首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new genus of Pfiesteria‐like heterotrophic dinoflagellate, Luciella gen. nov., and two new species, Luciella masanensis sp. nov. and Luciella atlantis sp. nov., are described. These species commonly occur with other small (<20 μm) heterotrophic and mixotrophic dinoflagellates in estuaries from Florida to Maryland and the southern coast of Korea, suggesting a possible global distribution. An SEM analysis indicates that members of the genus Luciella have the enhanced Kofoidian plate formula of Po, cp, X, 4′, 2a, 6″, 6c, PC, 5+s, 5?, 0p, and 2″″. The two four‐sided anterior intercalary plates are diamond shaped. The genus Luciella differs from the other genera in the Pfiesteriaceae by a least one plate in the plate tabulation and in the configuration of the two anterior intercalary plates. An SSU rDNA phylogenetic analysis confirmed the genus as monophyletic and distinct from the other genera in the Pfiesteriaceae. The morphology of Luciella masanensis closely resembles Pfiesteria piscicida Steid. et J. M. Burkh. and other Pfiesteria‐like dinoflagellates in size and shape, making it easily misidentified using LM. Luciella atlantis, in contrast, has a more distinctive morphology. It can be distinguished from L. masanensis and other Pfiesteria‐like organisms by a larger cell size, a more conical‐shaped epitheca and hypotheca, larger rhombic‐shaped intercalary plates, and an asymmetrical hypotheca. The genus Luciella is assigned to the order Peridiniales and the family Pfiesteriaceae based on plate tabulation, plate pattern, general morphology, and phylogenetic analysis.  相似文献   

2.
This study investigated the genetic diversity of phytoplankton communities in six shallow lagoons located on the French coast of the northwestern Mediterranean Sea that represented a trophic gradient ranging from oligotrophic to hypereutrophic. The phytoplankton communities were sampled once a month from spring (May) to the beginning of autumn (September/early October) in 2012 and fractionated by size. Metabarcodes were generated from cDNAs by targeting the D1-D2 region of the 28S rRNA gene and pyrosequenced using Roche 454 technology. Examination of the annotated barcodes revealed harmful algal species not previously documented in these lagoons. Three ichthyotoxic species belonging to Pfiesteriaceae were detected: Luciella masanensis was relatively widespread and abundant in many samples, whereas Pfiesteria piscicida and Stoeckeria changwonensis were found as single barcode sequences. Furthermore, a phylogenetic analysis of barcodes annotated as belonging to Pfiesteriaceae suggested the existence of two previously undescribed clades. The other toxic or potentially harmful dinoflagellates detected through rare barcodes were Dinophysis acuminata, Vulcanodinium rugosum, Alexandrium andersonii and A. ostenfeldii. The two most abundant dinoflagellate taxa were Gymnodinium litoralis and Akashiwo sanguinea with respect to sequence numbers. Four diatom species from the genus Pseudo-nitzschia that potentially produce domoic acid were identified (P. galaxiae, P. delicatissima, P. brasiliana and P. calliantha). These observations are discussed in terms of the literature and monitoring records related to the identified taxa in this Mediterranean area.  相似文献   

3.
The genus Pfiesteria includes two toxigenic species, Pfiesteria piscicida and Pfiesteria shumwayae, that are thinly thecate dinoflagellates with apparently cosmopolitan distribution, especially in shallow, poorly flushed, eutrophic estuaries. They are heterotrophic prey generalists that typically feed via phagotrophy and prefer live fish or their fresh tissues as food. They can also engage in limited mixotrophy through temporary retention of kleptochloroplasts from algal prey. Toxicity is highly variable among strains, ranging from apparently nontoxic to highly toxic. Some strains produce a group of hydrophilic toxins with metal-mediated free radical production. Various metals can be involved in the toxin congeners, and the purified toxins are highly labile. These toxins can adversely affect mammalian cells as well as fish. Toxic strains are capable of killing fish by both toxins and physical attack from feeding upon epidermis and other tissues. Non-inducible strains do not produce sufficient toxin to kill fish, but some are capable of causing larval fish death by physical attack. From 1991 to 1998, Pfiesteria spp. were linked to major kills of juvenile Atlantic menhaden (Brevoortia tyrannus), mostly at densities of ≥4(3) × 102 to 103 (rarely, 104) flagellate cells mL−1. These kills mainly occurred in the second largest and largest estuaries on the U.S. mainland, especially two main tributaries of the Albemarle-Pamlico Estuarine System, following decades of hurricane-free conditions. Between kills, Pfiesteria abundance was low in surface waters (<10 cells mL−1), and the available evidence suggests that the populations were mostly in the lower water column and within surficial sediments. Apparently highly sensitive to scouring effects from major storms, Pfiesteria populations have been sparse in the affected estuaries since several hurricanes struck the Albemarle-Pamlico in the late 1990s. Recent research highlights include characterization of a novel group of Pfiesteria toxins, culture of a toxigenic strain on a sterile fish cell line, axenic culture on a semi-defined medium, the discovery of a new mode of heterotrophic feeding in dinoflagellates as manifested by Pfiesteria, and other advances in understanding the nutritional ecology and prey acquisition of these harmful dinoflagellates.  相似文献   

4.
The grazing rates and feeding preferences of the dinoflagellates Pfiesteria piscicida and a cryptoperidiniopsoid on the alga Rhodomonas sp. and fish blood cells were calculated at different ratios of the two food types and at different total food densities. Data from 6 h grazing periods within microcosms were used to calculate grazing rates. Grazing rates of both dinoflagellates increased linearly with an increased ratio of blood cells to Rhodomonas, and P. piscicida had a higher maximum grazing rate than the cryptoperidiniopsoid. The grazing rate of P. piscicida on Rhodomonas also increased with increased Rhodomonas densities relative to the blood cells, but increased densities of Rhodomonas did not increase the grazing rate of the cryptoperidiniopsoid, suggesting a lower feeding threshold for this species. Both dinoflagellates demonstrated a preference for fish blood cells over Rhodomonas cells, with no significant difference in the index of preference between the two species. Total food abundance affected the degree of preference differently for each dinoflagellate species. A higher index of feeding preference was attained by P. piscicida when resource levels were high, while the cryptoperidiniopsoid did not show this response. A preference for fish blood cells occurred at all food ratios for both dinoflagellates, including when blood cells were scarce relative to the alternate food type (15% of total available food). These results suggest that these strains of P. piscicida and the cryptoperidiniopsoid share similar feeding preferences for the prey types tested, although cryptoperidiniopsoids have not been associated with fish kills.  相似文献   

5.
The addition of commercial nitrifying bacterial products has resulted in significant improvement of nitrification efficiency in recirculating aquaculture systems (RAS). We developed two nitrifying bacterial consortia (NBC) from marine and brackish water as start up cultures for immobilizing commercialized nitrifying bioreactors for RAS. In the present study, the community compositions of the NBC were analyzed by universal 16S rRNA gene and bacterial amoA gene sequencing and fluorescence in situ hybridization (FISH). This study demonstrated that both the consortia involved autotrophic nitrifiers, denitrifiers as well as heterotrophs. Abundant taxa of the brackish water heterotrophic bacterial isolates were Paenibacillus and Beijerinckia spp. whereas in the marine consortia they were Flavobacterium, Cytophaga and Gramella species. The bacterial amoA clones were clustered together with high similarity to Nitrosomonas sp. and uncultured beta Proteobacteria. FISH analysis detected ammonia oxidizers belonging to β subclass of proteobacteria and Nitrosospira sp. in both the consortia, and Nitrosococcus mobilis lineage only in the brackish water consortium and the halophilic Nitrosomonas sp. only in the marine consortium. However, nitrite oxidizers, Nitrobacter sp. and phylum Nitrospira were detected in both the consortia. The metabolites from nitrifiers might have been used by heterotrophs as carbon and energy sources making the consortia a stable biofilm.  相似文献   

6.
The abundance and size structure of wild fishes aggregated around the sea‐cages of two commercial Thunnus thynnus farms, including control locations, were assessed and compared over a 1 year period. The T. thynnus farms were located in the eastern Adriatic Sea, offshore of the islands of Ugljan and Bra?. Fish assemblages were evaluated through visual census using scuba at 2 month intervals at two sites within each farm. The data suggest that wild fish assemblages at the study sites differed greatly; 20 species occurred at the Ugljan farm and 17 at the Bra? farm, while only seven species were observed at the control locations. The abundance and diversity of wild fish assemblages were greater at the farms in comparison to control locations. The most abundant families were Sparidae and Belonidae (>80% of aggregated fishes). At both farms, the abundance and diversity of wild fishes were highest during summer, while diversity was lowest in winter and was mainly characterized by schools of bogue Boops boops and garfish Belone belone. Variability was also detected in spatial assemblages between farms; B. boops and B. belone were the most abundant species for the overall study at the Bra? farm, while B. belone and saddled bream Oblada melanura were the most abundant at the Ugljan farm. The settlement also played a significant role in farm‐associated fish assemblages, as both juveniles and advanced juveniles were common residents at farms. The majority of species which settled at the farms belonged to the sparids. Results indicate that aggregations of wild fishes at T. thynnus farms are persistent year‐round, though the assemblage compositions and size structures of dominant species vary in respect to location and season.  相似文献   

7.
A new genus and species of heterotrophic dinoflagellate, Cryptoperidiniopsis brodyi gen. et sp. nov., are described. This new species commonly occurs in estuaries from Florida to Maryland, and is often associated with Pfiesteria piscicida Steidinger et Burkholder, Pseudopfiesteria shumwayae (Glasgow et Burkholder) Litaker et al., and Karlodinium veneficum (Ballantine) J. Larsen, as well as other small (<20 μm) heterotrophic and mixotrophic dinoflagellates. C. brodyi gen. et sp. nov. feeds myzocytotically on pigmented microalgae and other microorganisms. The genus and species have the enhanced Kofoidian plate formula of Po, cp, X, 5′, 0a, 6″, 6c, PC, 5+s, 5″′, 0p, and 2″″ and are assigned to the order Peridiniales and the family Pfiesteriaceae. Because the Pfiesteriaceae comprise small species and are difficult to differentiate by light microscopy, C. brodyi gen. et sp. nov. can be easily misidentified.  相似文献   

8.

Background

Pathogens are growing threats to wildlife. The rapid growth of marine salmon farms over the past two decades has increased host abundance for pathogenic sea lice in coastal waters, and wild juvenile salmon swimming past farms are frequently infected with lice. Here we report the first investigation of the potential role of salmon farms in transmitting sea lice to juvenile sockeye salmon (Oncorhynchus nerka).

Methodology/Principal Findings

We used genetic analyses to determine the origin of sockeye from Canada''s two most important salmon rivers, the Fraser and Skeena; Fraser sockeye migrate through a region with salmon farms, and Skeena sockeye do not. We compared lice levels between Fraser and Skeena juvenile sockeye, and within the salmon farm region we compared lice levels on wild fish either before or after migration past farms. We matched the latter data on wild juveniles with sea lice data concurrently gathered on farms. Fraser River sockeye migrating through a region with salmon farms hosted an order of magnitude more sea lice than Skeena River populations, where there are no farms. Lice abundances on juvenile sockeye in the salmon farm region were substantially higher downstream of farms than upstream of farms for the two common species of lice: Caligus clemensi and Lepeophtheirus salmonis, and changes in their proportions between two years matched changes on the fish farms. Mixed-effects models show that position relative to salmon farms best explained C. clemensi abundance on sockeye, while migration year combined with position relative to salmon farms and temperature was one of two top models to explain L. salmonis abundance.

Conclusions/Significance

This is the first study to demonstrate a potential role of salmon farms in sea lice transmission to juvenile sockeye salmon during their critical early marine migration. Moreover, it demonstrates a major migration corridor past farms for sockeye that originated in the Fraser River, a complex of populations that are the subject of conservation concern.  相似文献   

9.
The putatively toxic dinoflagellates Pseudopfiesteria shumwayae (Glasgow et J. M. Burkh.) Litaker, Steid., P. L. Mason, Shields et P. A. Tester and Pfiesteria piscicida Steid. et J. M. Burkh. have been implicated in massive fish kills and of having negative impacts on human health along the mid‐Atlantic seaboard of the USA. Considerable debate still remains as to the mechanisms responsible for fish mortality (toxicity vs. micropredation) caused by these dinoflagellates. Genetic differences among these cultures have not been adequately investigated and may account for or correlate with phenotypic variability among strains within each species. Genetic variation among strains of Ps. shumwayae and P. piscicida was examined by PCR–RFLP analysis using cultures obtained from the Provasoli‐Guillard National Center for Culture of Marine Phytoplankton (CCMP), as well as those from our own and other colleagues’ collection efforts. Examination of restriction digest banding profiles for 22 strains of Ps. shumwayae revealed the presence of 10 polymorphic restriction endonuclease sites within the first and second internal transcribed spacers (ITS1 and ITS2) and the 5.8S gene of the rDNA complex, and the cytochrome oxidase subunit I (COI) gene. Three compound genotypes were represented within the 22 Ps. shumwayae strains. Conversely, PCR–RFLP examination of 14 strains of P. piscicida at the same ITS1, 5.8S, and ITS2 regions revealed only one variable restriction endonuclease site, located in the ITS1 region. In addition, a dinoflagellate culture listed as P. piscicida (CCMP 1928) and analyzed as part of this study was identified as closely related to Luciella masanensis P. L. Mason, H. J. Jeong, Litaker, Reece et Steid.  相似文献   

10.
ABSTRACT. The toxic dinoflagellate, Pfiesteria piscicida, was recently implicated as the causative agent for about 50% of the major fish kills occurring over a three-year period in the Albemarle-Pamlico Estuarine System of the southeastern USA. Transformations between life-history stages of this dinoflagellate are controlled by the availability of fresh fish secretions or fish tissues, and secondarily influenced by the availability of alternate prey including bacteria, algae, microfauna, and mammalian tissues. Toxic zoospores of P. piscicida subdue fish by excreting lethal neurotoxins that narcotize the prey, disrupt its osmoregulatory system, and attack its nervous system. While prey are dying, the zoospores feed upon bits of fish tissue and complete the sexual phase of the dinoflagellate life cycle. Other stages in the complex life cycle of P. piscidia include cryptic forms of filose, rhizopodial, and lobose amoebae that can form within minutes from toxic zoospores, gametes, or planozygotes. These cryptic amoebae feed upon fish carcasses and other prey and, thus far, have proven less vulnerable to microbial predators than flagellated life-history stages. Lobose amoebae that develop from toxic zoospores and planozygotes during colder periods have also shown ambush behavior toward live fish. In the presence of abundant flagellated algal prey, amoeboid stages produce nontoxic zoospores that can become toxic and form gametes when they detect what is presumed to be a threshold level of a stimulatory substance(s) derived from live fish. The diverse amoeboid stages of this fish “ambush-predator” and at least one other Pfiesteria-like species are ubiquitous and abundant in brackish waters along the western Atlantic and Gulf Coasts, indicating a need to re-evaluate the role of dinoflagellates in the microbial food webs of turbid nutrient-enriched estuaries.  相似文献   

11.
This study was undertaken to assess whether amoebae commonly found in mesohaline environments are in fact stages in the life cycles of Pfiesteria and Pfiesteria-like dinoflagellates. Primary isolations of amoebae and dinoflagellates were made from water and sediment samples from five tributaries of the Chesapeake Bay. Additional amoebae were also cloned from bioassay aquaria where fish mortality was attributed to Pfiesteria. Electron microscopy and small subunit (SSU) rRNA gene sequence analysis of these isolates clearly demonstrated that the commonly depicted amoeboid form of Pfiisteria is very likely a species of Korotnevella and is unrelated to Pfiesteria or Pfiesteria-like dinoflagellates. We have determined that the Pfiesteria and Pfiesteria-like dinoflagellates examined in this study undergo a typical homothallic life cycle without amoeboid stages. Furthermore, we have demonstrated that cloned amoebae sharing morphological characteristics described for stages in the life cycle of Pfiesteria do not transform into dinozoites. The strict clonal isolation and cultivation techniques used in this study substantially support the conclusion that the amoebae and some of the flagellates depicted in the life cycle of Pfiesteria are environmental contaminants of the Pfiesteria culture system and that the Ambush Predator Hypothesis needs to be rigorously reevaluated.  相似文献   

12.
Faecal indicator bacteria at fish farms   总被引:2,自引:1,他引:1  
The observed concentrations of bacteria at two large fish farms were not high, but due to the great volume of the discharge the total amount of bacteria was large. Total coliform (TC) bacteria identified belonged mainly to the genera Enterobacter, Citrobacter and Aeromonas. The majority of faecal coliform (FC) strains were Escherichia coli. E. coli was absent, or occurred at very low concentrations, in the influent water, but was present in the effluent water, in the sediment, and at one fish farm also in fish faeces. FC bacteria were not observed in the fish feed. The concentrations of faecal streptococci (FS) in the influent water were low, but strains isolated were identified as group D streptococci. The concentrations of FS were low in the feed and sediment samples but were elevated in the fish faeces and also in the effluent.  相似文献   

13.
The feeding ecology of the newly described heterotrophic dinoflagellate Stoeckeria changwonensis was explored. The feeding behavior of S. changwonensis, and the kinds of prey species that it feeds on were investigated with several different types of microscopes and high-resolution video-microscopy. Additionally, the growth and ingestion rates of S. changwonensis as a function of prey concentration for perch (Lateolabrax japonicus) blood cells, the raphidophyte Heterosigma akashiwo, the cryptophytes Rhodomonas salina and Teleaulax sp., and the phototrophic dinoflagellate Amphidinium carterae prey were measured. S. changwonensis feeds on prey through a peduncle, after anchoring the prey by using a tow filament. This type of feeding behavior is similar to that of Stoeckeria algicida, Pfiesteria piscicida, and Luciella masanensis in the family Pfiesteriaceae; however, S. changwonensis feeds on various kinds of prey species different from those of the other heterotrophic dinoflagellates. S. changwonensis ingested perch blood cells and diverse algal species, in particular, the large thecate dinoflagellate Lingulodinium polyedrum which are not eaten by the other peduncle feeders. H. akashiwo and the perch blood cells supported positive growth of S. changwonensis, but R. salina, Teleaulax sp., and A. carterae which support positive growth of P. piscicida and L. masanensis did not support positive growth of S. changwonensis. With increasing mean prey concentration the growth rates for S. changwonensis on H. akashiwo and the perch blood cells increased rapidly and then slowly or became saturated. The maximum growth rates of S. changwonensis on H. akashiwo and the perch blood cells were 0.376 and 0.354 d−1, respectively. Further, the maximum ingestion rates of S. changwonensis on H. akashiwo and the perch blood cells were 0.35 ng C predator−1 d−1 (3.5 cells predator−1 d−1) and 0.27 ng C predator−1 d−1 (29 cells predator−1 d−1), respectively. These maximum growth and ingestion rates of S. changwonensis on H. akashiwo, the perch blood cells, R. salina, Teleaulax sp., and A. carterae differed considerably from those of S. algicida, P. piscicida, and L. masanensis on the same prey species. Thus, the feeding behavior of S. changwonensis may differ from that of other species in the family Pfiesteriaceae.  相似文献   

14.
The mechanism by which Pfiesteria shumwayae (Glasgow and Burkholder) kills fish is controversial. Several studies have implicated a Pfiesteria-associated exotoxin in fish mortality while other studies indicate that physical attack of dinoflagellates on fish (micropredation) and not exotoxin is responsible. We examined the ichthyotoxicity of two strains of P. shumwayae (CAAE 101272 and CCMP 2089) in a bioassay system that exposed test fish to the dinoflagellates both with and without direct contact in the same aquarium at the same time. Dinoflagellate-free supernatants from both strains were also tested for toxicity. The results showed that direct contact between P. shumwayae and fish significantly enhanced fish mortality with both strains (P < 0.001). About 87.5% and 100% of fish died when exposed directly to CAAE 101272 and CCMP 2089, respectively. When protected from direct contact with Pfiesteria cells, 19% of the fish exposed to CAAE 101272 and 6% of those exposed to CCMP 2089 died. No deaths were observed in controls. Supernatant killed fish when obtained from cultures of CAAE 101272 but not when obtained from CCMP 2089.Analysis of variance showed that, for both strains, fish mortality in Pfiesteria-inoculated bioassays was significantly higher than control bioassays both with and without direct contact (P < 0.001). Differences between strains were not significant (P = 0.3). These results indicate that both strains are associated with exotoxin production. However, the dominant and most consistent mechanism of fish mortality observed in this study required physical contact between fish and Pfiesteria cells.  相似文献   

15.
The Roseobacter clade of marine bacteria is often found associated with dinoflagellates, one of the major producers of dimethylsulfoniopropionate (DMSP). In this study, we tested the hypothesis that Roseobacter species have developed a physiological relationship with DMSP-producing dinoflagellates mediated by the metabolism of DMSP. DMSP was measured in Pfiesteria and Pfiesteria-like (Cryptoperidiniopsis) dinoflagellates, and the identities and metabolic potentials of the associated Roseobacter species to degrade DMSP were determined. Both Pfiesteria piscicida and Pfiesteria shumwayae produce DMSP with an average intracellular concentration of 3.8 μM. Cultures of P. piscicida or Cryptoperidiniopsis sp. that included both the dinoflagellates and their associated bacteria rapidly catabolized 200 μM DMSP (within 30 h), and the rate of catabolism was much higher for P. piscicida cultures than for P. shumwayae cultures. The community of bacteria from P. piscicida and Cryptoperidiniopsis cultures degraded DMSP with the production of dimethylsulfide (DMS) and acrylate, followed by 3-methylmercaptopropionate (MMPA) and methanethiol (MeSH). Four DMSP-degrading bacteria were isolated from the P. piscicida cultures and found to be taxonomically related to Roseobacter species. All four isolates produced MMPA from DMSP. Two of the strains also produced MeSH and DMS, indicating that they are capable of utilizing both the lyase and demethylation pathways. The diverse metabolism of DMSP by the dinoflagellate-associated Roseobacter spp. offers evidence consistent with a hypothesis that these bacteria benefit from association with DMSP-producing dinoflagellates.  相似文献   

16.
A dinoflagellate bloom was found associated with a fish kill event in a South Carolina brackish water retention pond. A multi-analytical approach was used to confirm the identity of the bloom dinoflagellate and evaluate its potential toxicity. Karlodinium micrum was confirmed through light microscopy, pigment profile comparisons, species-specific PCR, and gene sequence data. Necropsy findings on several fish were suggestive of an acute kill event. Toxicity of filtrate from bloom samples was tested by a hemolytic assay using rainbow trout (Oncorhynchus mykis) erythrocytes and an ichthyotoxicity assay using larval zebrafish (Danio rerio). Hemolytic activity was measurably high (>80% hemolysis) in both whole filtrate and fractionated filtrate (from the 80% MeOH C18 column elution). This fraction also demonstrated high ichthyotoxic activity as exposed fish experienced rapid death. These results implicate toxic K. micrum as a causative factor in fish death in a non-aquaculture brackish pond associated with a housing development, and extend recent findings linking this species to fish kills in aquaculture ponds.  相似文献   

17.
Egg-to-fry development and survival of brown trout Salmo trutta were compared in two rivers of the Pyrenean piedmont, the Nive d'Arnéguy, with few human activities, and the Nive des Aldudes, with many anthropogenic activities including 11 fish farms and two sewage treatment plants (STPs). Survival was estimated between spawning (early December) and emergence time (early March) by means of capsules, 7 cm3 in volume, filled with green eggs then inserted into the gravel of artificial redds at spawning sites. In the Nive des Aldudes, three sets of conditions were studied: a fish farm near the springs, a fish farm and an STP in a village, and a series of fish farms and an STP in a village. In each situation, two artificial redds were created upstream and two others downstream from the fish farms. In the Nive d'Arnéguy, four sites were equipped: each of the two downstream sites with two artificial redds, and the two upstream sites with one redd. Substratum characteristics (proportion of fine particles) and the quality of surface and interstitial water (oxygen content, ammonia and nitrite nitrogen) were periodically measured. There was no redd substratum difference between sites upstream and downstream of fish farms. Survival to fry emergence was higher in the Nive d'Arnéguy (63·5%) than in the Nive des Aldudes (47·7%). In this latter river, the nitrogen released from the STPs was 0·5% that from fish farms. Fish farming impaired survival close to fish farm effluents (31·6%), as compared to survival upstream (63·6%), and induced a development delay during the yolk-sac fry stage. These differences were mainly linked to a drop in the dissolved oxygen content in interstitial water induced by the nitrogen flow in surface and interstitial waters.  相似文献   

18.
The nitrogen isotope ratio (δ15N) in tissues of native macroalgae was evaluated as a means of indicating the intensity and spatial extent of organic contamination due to disposal of waste from land-based marine fish farms (LBMFFs). Three species of macroalgae from the genus Fucus and the green macroalgae Codium tomentosum were selected for study. The study was carried out at seven flat marine fish farms located in Galicia (NW Spain). Tests were carried out to determine the intra-annual variation in δ15N values and any differences between selected macroalgae. The δ15N values enrichment was observed close to the disposal point, and δ15N values varied more widely throughout the year (±5.57 ‰) at sites affected by the marine fish farm effluent compared to natural conditions (±2 ‰). No significant differences in the isotopic signals were observed in the different species studied (standard major axis). The δ15N values of macroalgae may be an ideal means of detecting the presence of LBMFFs effluents.  相似文献   

19.
The objective of this study was to investigate the differences in proximate lipid composition, heavy metals, and mineral contents between bogue (Boops boops, Linnaeus, 1758) captured directly around and near a cage fish farm and those captured far away from it (“wild”). Wild fish were obtained from the fishery of the Aegean Sea and Northeastern Mediterranean. Fish were also caught at a distance of at least 100 meters away from the net cages using a commercial trammel set net. The fish captured near cages were taken at farms cultivating mainly sea bass and sea bream. Samples were taken in March 2016 to determine crude lipid content, moisture, and ash amounts. There were some differences between wild fish and near farm captured fish for both genders. Crude lipid contents of female wild fish and near farm captured fish were found to be higher than those in males (p < .05). The moisture contents of the males near the farms were higher than those in females. Results showed that the predominant macro minerals were potassium in females and males for both capture locations (near and far away from farms: range of 1070–1205 mg/kg). The near farm captured fish had a higher heavy metal content than those captured further away. This may be the result of environmental influences caused by the farm operations.  相似文献   

20.
L-gulono-γ-lactone oxidase (Gulo) catalyzes the last step of ascorbic acid biosynthesis, which occurs in the kidney of elasmobranchs. This study aimed to clone and sequence gulonolactone oxidase (gulo) from the kidney of the euryhaline freshwater stingray, Himantura signifer, and to determine the effects of acclimation from freshwater to brackish water (salinity 20) on its renal gulo mRNA expression and Gulo activity. We also examined the effects of brackish water acclimation on concentrations of ascorbate, dehydroascorbate and ascorbate + dehydroascorbate in the kidney, brain and gill. The complete cDNA coding sequence of gulo from the kidney of H. signifer contained 1323 bp coding for 440 amino acids. The expression of gulo was kidney-specific, and renal gulo expression decreased significantly by 67% and 50% in fish acclimated to brackish water for 1 day and 6 days, respectively. There was also a significant decrease in renal Gulo activity after 6 days of acclimation to brackish water. Hence, brackish water acclimation led to a decrease in the ascorbic acid synthetic capacity in the kidney of H. signifer. However, there were significant increases in concentrations of ascorbate and ascorbate + dehydroascorbate in the gills (after 1 or 6 days), and a significant increase in the concentration of ascorbate and a significant decrease in the concentration of dehydroascorbate in the brain (after 1 day) of fish acclimated to brackish water. Taken together, our results indicate that H. signifer might experience greater salinity-induced oxidative stress in freshwater than in brackish water, possibly related to its short history of freshwater invasion. These results also suggest for the first time a possible relationship between the successful invasion of the freshwater environment by some euryhaline marine elasmobranchs and the ability of these elasmobranchs to increase the capacity of ascorbic acid synthesis in response to hyposalinity stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号