首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Three genetic sub-populations (clade I, II and III) of Pseudo-nitzschia pungens, the potential toxic marine diatom, are known to have distinguishable growth characteristics under different culture conditions and distinct distributed patterns in the world. However, to date their exact eco-physiological traits are unrevealed in fields due to lack of the method to detect and/or measure abundances of each sub-populations, hence, the qPCR (quantitative real-time polymerase chain reaction) assay was developed to detect and quantify the P. pungens cells of each clade. Designed two specific primer sets, Pcla12F/R (for clade I and II) and Pcla3F/R (for clade III) only could amplify each target genomic DNA. The, significant linear relationships (R2 > 0.998) was established between Ct (threshold cycle) value and the log of cell abundance for each clade. Through the melting curve analysis, comparisons for gene copy numbers among the three clades and spike test for field study, our qPCR assay was reliable to quantify the cell numbers of each clade. There was strong linear correlation (R2 > 0.990) between cell abundances as estimated by qPCR assay and direct counting via light microscope in spike test, and 0.24 (clade I), 0.25 (clade II) and 0.33 (clade III) P. pungens cells per mL were detected markedly upon the use of specific two-primer set. Finally, developed qPCR assay was applied on field samples successfully. Our study implicate that our qPCR assay is an accurate and sensitive technique to estimate the cell abundances of each clade of P. pungens in field works.  相似文献   

3.
4.
Ostreopsis ovata is a benthic dinoflagellate that produces palytoxin and ovatoxins. Blooms of O. ovata causing human health problems and mortality of benthic fauna have been reported from many tropical and temperate marine waters. In the present study we examined the combined effects of temperature and different nutrient conditions on the biochemical composition, growth, toxicity and carbohydrate production of an O. ovata strain originating from the Tyrrhenian Sea. O. ovata cultures with N:P ratios of 1.6, 16 and 160 (N deficient, NP sufficient and P deficient, respectively) were grown at 20 °C and 30 °C. Biomass accumulation, growth rates, cell volumes, biochemical composition, cell toxicity and carbohydrate production in each treatment were studied. Results indicated that under nutrient sufficiency O. ovata biomass accumulation increased significantly compared to N and P deficiency and also that N limitation severely affected growth. The highest growth rates were recorded at 30 °C. Cellular contents and the atomic ratios of C, N and P were higher in the cells grown at 20 °C than in those grown at 30 °C. O. ovata cell volumes increased at 20 °C. N deficiency significantly increased cell toxicity. Toxicity per cell was higher at 20 °C, but per carbon was highest at 30 °C. The highest carbohydrate production was found in conditions of N deficiency and at the lower temperature.Our study suggests that temperature increases due to global warming and nutrient enrichment of coastal waters stimulate the proliferation of O. ovata, particularly for the strains that have become adapted to warm temperate waters.  相似文献   

5.
The distribution of the toxic pennate diatom Nitzschia was investigated at four mangrove areas along the coastal brackish waters of Peninsular Malaysia. Eighty-two strains of N. navis-varingica were isolated and established, and their identity confirmed morphologically and molecularly. Frustule morphological characteristics of the strains examined are identical to previously identified N. navis-varingica, but with a sightly higher density of the number of areolae per 1 μm (4–7 areolae). Both LSU and ITS rDNAs phylogenetic trees clustered all strains in the N. navis-varingica clade, with high sequence homogeneity in the LSU rDNA (0–0.3%), while the intraspecific divergences in the ITS2 data set reached up to 7.4%. Domoic acid (DA) and its geometrical isomers, isodomoic A (IA) and isodomoic B (IB), were detected in cultures of N. navis-varingica by FMOC-LC-FLD, and subsequently confirmed by LC–MS/MS, with selected ion monitoring (SIM) and multiple reaction monitoring (MRM) runs. DA contents ranged between 0.37 and 11.06 pg cell−1. This study demonstrated that the toxigenic euryhaline diatom N. navis-varingica is widely distributed in Malaysian mangrove swamps, suggesting the risk of amnesic shellfish poisoning and the possibility of DA contamination in the mangrove-related fisheries products.  相似文献   

6.
Warneckea populations from “sand-forest” or “sand-thicket” habitats in Tembe Elephant Park, South Africa, and Licuati Forest Reserve in adjacent southern Mozambique were previously thought to be a small-leaved form of W. sousae, which typically includes larger-leaved plants ranging from central Mozambique northward to Tanzania. We examine this hypothesis using molecular and morphological evidence. Maximum-likelihood phylogenetic analysis of combined nrDNA ETS and ITS sequence data failed to resolve W. sousae and the Maputaland populations as an exclusively monophyletic group. Instead, the Kenyan endemic W. mouririifolia was strongly supported as the sister species of W. sousae, and the Maputaland plants were resolved in a separate, strongly supported clade together with populations of an as-yet undetermined Warneckea species from northern Mozambique. A hypothesis of exclusive monophyly for the plants from Tembe and Licuati had moderate support in separate ETS and ITS1 analyses (bootstrap proportions of 88% and 81%, respectively). Statistically significant differences in leaf dimensions and internode length were found between the Maputaland plants and typical W. sousae. We conclude that the populations from Tembe and Licuati represent a distinct species, which we describe as W. parvifolia. The species differs from W. sousae in having shorter internodes (mostly 5–25 mm not 10–60 mm long), smaller leaves (mostly 14–32 × 8–19 mm not 40–76 × 22–52 mm), shorter petioles (mostly 1–1.5 mm not 1.5–6 mm long), smaller flowers (hypanthium 1 × 1.5–1.75 mm not 1.5–2 × 2 mm; calyx lobes 0.5 mm not 0.75 mm long; staminal filaments 3–4 mm not 5 mm long; style 4–5 mm not 9 mm long), and globose fruit (not obovoid). An IUCN conservation status of Endangered (EN) B1a, b(ii, iii) is indicated for W. parvifolia, due to its limited distribution and projected declines in its habitat quality and area of occupancy.  相似文献   

7.
Three clades of Pseudo‐nitzschia pungens, determined by the internal transcribed space (ITS) region, are distributed throughout the world. We studied 15 P. pungens clones from various geographical locations and confirmed the existence of the three clades within P. pungens, based on ITS sequencing and described the three subgroups (IIIaa, IIIab, and IIIb) of clade III. Clade III (clade IIIaa) populations were reported for the first time in Korean coastal waters and the East China Sea. In morphometric analysis, we found the ultrastructural differences in the number of fibulae, striae, and poroids that separate the three clades. We carried out physiological tests on nine clones belonging to the three clades growing under various culture conditions. In temperature tests, only clade III clones could not grow at lower temperatures (10°C and 15°C), although clade I and II clones grew well. The estimated optimal growth range of clade I clones was wider than that of clades II and III. Clade II clones were considered to be adapted to lower temperatures and clade III to higher temperatures. In salinity tests, clade II and III clones did not grow well at a salinity of 40. Clade I clones were regarded as euryhaline and clade II and III clones were stenohaline. This supports the hypothesis that P. pungens clades have different ecophysiological characteristics based on their habitats. Our data show that physiological and morphological features are correlated with genetic intraspecific differentiation in P. pungens.  相似文献   

8.
9.
Paramphistomosis is the most prevalent disease of domestic ruminants, causing heavy economic loss in many countries across the world. The morphological identification of these parasites is difficult, therefore molecular characterization is used to discriminate Paramphistomum species. The present study was conducted to identify Paramphistomum sp. at Mardan District, Khyber Pakhtunkhwa (KPK), Pakistan. All samples of these rumen flukes were collected from buffalo. The gDNA was isolated from the adult parasites and the ITS1 region was amplified for the sequence analysis. All flukes had 100% similarity and there was no intraspecific variation. The Blast results showed that all flukes were P. cervi as they form a single cluster with P. cervi reported from China. The results of the ITS1 sequences of the present study with reference sequencing from China showed eight specific SNPs. This was the first study in which P. cervi was genetically characterized through the ITS1 region of rDNA at District Mardan, Pakistan. It can also be used as a marker for the genetic identification of Paramphistomum species.  相似文献   

10.
Isolates of the most important Puccinia species that have been reported on Chrysanthemum × morifolium were collected and the sequences of their ribosomal DNA internal transcribed spacers ITS1 and ITS2 were determined and used as phylogenetic markers. The focus of this study was on Puccinia horiana, due to its quarantine status and its impact in commercial chrysanthemum production. Three technical adjustments were needed to reliably obtain the nucleotide sequences starting from fresh or dried samples. The complete rDNA ITS nucleotide sequences of P. horiana, Puccinia chrysanthemi, and Puccinia tanaceti isolates of varying age and geographic origin were determined. We also identified an as yet undescribed Puccinia species on six old herbarium samples from chrysanthemum. This new species is morphologically similar to P. chrysanthemi and near identical to recent rust samples from Artemisia tridentata. P. tanaceti could not be confirmed as a pathogen of chrysanthemum. Different rDNA ITS sequences were present in P. horiana, with intra-isolate and inter-isolate variability in the length of three nucleotide repeat regions in the different rDNA tandem copies. We also identified three ITS types within P. horiana, with the rarer types displaying up to 67 bp nucleotide sequence differences. These rarer ITS types were detected at low copy number in all isolates. In general, very little rDNA ITS sequence variation was observed between P. horiana isolates from 1903 and 2003, and among isolates from different continents. Phylogenetic analyses using distance, Maximum Likelihood and Bayesian methods confirmed P. horiana, P. chrysanthemi, and the new Puccinia sp. as well-resolved groups, with P. horiana clustering in the clade where the economically important rust species of the Poaceae are located, and P. chrysanthemi and the new Puccinia sp. clustering in the clade where the majority of the rust fungi with hosts in the Asteraceae is located.  相似文献   

11.
Cicadulina bipunctata was originally distributed in tropical and subtropical regions of the Old World. This leafhopper recently expanded its distribution area to southern parts of temperate Japan. In this study, factors affecting the overwintering ability of C. bipunctata were examined. A series of laboratory experiments revealed that cold acclimation at 15 °C for 7 days enhanced the cold tolerance of C. bipunctata to the same level as an overwintering population, adult females were more tolerant of cold temperature than adult males, and survival of acclimated adult females was highly dependent on temperature from −5 to 5 °C and exposure duration to the temperature. The temperature of crystallization of adult females was approximately −19 °C but temperatures in southern temperate Japan rarely dropped below −10 °C in the winter, indicating that overwintering C. bipunctata adults in temperate Japan are not killed by freezing injury but by indirect chilling injury caused by long-term exposure to moderately low temperatures. An overwintering generation of C. bipunctata had extremely low overwinter survival (<1%) in temperate Japan; however, based on winter temperature ranges, there are additional areas amenable to expansion of C. bipunctata in temperate Japan.  相似文献   

12.
The parasitoid, Diadegma semiclausum (Hymenoptera: Ichneumonidae) is one of the most effective parasitoids of diamondback moth (DBM) in the highlands (> 1600 m above sea level) of Asia. A Diadegma population from the lowland areas of Homs, Syria (about 203–487 m above sea level) was examined to determine if it differs at the species-level from the D. semiclausum and other Diadegma populations present in different countries using molecular diagnostic tools. Phylogenetic analysis based on the neighbor-joining method using the mitochondrial cytochrome oxidase I (COI) and the nuclear internal transcribed spacer 2 (ITS2) sequences grouped the Homs (Syria) Diadegma population with D. semiclausum populations from other countries. The results suggest that D. semiclausum occurs in the lowland conditions in Homs (Syria), where the temperature is higher. The Homs (Syria) strain did not show any variations in the parasitism when the parasitized host (DBM) larvae were exposed to varying temperatures for 24 h. It could not survive when the parasitized DBM larvae were continuously reared at 35 °C; however it inflicted significantly higher parasitism when the parasitized DBM larvae were reared at day and night temperatures of 35 °C and 20 °C, respectively. Preliminary results indicate that the D. semiclausum strain from Homs (Syria) possesses some level of heat tolerance, which could be exploited for successful management of DBM in the tropical lowlands.  相似文献   

13.
Phylogeographic relationships, the timing of clade diversification, and the potential for cryptic diversity in the Slender Madtom, Noturus exilis, was investigated using mitochondrial Cyt b, nuclear RAG2, shape analysis, and meristic and pigmentation data. Three well-supported and deeply divergent clades were recovered from analyses of genetic data: Little Red River (White River drainage) clade, Arkansas + Red River (Mississippi River) clade, and a large clade of populations from the rest of the range of the species. Recovered clades showed little to no diagnostic morphological differences, supporting previous hypotheses of morphological conservatism in catfishes, and indicating morphology may commonly underestimate diversity in this group of fishes. The Little Red River clade is the most distinct lineage of N. exilis with 11 POM pores (vs. 10 in other populations) and unique Cyt b haplotypes and RAG 2 alleles. However, treating it as a species separate from N. exilis would imply that the other major clades of N. exilis are more closely related to one another than they are to the Little Red River clade, which was not supported.The UCLN age estimate for Noturus was 23.9 mya (95% HPD: 13.49, 35.43), indicating a late Oligocene to early Miocene origin. The age of N. exilis was estimated as late Miocene at 9.7 mya (95% HPD: 5.32, 14.93). Diversification within the species spanned the late Miocene to mid-Pleistocene. The largest clade of N. exilis, which dates to the late Miocene, includes populations from the unglaciated Eastern and Interior Highlands as well as the previously glaciated Central Lowlands. Diversification of this clade coincides with a drastic drop in sea-level and diversification of other groups of Central Highlands fishes (Centrarchidae and Cyprinidae). Sub-clades dating to the Pleistocene show that northern populations occurring in previously glaciated regions resulted from dispersal from populations in the Ozarks up the Mississippi River following retreat of the Pleistocene glaciers. Pre-Pleistocene vicariance, such as drainage pattern changes of the Mississippi River, also played a prominent role in the history of the species. The incorporation of a temporal estimate of clade diversification revealed that in some instances, phylogeographic breaks shared with other aquatic species were best explained by different or persistent vicariant events through time, rather than a single shared event.  相似文献   

14.
In the past years, late summer blooms of the bioluminescent dinoflagellate Alexandrium ostenfeldii have become a recurrent phenomenon in coastal waters of the central and Northern Baltic Sea. This paper reports exceptionally high cell concentrations (105 to 106 cells L?1) of the species found during bioluminescent blooms in 2003 and 2004 in a shallow embayment of the Åland archipelago at the SW coast of Finland. Clonal cultures were established for morphological, molecular, toxicological and ecophysiological investigations to characterize the Finnish populations and compare them to other global A. ostenfeldii isolates. The Finnish isolates exhibited typical morphological features of A. ostenfeldii such as large size, a prominent ventral pore and an orthogonally bent first apical plate. However, unambiguous differentiation from closely related Alexandrium peruvianum was difficult due to considerable variation of sulcal anterior plate shapes. The Finnish strains were genetically distinct from other isolates of the species, but phylogenetic analyses revealed a close relationship to isolates from southern England and an A. peruvianum morphotype from the Spanish Mediterranean. Together these isolates formed a distinct clade which was separated from a clade containing other Northern European, North American and New Zealand populations. Toxin analyses confirmed the presence of the PSP toxins GTX2, GTX3 and STX in both Finnish isolates with GTX3 being the dominant toxin. Total relative PSP toxin contents were moderate, ranging from approximately 6 to 15 fmol cell?1 at local salinities of 5 and 10 psu, respectively. Spirolides were not detected. Salinity tolerance experiments showed that the Finnish isolates were well adapted to grow at the low salinities of the Baltic Sea. With a salinity range of approximately 6 to 20–25 psu, Baltic populations are physiologically distinct from their marine relatives. Vigorous production of different cyst types in the cultures suggest that cysts may play a crucial role in the survival and retainment of A. ostenfeldii populations in the Baltic Sea.  相似文献   

15.
The population dynamics of different Pseudo-nitzschia species, along with particulate domoic acid (pDA) concentrations, were studied from May 2012 to December 2013 in the Bay of Seine (English Channel, Normandy). While Pseudo-nitzschia spp. blooms occurred during the two years of study, Pseudo-nitzschia species diversity and particulate domoic acid concentrations varied greatly. In 2012, three different species were identified during the spring bloom (P. australis, P. pungens and P. fraudulenta) with high pDA concentrations (∼1400 ng l−1) resulting in shellfish harvesting closures. In contrast, the 2013 spring was characterised by a P. delicatissima bloom without any toxic event. Above all, the results show that high pDA concentrations coincided with the presence of P. australis and with potential silicate limitation (Si:N < 1), while nitrate concentrations were still replete. The contrasting environmental conditions between 2012 and 2013 highlight different environmental controls that might favour the development of either P. delicatissima or P. australis. This study points to the key role of Pseudo-nitzschia diversity and cellular toxicity in the control of particulate domoic acid variations and highlights the fact that diversity and toxicity are influenced by nutrients, especially nutrient ratios.  相似文献   

16.
Marine toxic dinoflagellates of the genus Gambierdiscus are the causative agents of ciguatera fish poisoning (CFP), a seafood poisoning that is widespread in tropical, subtropical and temperate regions of the world. In the main island of Japan, distributions of Gambierdiscus australes, Gambierdiscus scabrosus and two phylotypes of Gambierdiscus spp. type 2 and type 3, have been reported. To discuss the bloom dynamics of these Japanese species/phylotypes of Gambierdiscus, first we tested six culture media to optimize growth conditions and then clarified the effects of temperature and salinity and temperature–salinity interactions on growth. All strains of the species/phylotypes tested showed the highest cell yields when they were cultivated in IMK/2 medium. G. australes, G. scabrosus and Gambierdiscus sp. type 2 grew in the range 17.5–30 °C, whereas Gambierdiscus sp. type 3 grew in 15–25 °C. The semi-optimal temperature ranges (≥80% of the maximal growth rate) of the former three species/phylotypes were 19–28 °C, 24–31 °C and 21–28 °C, respectively, whereas that of the latter phylotype was 22–25 °C. Hence, Gambierdiscus sp. type 3 may be adapted to relatively lower water temperatures of ≤25 °C. In contrast, G. australes, G. scabrosus and Gambierdiscus sp. type 2 presumably possess adaptability to relatively high water temperatures. The optimal temperature for G. scabrosus was 30 °C, whereas the optimal temperature for the others was 25 °C. G. australes and Gambierdiscus sp. type 3 grew in a salinity range of 25–40 whereas G. scabrosus and Gambierdiscus sp. type 2 grew in salinity 20–40. Furthermore, the semi-optimal salinity range of G. australes, G. scabrosus, Gambierdiscus spp. type 2 and type 3 were salinity 27–38, 24–36, 22–36 and 29–37, respectively. Among the species/phylotypes, G. scabrosus and Gambierdiscus sp. type 2 grew even at salinity 20 where the others did not grow, thus possessing adaptability to low salinity waters. Our results clearly demonstrate that the optimal and tolerable temperature–salinity conditions differ among Japanese Gambierdiscus species/phylotypes. Considering these results, temperature–salinity interactions may play an important role in bloom dynamics and the distribution of the Gambierdiscus species/phylotypes in Japanese coastal waters.  相似文献   

17.
Rising temperatures (1.4–6 °C) due to climate change have been predicted to increase cyanobacterial bloom occurrences in temperate water bodies; however, the impacts of warming on tropical cyanobacterial blooms are unknown. We examined the effects of four different temperatures on the growth rates and microcystin (MC) production of five tropical Microcystis isolates (M. ichthyoblabe (two strains), M. viridis, M. flos-aquae, and M. aeruginosa). The temperature treatments are based on current temperature range in Singapore's reservoirs (27 °C and 30 °C), as well as projected mean (33 °C) and maximum temperatures (36 °C) based on tropical climate change estimates of +6 °C in air temperature. Increasing temperatures did not significantly affect the maximum growth rates of most Microcystis strains. Higher growth rates were only observed in one M. ichthyoblabe strain at 33 °C and M. flos-aquae at 30 °C where both were isolated from the same reservoir. MC-RR and MC-LR were produced in varying amounts by all four species of Microcystis. Raised temperatures of 33 °C were found to boost total MC cell quota for three Microcystis strains although further increase to 36 °C led to a sharp decrease in total MC cell quota for all five Microcystis strains. Increasing temperature also led to higher MC-LR:MC-RR cell quota ratios in M. ichthyoblabe. Our study suggests that higher mean water temperatures resulting from climate change will generally not influence growth rates of Microcystis spp. in Singapore except for increases in M. ichthyoblabe strains. However, toxin cell quota may increase under moderate warming scenarios depending on the species.  相似文献   

18.
The parasitoid Diachasmimorpha longicaudata complex in Thailand contains at least 3 cryptic species informally designated as species D. longicaudata A, B and BB. DNA sequence data of nuclear ITS2 (second internal transcribed spacer) were used to characterize members of this D. longicaudata complex. The polymerase chain reaction (PCR) amplicon of ITS2 region of D. longicaudata B (≈ 650 bp) clearly differentiated this species from A and BB (amplicon of  590 bp). Sequence alignment of individual parasitoids revealed that low intraspecies differences ranged from 0.457 to 3.991%, but interspecies differences ranged from 7.566 to 12.989%. Phylogenetic trees constructed using Neighbor-Joining (NJ) and Maximum Parsimony (MP) methods, taking the parasitoid Psyttalia concolor complex as an outgroup, revealed that D. longicaudata A, B and BB formed a monophyletic group, with species A and BB being more closely related than species B. ITS2 characterization of D. longicaudata complex has revealed an interesting divergence of the three cryptic sibling species in Thailand.  相似文献   

19.
Alexandrium species can be very difficult to identify, with A. catenella, A. tamarense, and A. fundyense that compose “Alexandrium tamarense species complex” (Atama complex) as a distinct example. DNA barcoding is promising to offer a solution but remains to be established. In this study, we examined the utility of ITS in resolving the Atama species complex, by analyzing previously studied strains plus unstudied Chinese strains within the LSU- and SSU-rDNA based group/clade frameworks recently established. We further investigated the presence of intragenomic polymorphism and its implications in species delimitation. Similar to the previous SSU and LSU results, our ITS-based phylogenies divided the complex to five clusters, but with longer and evener branch lengths between the clusters. Based on the ITS region, the inter-cluster genetic distances (p = 0.134–0.216) were consistently and substantially greater than intra-cluster genetic distances (p = 0.000–0.066), with an average inter-cluster (species) distance (p = 0.167) 7.6-fold of the average intraspecific difference (p = 0.022), qualifying the approximately 510–520 bp ITS as a DNA barcode for Atama complex. We detected varying levels of intragenomic polymorphism in ITS but found that this did not impact the taxon-resolving power of this gene. With this DNA barcode, the new East and South China Sea strains and one Antarctic strain were placed in Clade IIC/Group IV, even though there were 7–10 polymorphic sites in their ITS, in contrast to none in SSU. Furthermore, our results suggest that the five clusters are recognizable as distinct species according to the phylogenetic species concept. Based on the phylogenetic placements of the type-locality strains of the existing three morphospecies and the dominant localities of other strains, we propose that Group I/Clade I be designated as A. fundyense, Group III/Clade IIB as A. tamarense, Group IV/Clade IIC as A. catenella, Group II/Clade IIA as A. mediterranis, and Group V/Clade IID as A. australis.  相似文献   

20.
Harmful algal blooms are mainly caused by marine dinoflagellates and are known to produce potent toxins that may affect the ecosystem, human activities and health. Such events have increased in frequency and intensity worldwide in the past decades. Numerous processes involved in Global Change are amplified in the Arctic, but little is known about species specific responses of arctic dinoflagellates. The aim of this work was to perform an exhaustive morphological, phylogenetical and toxinological characterization of Greenland Protoceratium reticulatum and, in addition, to test the effect of temperature on growth and production of bioactive secondary metabolites. Seven clonal isolates, the first isolates of P. reticulatum available from arctic waters, were phylogenetically characterized by analysis of the LSU rDNA. Six isolates were further characterized morphologically and were shown to produce both yessotoxins (YTX) and lytic compounds, representing the first report of allelochemical activity in P. reticulatum. As shown for one of the isolates, growth was strongly affected by temperature with a maximum growth rate at 15 °C, a significant but slow growth at 1 °C, and cell death at 25 °C, suggesting an adaptation of P. reticulatum to temperate waters. Temperature had no major effect on total YTX cell quota or lytic activity but both were affected by the growth phase with a significant increase at stationary phase. A comparison of six isolates at a fixed temperature of 10 °C showed high intraspecific variability for all three physiological parameters tested. Growth rate varied from 0.06 to 0.19 d−1, and total YTX concentration ranged from 0.3 to 15.0 pg  YTX cell−1 and from 0.5 to 31.0 pg YTX cell−1 at exponential and stationary phase, respectively. All six isolates performed lytic activity; however, for two isolates lytic activity was only detectable at higher cell densities in stationary phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号