首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Thermoregulatory studies of ectothermic organisms are an important tool for ecological physiology, evolutionary ecology and behavior, and recently have become central for evaluating and predicting global climate change impacts. Here, we present a novel combination of field, laboratory, and modeling approaches to examine body temperature regulation, habitat thermal quality, and hours of thermal restriction on the activity of two sympatric, aridlands horned lizards (Phrynosoma cornutum and Phrynosoma modestum) at three contrasting Chihuahuan Desert sites in Mexico. Using these physiological data, we estimate local extinction risk under predicted climate change within their current geographical distribution. We followed the Hertz et al. (1993, Am. Nat., 142, 796–818) protocol for evaluating thermoregulation and the Sinervo et al. (2010, Science, 328, 894–899) eco-physiological model of extinction under climatic warming. Thermoregulatory indices suggest that both species thermoregulate effectively despite living in habitats of low thermal quality, although high environmental temperatures restrict the activity period of both species. Based on our measurements, if air temperature rises as predicted by climate models, the extinction model projects that P. cornutum will become locally extinct at 6% of sites by 2050 and 18% by 2080 and P. modestum will become extinct at 32% of sites by 2050 and 60% by 2080. The method we apply, using widely available or readily acquired thermal data, along with the modeling, appeared to identify several unique ecological traits that seemingly exacerbate climate sensitivity of P. modestum.  相似文献   

2.
Body temperature, rate of biosynthesis, and evolution of genome size   总被引:3,自引:2,他引:1  
An optimality model relating the rate of biosynthesis to body temperature and gene duplication is presented to account for several observed patterns of genome size variation. The model predicts (1) that poikilotherms living in a warm climate should have a smaller genome than poikilotherms living in a cold climate, (2) that homeotherms should have a small genome as well as a small variation in genome size relative to their poikilothermic ancestors, (3) that cold geological periods should favor the evolution of poikilotherms with a large genome and that warm geological periods should do the opposite, and (4) that poikilotherms with a small genome should be more sensitive to changes in temperature than poikilotherms with a large genome. The model also offers two explanations for the empirically documented trend that organisms with a large cell volume have larger genomes than those with a small cell volume. Relevant empirical evidence is summarized to support these predictions.   相似文献   

3.
Future climate change has been predicted to affect the potential distribution of plant species. However, only few studies have addressed how invasive species may respond to future climate change despite the known effects of plant species invasion on nutrient cycles, ecosystem functions, and agricultural yields. In this study, we predicted the potential distributions of two invasive species, Rumex crispus and Typha latifolia, under current and future (2050) climatic conditions. Future climate scenarios considered in our study include A1B, A2, A2A, B1, and B2A. We found that these two species will lose their habitat under the A1B, A2, A2A, and B1 scenarios. Their distributions will be maintained under future climatic conditions related to B2A scenarios, but the total area will be less than 10% of that under the current climatic condition. We also investigated variations of the most influential climatic variables that are likely to cause habitat loss of the two species. Our results demonstrate that rising mean annual temperature, variations of the coldest quarter, and precipitation of the coldest quarter are the main factors contributing to habitat loss of R. crispus. For T. latifolia, the main factors are rising mean annual temperature, variations in temperature of the coldest quarter, mean annual precipitation, and precipitation of the coldest quarter. These results demonstrate that the warmer and wetter climatic conditions of the coldest season (or month) will be mainly responsible for habitat loss of R. crispus and T. latifolia in the future. We also discuss uncertainties related to our study (and similar studies) and suggest that particular attention should be directed toward the manner in which invasive species cope with rapid climate changes because evolutionary change can be rapid for species that invade new areas.  相似文献   

4.
5.
Intertidal organisms are vulnerable to global warming as they already live at, or near to, the upper limit of their thermal tolerance window. The behaviour of ectotherms could, however, dampen their limited physiological abilities to respond to climate change (e.g. drier and warmer environmental conditions) which could substantially increase their survival rates. The behaviour of ectotherms is still mostly overlooked in climate change studies. Here, we investigate the potential of aggregation behaviour to compensate for climate change in an intertidal gastropod species (Nerita atramentosa) in South Australia. We used thermal imaging to investigate (1) the heterogeneity in individual snail water content and body temperature and surrounding substratum temperature on two topographically different habitats (i.e. rock platform and boulders) separated by 250 m at both day- and night-times, (2) the potential relationship between environment temperature (air and substratum) and snail water content and body temperature, and (3) the potential buffering effect of aggregation behaviour on snail water content and body temperature. Both substratum and snail temperature were more heterogeneous at small spatial scales (a few centimetres to a few metres) than between habitats. This reinforces the evidence that mobile intertidal ectotherms could survive locally under warmer conditions if they can locate and move behaviourally in local thermal refuges. N. atramentosa behaviour, water content and body temperature during emersion seem to be related to the thermal stability and local conditions of the habitat occupied. Aggregation behaviour reduces both desiccation and heat stresses but only on the boulder field. Further investigations are required to identify the different behavioural strategies used by ectothermic species to adapt to heat and dehydrating conditions at the habitat level. Ultimately, this information constitutes a fundamental prerequisite to implement conservation management plans for ectothermic species identified as vulnerable in the warming climate.  相似文献   

6.
Temperature strongly affects performance in ectotherms. As ocean warming continues, performance of marine species will be impacted. Many studies have focused on how warming will impact physiology, life history, and behavior, but few studies have investigated how ecological and behavioral traits of organisms will affect their response to changing thermal environments. Here, we assessed the thermal tolerances and thermal sensitivity of swimming performance of two sympatric mysid shrimp species of the Northwest Atlantic. Neomysis americana and Heteromysis formosa overlap in habitat and many aspects of their ecological niche, but only N. americana exhibits vertical migration. In temperate coastal ecosystems, temperature stratification of the water column exposes vertical migrators to a wider range of temperatures on a daily basis. We found that N. americana had a significantly lower critical thermal minimum (CTmin) and critical thermal maximum (CTmax). However, both mysid species had a buffer of at least 4 °C between their CTmax and the 100-year projection for mean summer water temperatures of 28 °C. Swimming performance of the vertically migrating species was more sensitive to temperature variation, and this species exhibited faster burst swimming speeds. The generalist performance curve of H. formosa and specialist curve of N. americana are consistent with predictions based on the exposure of each species to temperature variation such that higher within-generation variability promotes specialization. However, these species violate the assumption of the specialist-generalist tradeoff in that the area under their performance curves is not constant. Our results highlight the importance of incorporating species-specific responses to temperature based on the ecology and behavior of organisms into climate change prediction models.  相似文献   

7.
The weevil Cyrtobagous salviniae Calder & Sands 1985 (Family: Curculionidae) is a highly effective biocontrol agent for the invasive water fern Salvinia molesta D.S. Mitchell (Family: Salviniaceae). The life histories of both organisms are affected by temperature, making the potential impacts of climate change on efficacy of control an important area in which comprehensive understanding is required. Here we use warming tolerance (WT) and low temperature tolerance (LTT) as measures of C. salviniae’s sensitivity to climate warming, calculated across South Africa using critical thermal limits, lethal temperature limits and mean maximum (Tmax) and minimum (Tmin) environmental temperatures under present climatic conditions and two future periods (2040s and 2080s). From the present climate to the 2080s the WTs of C. salviniae decrease and LTTs increase indicating C. salviniae may face greater constraints on survival as Tmax nears the upper thermal limits, but increased population persistence over cool months as Tmin increases.  相似文献   

8.
Global warming is thought to be a far-reaching threat to biodiversity, and is supposed to influence several aspects of the ecology of animals. Global warming should influence especially the ectotherm vertebrates, which depend directly from the external thermal conditions for their activities and performances. Here, we analyze the changes in phenology which have occurred in the last 20 years in a marked population of vipers, Vipera aspis, and we try to relate these changes with the intervening climatic changes. We analyzed three metrics of viper's annual phenology: (i) annual onset of above-ground activity (hereby AOA); (ii) annual onset of feeding period (AOF); (iii) annual onset of the hibernation (AOH). The annual variations of these three phenological metrics were correlated to five variables of climatic data: (1) mean annual air temperature, (2) mean February air temperature, (3) mean July air temperature, (4) yearly number of rainy days, and (5) yearly number of days with rainstorm. We observed a statistically significant reduction of AOA values from >28 days between 1987 and 1997, to approximately 20 days from 1998 to 2011, with a similar statistical trend also found for AOF values. The number of days of delay in entering hibernation increased significantly since 1998. Three sets of relationships between climatic variables and metrics of viper phenology were statistically significant, i.e. the correlation (i) between annual mean temperature and AOA (negative), (ii) between annual mean temperature and AOF (negative), and (iii) between annual mean temperature and AOH (positive). The percent of field days (between 20th February and 20th March) with no viper observed also decreased significantly over the years. Our study showed that three different traits of the annual phenology of a Mediterranean snake are shifting in the 20+ years of monitoring, and that there is correlational evidence that these shifts are linked to intervening climate change.  相似文献   

9.
Using samples from eastern China (c. 25 – 41° N and 99 – 123° E) and from a common garden experiment, we investigate how Mg concentration varies with climate across multiple trophic levels. In soils, plant tissue (Oriental oak leaves and acorns), and a specialist acorn predator (the weevil Curculio davidi), Mg concentration increased significantly with different slopes from south to north, and generally decreased with both mean annual temperature (MAT) and precipitation (MAP). In addition, soil, leaf, acorn and weevil Mg showed different strengths of association and sensitivity with climatic factors, suggesting that distinct mechanisms may drive patterns of Mg variation at different trophic levels. Our findings provide a first step toward determining whether anticipated changes in temperature and precipitation due to climate change will have important consequences for the bioavailability and distribution of Mg in food chain.  相似文献   

10.
Determining organismal responses to climate change is one of biology's greatest challenges. Recent forecasts for future climates emphasize altered temperature variation and precipitation, but most studies of animals have largely focused on forecasting the outcome of changes in mean temperature. Theory suggests that extreme thermal variation and precipitation will influence species performance and hence affect their response to changes in climate. Using an information-theoretic approach, we show that in squamate ectotherms (mostly lizards and snakes), two fitness-influencing components of performance, the critical thermal maximum and the thermal optimum, are more closely related to temperature variation and to precipitation, respectively, than they are to mean thermal conditions. By contrast, critical thermal minimum is related to mean annual temperature. Our results suggest that temperature variation and precipitation regimes have had a strong influence on the evolution of ectotherm performance, so that forecasts for animal responses to climate change will have to incorporate these factors and not only changes in average temperature.  相似文献   

11.
Understanding and predicting how species will respond to climate change is crucial for biodiversity conservation. Here, we assessed future climate change impacts on the distribution of a rare and endangered plant species, Davidia involucrate in China, using the most recent global circulation models developed in the sixth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC6). We assessed the potential range shifts in this species by using an ensemble of species distribution models (SDMs). The ensemble SDMs exhibited high predictive ability and suggested that the temperature annual range, annual mean temperature, and precipitation of the driest month are the most influential predictors in shaping distribution patterns of this species. The projections of the ensemble SDMs also suggested that D. involucrate is very vulnerable to future climate change, with at least one‐third of its suitable range expected to be lost in all future climate change scenarios and will shift to the northward of high‐latitude regions. Similarly, at least one‐fifth of the overlap area of the current nature reserve networks and projected suitable habitat is also expected to be lost. These findings suggest that it is of great importance to ensure that adaptive conservation management strategies are in place to mitigate the impacts of climate change on D. involucrate.  相似文献   

12.
Forest insects are major disturbances that induce tree mortality in eastern coniferous (or fir-spruce) forests in eastern North America. The spruce budworm (SBW) (Choristoneura fumiferana [Clemens]) is the most devastating insect causing tree mortality. However, the relative importance of insect-caused mortality versus tree mortality caused by other agents and how this relationship will change with climate change is not known. Based on permanent sample plots across eastern Canada, we combined a logistic model with a negative model to estimate tree mortality. The results showed that tree mortality increased mainly due to forest insects. The mean difference in annual tree mortality between plots disturbed by insects and those without insect disturbance was 0.0680 per year (P < 0.0001, T-test), and the carbon sink loss was about 2.87t C ha−1 year−1 larger than in natural forests. We also found that annual tree mortality increased significantly with the annual climate moisture index (CMI) and decreased significantly with annual minimum temperature (Tmin), annual mean temperature (Tmean) and the number of degree days below 0°C (DD0), which was inconsistent with previous studies (Adams et al. 2009; van Mantgem et al. 2009; Allen et al. 2010). Furthermore, the results for the trends in the magnitude of forest insect outbreaks were consistent with those of climate factors for annual tree mortality. Our results demonstrate that forest insects are the dominant cause of the tree mortality in eastern Canada but that tree mortality induced by insect outbreaks will decrease in eastern Canada under warming climate.  相似文献   

13.
A major area of current research is to understand how climate change will impact species interactions and ultimately biodiversity. A variety of environmental conditions are rapidly changing owing to climate warming, and these conditions often affect both the strength and outcome of species interactions. We used fish distributions and replicated fish introductions to investigate environmental conditions influencing the coexistence of two fishes in Swedish lakes: brown trout (Salmo trutta) and pike (Esox lucius). A logistic regression model of brown trout and pike coexistence showed that these species coexist in large lakes (more than 4.5 km2), but not in small, warm lakes (annual air temperature more than 0.9–1.5°C). We then explored how climate change will alter coexistence by substituting climate scenarios for 2091–2100 into our model. The model predicts that brown trout will be extirpated from approximately half of the lakes where they presently coexist with pike and from nearly all 9100 lakes where pike are predicted to invade. Context dependency was critical for understanding pike–brown trout interactions, and, given the widespread occurrence of context-dependent species interactions, this aspect will probably be critical for accurately predicting climate impacts on biodiversity.  相似文献   

14.
张文涛  江源  王明昌  张凌楠  董满宇 《生态学报》2015,35(19):6481-6488
为研究树木生长对气候变化的响应状况,选取芦芽山阳坡的3个海拔高度建立了华北落叶松(Larix principis-rupprechtii)的树轮宽度年表。年表的统计参数表明,3条年表均为研究气候信息的可靠资料。结果表明,芦芽山阳坡华北落叶松的径向生长和生长与气候的关系均具有海拔差异,中海拔(2440 m)和高海拔(2540 m)的华北落叶松具有相似年际生长变化,而二者均与低海拔(2330 m)华北落叶松的年际生长不同。低海拔华北落叶松的生长与4月平均气温和上一年11月降水量显著负相关,而中海拔和高海拔的生长均与上一年10月平均气温和6月降水量显著负相关。通过年表与气候因子之间的滑动相关分析发现,3个海拔高度华北落叶松生长与气候因子的关系均不稳定,生长与气温条件之间的显著相关关系是随着气温升高而出现的。气温的升高引起了华北落叶松生长与气温因子关系的海拔差异,以及径向生长的海拔差异。这一结果对于气候变化对植被垂直梯度影响的研究具有一定参考价值。  相似文献   

15.
张远东  庞瑞  顾峰雪  刘世荣 《生态学报》2013,33(16):5047-5057
土壤异养呼吸是陆地和大气之间的重要通量,是决定陆地生态系统碳源汇的关键因素之一,与气候变化紧密相关。西南高山地区是响应气候变化的重点区域,研究西南高山地区土壤异养呼吸动态及其对气候变化的响应,对于评估区域碳循环对全球气候变化的贡献具有重要意义。应用生态系统模型(CEVSA)模型估算了1954-2010年西南高山地区土壤异养呼吸(HR)的时空变化,分析了其对气候变化的响应。结果表明:(1)西南高山地区1954-2010年平均异养呼吸量为422 g C·m-2·a-1,在空间分布上,HR自东南向西北递减,与年平均温度(r=0.721,P<0.01)、年降水量(r=0.564,P<0.01)均显著正相关;(2)在时间尺度上,西南高山地区1954-2010年 HR总量增加趋势显著(P<0.05),变化范围为197-251 Tg C/a,平均每年增加0.710 Tg C,其中主要植被类型草地、常绿针叶林和常绿阔叶林均增加趋势显著(P<0.01),增加速度分别为1.621、1.496和1.055 g C·m-2·a-2。(3)土壤HR的年际变化主要受温度影响,且西北部高海拔地区较东南部低海拔对温度变化更为敏感,主要植被类型温度敏感系数Q10从大到小依次为草地(2.35)、常绿针叶林(2.34)、常绿阔叶林(1.93)。  相似文献   

16.
梁红艳  姜效雷  孔玉华  杨喜田 《生态学报》2018,38(23):8345-8353
为了阐明气候变暖背景下春兰(Cymbidium goeringii)和蕙兰(C. faberi)在我国的适生区分布变化情况,根据157条分布记录和19个生物气候变量,应用最大熵物种分布模型,对2070年4种温室气体排放情景下春兰和蕙兰在我国的适生区分布进行预测,并筛选影响其地理分布的主要气候因子。结果表明:(1)2070年春兰和蕙兰分布点的年均温(bio1)、最冷月最低温度(bio6)和最冷季平均温度(bio11)等均升高,气候有变暖趋势;(2)受试者工作特征曲线下面积(AUC)值在0.9—1.0之间,模型预测结果可信度较高;(3)影响春兰、蕙兰当前和2070年地理分布的限制性气候因子主要有最冷月最低温度(bio6)、最冷季平均温度(bio11)、年均降水量(bio12)和最干月份降水量(bio14);(4)气候变暖将会对春兰和蕙兰的适宜生境范围和面积产生影响。预测2070年春兰的适宜生境面积将会有所减小,而蕙兰的适宜生境面积将会增加,且整体有向北迁移的趋势。研究结果为野生春兰和蕙兰的生态风险评价和引种提供了重要依据。  相似文献   

17.
The expectation that atmospheric warming will be most pronounced at higher latitudes means that Arctic and montane systems, with predominantly organic soils, will be particularly influenced by climate change. One group of soil fauna, the enchytraeids, is commonly the major soil faunal component in specific biomes, frequently exceeding above‐ground fauna in biomass terms. These organisms have a crucial role in carbon turnover in organic rich soils and seem particularly sensitive to temperature changes. In order to predict the impacts of climate change on this important group of soil organisms we reviewed data from 44 published papers using a combination of conventional statistical techniques and meta‐analysis. We focused on the effects of abiotic factors on total numbers of enchytraeids (a total of 611 observations) and, more specifically, concentrated on total numbers, vertical distribution and age groupings of the well‐studied species Cognettia sphagnetorum (228 observations). The results highlight the importance of climatic factors, together with vegetation and soil type in determining global enchytraeid distribution; in particular, cold and wet environments with mild summers are consistently linked to greater densities of enchytraeids. Based on the upper temperature distribution limits reported in the literature, and identified from our meta‐analyses, we also examined the probable future geographical limits of enchytraeid distribution in response to predicted global temperature changes using the HadCM3 model climate output for the period between 2010 and 2100. Based on the existing data we identify that a maximum mean annual temperature threshold of 16 °C could be a critical limit for present distribution of field populations, above which their presence would decline markedly, with certain key species, such as C. sphagnetorum, being totally lost from specific regions. We discuss the potential implications for carbon turnover in these organic soils where these organisms currently dominate and, consequently, their future role as C sink/source in response to climate change.  相似文献   

18.
Arid savannas are regarded as one of the ecosystems most likely to be affected by climate change. In these dry conditions, even top predators like raptors are affected by water availability and precipitation. However, few research initiatives have addressed the question of how climate change will affect population dynamics and extinction risk of particular species in arid ecosystems. Here, we use an individual‐oriented modeling approach to conduct experiments on the population dynamics of long lived raptors. We investigate the potential impact of precipitation variation caused by climate change on raptors in arid savanna using the tawny eagle (Aquila rapax) in the southern Kalahari as a case study. We simulated various modifications of precipitation scenarios predicted for climate change, such as lowered annual precipitation mean, increased inter‐annual variation and increased auto‐correlation in precipitation. We found a high impact of these modifications on extinction risk of tawny eagles, with reduced population persistence in most cases. Decreased mean annual precipitation and increased inter‐annual variation both caused dramatic decreases in population persistence. Increased auto‐correlation in precipitation led only to slightly accelerated extinction of simulated populations. Finally, for various patterns of periodically fluctuating precipitation, we found both increased and decreased population persistence. In summary, our results suggest that the impacts on raptor population dynamics and survival caused by climate change in arid savannas will be great. We emphasize that even if under climate change the mean annual precipitation remains constant but the inter‐annual variation increases the persistence of raptor populations in arid savannas will decrease considerably. This suggests a new dimension of climate change driven impacts on population persistence and consequently on biodiversity. However, more investigations on particular species and/or species groups are needed to increase our understanding of how climate change will impact population dynamics and how this will influence species diversity and biodiversity.  相似文献   

19.
Climate change is expected to alter species distributions and habitat suitability across the globe. Understanding these shifting distributions is critical for adaptive resource management. The role of temperature in fish habitat and energetics is well established and can be used to evaluate climate change effects on habitat distributions and food web interactions. Lake Superior water temperatures are rising rapidly in response to climate change and this is likely influencing species distributions and interactions. We use a three-dimensional hydrodynamic model that captures temperature changes in Lake Superior over the last 3 decades to investigate shifts in habitat size and duration of preferred temperatures for four different fishes. We evaluated habitat changes in two native lake trout (Salvelinus namaycush) ecotypes, siscowet and lean lake trout, Chinook salmon (Oncorhynchus tshawytscha), and walleye (Sander vitreus). Between 1979 and 2006, days with available preferred thermal habitat increased at a mean rate of 6, 7, and 5 days per decade for lean lake trout, Chinook salmon, and walleye, respectively. Siscowet lake trout lost 3 days per decade. Consequently, preferred habitat spatial extents increased at a rate of 579, 495 and 419 km2 per year for the lean lake trout, Chinook salmon, and walleye while siscowet lost 161 km2 per year during the modeled period. Habitat increases could lead to increased growth and production for three of the four fishes. Consequently, greater habitat overlap may intensify interguild competition and food web interactions. Loss of cold-water habitat for siscowet, having the coldest thermal preference, could forecast potential changes from continued warming. Additionally, continued warming may render more suitable conditions for some invasive species.  相似文献   

20.
Plant biomass allocation between below- and above-ground parts can actively adapt to the ambient growth conditions and is a key parameter for estimating terrestrial ecosystem carbon (C) stocks. To investigate how climatic variations affect patterns of plant biomass allocation, we sampled 548 plants belonging to four dominant genera (Stipa spp., Cleistogenes spp., Agropyron spp., and Leymus spp.) along a large-scale (2500 km) climatic gradient across the temperate grasslands from west to east in northern China. Our results showed that Leymus spp. had the lowest root/shoot ratios among the each genus. Root/shoot ratios of each genera were positively correlated with mean annual temperature (MAT), and negatively correlated with mean annual precipitation (MAP) across the transect. Temperature contributed more to the variation of root/shoot ratios than precipitation for Cleistogenes spp. (C4 plants), whereas precipitation exerted a stronger influence than temperature on their variations for the other three genera (C3 plants). From east to west, investment of C into the belowground parts increased as precipitation decreased while temperature increased. Such changes in biomass allocation patterns in response to climatic factors may alter the competition regimes among co-existing plants, resulting in changes in community composition, structure and ecosystem functions. Our results suggested that future climate change would have great impact on C allocation and storage, as well as C turnover in the grassland ecosystems in northern China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号