to detect significant mortality deviations without need for historical references. Recently, a structural sustainability index was developed by parameterizing results of this analysis to allow spatial and temporal comparisons within or among forested landscapes. The utility of this index as a tool for forest health monitoring programs and triage decisions has not been examined. Here, we investigated this utility by retrospectively analyzing the structural sustainability of a mountain pine beetle (Dendroctonus ponderosae)-impacted, lodgepole pine (Pinus contorta)-dominated landscape annually from 2000 to 2006 as well as among watersheds. We show that temporal patterns of structural sustainability at the landscape-level reflect accumulating beetle-induced mortality as well as beetle-lodgepole pine ecology. At the watershed-level, this sustainability spatially varied with 2006 beetle-induced mortality. Further, structural sustainability satisfies key criteria for effective indicators of ecosystem change. We conclude that structural sustainability is a viable tool upon which to base or supplement forest health monitoring and triage programs, and could potentially increase the efficacy of such programs under current and future climate change-associated disturbance patterns. 相似文献
9.
Current understanding of streamflow composition in mountain watersheds is often limited by inherent uncertainties and collection limitations in field data and assumptions associated with modelling techniques. Additional complexity arises in catchments experiencing land‐cover change. Here, a hillslope model with fully integrated processes from the subsurface through the canopy is combined with Lagrangian particle tracking through the surface and subsurface domains to understand changes in flow paths and source waters with insect‐induced tree death. This approach explicitly simulates end‐member mixing by tracking parcels of water tagged as rain, snow, and pre‐simulation (‘old’) groundwater and provides a method of separating outflows from these sources. Model simulations identify increases in subsurface water availability resulting from transpiration loss and altered canopy processes that increase throughfall and land‐surface energy. Combined with changes in snowmelt timing, the shallower depth to saturation associated with tree death results in increased old groundwater contributions to streamflow. This shift in the source of outflow is consistent with prior field analysis of changing streamflow contributions with tree mortality from widespread insect infestation in the Rocky Mountains of North America. Model results also highlight mixing of old water and new precipitation within the groundwater end‐member. Mixed hillslope outflows indicate that combinations of topography and precipitation can drive a range of signatures in groundwater inputs over meaningful time periods. Ultimately, this work and analysis of field observations provide insight into hillslope hydrologic processes and can serve as a platform for more complex simulations of land‐cover perturbations to streamflow source partitioning. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
10.
11.
Yuceer, C, Hsu, C.‐Y., Erbilgin, N and Klepzig, K.D. 2011. Ultrastructure of the mycangium of the southern pine beetle, Dendroctonus frontalis (Coleoptera: Curculionidae, Scolytinae): complex morphology for complex interactions. —Acta Zoologica (Stockholm) 92 : 216–224. The southern pine beetle (SPB) (Dendroctonus frontalis Zimmermann) is the most economically important pest of southern pine forests. Beetles carry fungal cells within specialised cuticular structures, called mycangia. Little is known about the mycangia ultrastructure or function. We used cryo‐fracturing and scanning electron microscopy to examine the ultrastructural features of SPB mycangia and surrounding tissues. Mycangia, one on each side of anterior portion of the prothorax, are terminated on the dorsal side at a ‘mycangial bridge’. This sclerotised mycangial bridge does not appear to provide a passage between the two mycangia, suggesting that each mycangium functions independently. Mycangia are surrounded by abundant tracheoles connecting the structures to the outside via openings within the prothorax. Previously unknown pits overlying the mycangial gland cells were also observed in both the inner wall and anterior fold of prothorax. We hypothesise that these openings and pits may play roles in determining which fungi enter, and grow within, the mycangium. 相似文献
12.
长白山北坡落叶松年轮年表及其与气候变化的关系 总被引:8,自引:0,他引:8
运用相关函数及单年分析等树木年轮气候学方法,研究了长白山北坡落叶松径向生长与气候变化的关系.结果表明,落叶松的生长对环境变化相当敏感,温度是影响其生长的主要因子.但不同海拔的落叶松对温度的响应明显不同.高海拔分布的落叶松只与当年6月的温度指标显著相关,而低海拔的落叶松与环境的关系相对复杂,除当年的4、5月外,上一年的6、9月温度以及上年9月的湿润指数都显著影响其生长.这说明不同环境梯度上的同一树种对气候变化的响应不尽相同. 相似文献
13.
采用定株观察,运用花粉-胚珠比、联苯胺-过氧化氢法、杂交指数和套袋实验等方法,对紫茉莉(Mirabilis jalapa L.)的开花状态及繁育系统进行了研究.结果表明:种群花期一般为6-10月,单花花期一般为2~3 d;单花花期依其形态和散粉时间可分为散粉前期、散粉初期、散粉盛期、花闭合期、凋谢期5个时期;在花闭合时期,晴天有66.80%的花的柱头在闭合花冠内,阴天时有81.65%的花的柱头在闭合花冠内,雨天柱头在闭合花冠内的花可达99.22%;按照杂交指数,其繁育系统属于自交亲和,有时需要传粉者;P/O值约为269,判断繁育系统类型属于兼性自交;开花6 h左右,柱头的可授性最强,此时花粉活力、置落在柱头上的花粉数及其在柱头上的萌发率都达到最高.套袋实验显示,紫茉莉自然条件下没有无融合现象,繁育系统为自交、异交亲和,以自交为主,但有时也需要传粉者;在长期的环境选择压力下,紫茉莉选择将更多的柱头留在闭合花冠内,是其对不利环境条件的一种适应进化策略. 相似文献
14.
Pinus sylvestris, the most widely distributed pine species, is commonly used in dendrochronological studies. Based on a lack of studies at its southeastern distribution, we analysed the growth responses of P. sylvestris to temperature and precipitation. We selected 13 sites to study the effects of climate on the growth of Scots pine stands throughout a geographic gradient over time. Trees were sampled from pure stands at different elevations and landscape conditions. The linear and non-linear associations between tree-ring widths and climate variables were calculated with locally specific linear correlation analysis and a mixed generalised additive model. Moving window correlation function was also performed to understand the temporal stability of limiting factors on growth from 1930 to 2013. Our findings showed that early spring temperature (March-April) and late spring-early summer precipitation (May-June) are the major drivers of growth at all sites, where high temperature constraints and high precipitation enhances the growth. Moving window correlation analysis highlighted that the response to precipitation was stationary while temperature changed over time. Our non-linear analysis provided a threshold for March-April temperature. The threshold indicates that the relative additional increment sharply increases up to 7 °C and then slightly decreases. 相似文献
15.
Antti Kilpeläinen Heli Peltola Ismo Rouvinen Seppo Kellomäki 《Trees - Structure and Function》2006,20(1):16-27
The aim of this study was to analyse and model the effects of elevated temperature and carbon dioxide concentration on daily height growth of 20-year-old Scots pines (Pinus sylvestris L.). The trees were grown with a low nitrogen supply in closed chambers with a factorial combination of two temperature regimes (ambient and elevated) and two carbon dioxide concentrations (ambient and twice ambient). The temperature elevation corresponded to the predicted increase at the site after a doubling in atmospheric CO2. The height growth of Scots pines was first empirically studied in terms of its onset, cessation and duration, and the allocation of daily height growth within the growing period in 2000 and 2001, and then a model predicting daily height growth as a function of daily temperature and temperature sum was developed. The empirical results showed elevated temperature to be the dominant variable explaining variation in daily height growth. Elevated temperature also hastened both the onset and cessation of height growth, and the temperature sums for both of them were higher in the elevated than in the ambient temperature treatments. The daily variation in height growth could also be explained by the daily mean temperature in the model. Elevated CO2 concentration had no effect on the onset, cessation or duration of height growth. The amount of height growth was not affected by any of the treatments. 相似文献
16.
东北阔叶红松林分布区生态气候适宜性及全球气候变化影响评价 总被引:9,自引:2,他引:9
以在植被分布中起重要作用的温度指标(生长度·日,GDD)和水分指标(可能蒸散率,PER)为基础提出温度·水分影响函数f(GDD,PER),评价丁东北阔叶红松林分布区生态气候环境质量即生态气候适宜性.将f(PER,GDD)≥0.70划为阔叶红松林核心分布区;0.35≤f(PER,GDD)<0.70划为适宜分布区;f(PER,GDD)<0.35划为边缘分布区.东北阔叶红松林分布区面积为39.99km^2,其中核心分布区面积7.13×10^4kg^2,适宜分布区12.27km^2,边缘分布区20.59km^2。同时结合大气环流模式(GISS、OSU)的气候变化情景评价了全球气候变化对东北阔叶红松林分布区生态气候适宜性的影响.结果表明,于暖化气候条件下东北地区阔叶红松林分布区明显减小,生态适应性显著下降。 相似文献
17.
《International journal for parasitology》2023,53(3):133-155
Gastrointestinal nematode (GIN) infections are ubiquitous and often cause morbidity and reduced performance in livestock. Emerging anthelmintic resistance and increasing change in climate patterns require evaluation of alternatives to traditional treatment and management practices. Mathematical models of parasite transmission between hosts and the environment have contributed towards the design of appropriate control strategies in ruminants, but have yet to account for relationships between climate, infection pressure, immunity, resources, and growth. Here, we develop a new epidemiological model of GIN transmission in a herd of grazing cattle, including host tolerance (body weight and feed intake), parasite burden and acquisition of immunity, together with weather-dependent development of parasite free-living stages, and the influence of grass availability on parasite transmission. Dynamic host, parasite and environmental factors drive a variable rate of transmission. Using literature sources, the model was parametrised for Ostertagia ostertagi, the prevailing pathogenic GIN in grazing cattle populations in temperate climates. Model outputs were validated on published empirical studies from first season grazing cattle in northern Europe. These results show satisfactory qualitative and quantitative performance of the model; they also indicate the model may approximate the dynamics of grazing systems under co-infection by O. ostertagi and Cooperia oncophora, a second GIN species common in cattle. In addition, model behaviour was explored under illustrative anthelmintic treatment strategies, considering impacts on parasitological and performance variables. The model has potential for extension to explore altered infection dynamics as a result of management and climate change, and to optimise treatment strategies accordingly. As the first known mechanistic model to combine parasitic and free-living stages of GIN with host feed-intake and growth, it is well suited to predict complex system responses under non-stationary conditions. We discuss the implications, limitations and extensions of the model, and its potential to assist in the development of sustainable parasite control strategies. 相似文献
18.
Question: Interacting disturbance effects from Dendroctonus frontalis outbreaks and wildfire are thought to maintain Pinus spp. composition in the southeastern U. S. Our objective was to assess forest composition, structure, and succession following the interaction of two frequently occurring disturbance events in southern Pinus spp. forests: cut‐and‐leave suppression, a commonly used means for managing D. frontalis outbreaks, and wildfire. Location: Western Gulf Coastal Plain, Louisiana, USA. Method: Pinus taeda stands with cut‐and‐leave suppression and subsequent wildfire were compared to stands undisturbed by D. frontalis but with the same wildfire events twenty years after Pinus spp. mortality. The woody plant community was assessed in three different size classes and used to predict future forest types with the Forest Vegetation Simulator (50 years). Results: P. taeda is the most abundant (> 50%) species of saw‐ and poletimber‐sizes following cut‐and‐leave suppression with wildfire and in stands only with fire. Using canonical correspondence analysis, vegetation assemblages were primarily explained by slope position and elevation (7.6% variation explained). Fire intensity and stand age also accounted for variance in the ordination (4.4% and 3.1%, respectively). Dominant and co‐dominant P. taeda forest types were predicted by the model to be the most abundant forest types in each disturbance regime. In addition, new regeneration represents high hazard for future mortality from D. frontalis. Conclusion: Our study demonstrates that cut‐and‐leave suppression with additional wildfire disturbance maintains P. taeda composition, and does not alter forest composition differently from stands receiving only wildfire. As a result, predicted Pinus spp. basal area under both disturbances is great enough to facilitate future bark beetle disturbance. 相似文献
19.
Reducing forest stand density through silvicultural thinning has demonstrated potential to mitigate drought impacts on growth; however, less has been studied on how changes in stand structure created by different thinning methods influence forest growth responses to drought. This research examined the growth responses to drought of natural-origin red pine in a long-term study contrasting thinning methods. Dendrochronological methods were used to examine growth responses during several drought events among stands where different thinning methods have been applied since 1950. Growth responses to drought were expressed as resistance (maintaining growth during drought), and resilience (regaining pre-drought growth). Results indicate that periodic thinning from above, which resulted in smaller diameters, has the potential to moderate drought-induced growth reductions. Larger tree diameters negatively influenced tree-level resistance and resilience across all treatments; however, the proportion of dominant trees in a stand had contrasting effects on stand-level drought responses. Stands thinned from above exhibited more complex vertical structure and increased stand-level resistance and resilience to drought-induced growth declines because competition is more stratified among smaller diameter trees. Opposite trends were observed in stands thinned from below, where the larger diameters and monolayered structure create greater competition among trees of similar size and crown position. The results of this study highlight the utility in managing for greater structural diversity to mitigate the negative effects of drought in red pine forest ecosystems. 相似文献
20.
Climate change is likely to disrupt the timing of developmental events (phenology) in insect populations in which development
time is largely determined by temperature. Shifting phenology puts insects at risk of being exposed to seasonal weather extremes
during sensitive life stages and losing synchrony with biotic resources. Additionally, warming may result in loss of developmental
synchronization within a population making it difficult to find mates or mount mass attacks against well-defended resources
at low population densities. It is unknown whether genetic evolution of development time can occur rapidly enough to moderate
these effects. We present a novel approach to modeling the evolution of phenology by allowing the parameters of a phenology
model to evolve in response to selection on emergence time and density. We use the Laplace method to find asymptotic approximations
for the temporal variation in mean phenotype and phenotypic variance arising in the evolution model that are used to characterize
invariant distributions of the model under periodic temperatures at leading order. At these steady distributions the mean
phenotype allows for parents and offspring to be oviposited at the same time of year in consecutive years. Numerical simulations
show that populations evolve to these steady distributions under periodic temperatures. We consider an example of how the
evolution model predicts populations will evolve in response to warming temperatures and shifting resource phenology. 相似文献