首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The results of a two-phase anaerobic system using anaerobic sequencing batch reactors (ASBRs), treating low-strength wastewater (COD  500 mg/L) with a high fraction of particulate organic matter (70%, COD basis), are presented. Two reactors in series were used; the first one was hydrolytic–acidogenic, while the second one was methanogenic. This configuration was proposed to promote high efficiency solids removal. During the experiment, 69% and 50% efficiencies of total COD removal were obtained for OLRs of 0.63 and 1.22 kgCOD/(m3 d), respectively. Values of the solubilized organic fraction (SOF) achieved in the hydrolytic–acidogenic reactor were within the range of 0.3–0.6 gCODsolubilized/gpCODremoved, and the average acidified organic fraction (AOF) was 0.6 gCODVFA-produced/gsCODfed. The methanogenic reactor had a VFA removal fraction (VFARF) between 0.4 and 0.6 gCODVFA-removed/gCODVFA-fed for the OLR of 0.63 and 1.22. The two-phase ASBR system is suitable, and can be implemented, for the anaerobic treatment of this kind of wastewater.  相似文献   

2.
Microbial communities involved in biogas production from wheat straw as the sole substrate were investigated. Anaerobic digestion was carried out within an up-flow anaerobic solid-state (UASS) reactor connected to an anaerobic filter (AF) by liquor recirculation. Two lab-scale reactor systems were operated simultaneously at 37 °C and 55 °C. The UASS reactors were fed at a fixed organic loading rate of 2.5 g L−1 d−1, based on volatile solids. Molecular genetic analyses of the bacterial and archaeal communities within the UASS reactors (digestate and effluent liquor) and the AFs (biofilm carrier and effluent liquor) were conducted under steady-state conditions. The thermophilic UASS reactor had a considerably higher biogas and methane yield in comparison to the mesophilic UASS, while the mesophilic AF was slightly more productive than the thermophilic AF. When the thermophilic and mesophilic community structures were compared, the thermophilic system was characterized by a higher Firmicutes to Bacteroidetes ratio, as revealed by 16S rRNA gene (rrs) sequence analysis. The composition of the archaeal communities was phase-separated under thermophilic conditions, but rather stage-specific under mesophilic conditions. Family- and order-specific real-time PCR of methanogenic Archaea supported the taxonomic distribution obtained by rrs sequence analysis. The higher anaerobic digestion efficiency of the thermophilic compared to the mesophilic UASS reactor was accompanied by a high abundance of Firmicutes and Methanosarcina sp. in the thermophilic UASS biofilm.  相似文献   

3.
High activity levels and balanced anaerobic microbial communities are necessary to attain proper anaerobic digestion performance. Therefore, this work was focused on the kinetic performance and the microbial community structure of six full-scale anaerobic digesters and one lab-scale co-digester. Hydrolytic (0.6–3.5 g COD g?1 VSS d?1) and methanogenic (0.01–0.84 g COD g?1 VSS d?1) activities depended on the type of biomass, whereas no significant differences were observed among the acidogenic activities (1.5–2.2 g COD g?1 VSS d?1). In most cases, the higher the hydrolytic and the methanogenic activity, the higher the Bacteroidetes and Archaea percentages, respectively, in the biomasses. Hydrogenotrophic methanogenic activity was always higher than acetoclastic methanogenic activity, and the highest values were achieved in those biomasses with lower percentages of Methanosaeta. In sum, the combination of molecular tools with activity tests seems to be essential for a better characterization of anaerobic biomasses.  相似文献   

4.
Recirculation of the leachate in the acidogenic reactor was proposed to enhance anaerobic digestion of food waste in the hybrid anaerobic solid–liquid (HASL) system. Recirculation of the leachate in the acidogenic reactor provided better conditions for extraction of organic matter from the treated food waste and buffering capacity to prevent excessive acidification in the acidogenic reactor. It ensured faster supply of nutrients in the methanogenic reactor in experiment. The highest dissolved COD and VFA concentrations in the leachate from the acidogenic reactor were reached for shorter time and were 16,670 mg/l and 9450 mg/l in control and 18,614 mg/l and 11,094 mg/l in experiment, respectively. Recycling of the leachate in the acidogenic reactor intensified anaerobic digestion of food waste and diminished time needed to produce the same quantity of methane by 40% in comparison with anaerobic digestion of food waste without recirculation.  相似文献   

5.
The hybrid up flow anaerobic sludge blanket reactor was evaluated for efficacy in reduction of chemical oxygen demand (COD) and biochemical oxygen demand (BOD) of bulk drug pharmaceutical wastewater under different operational conditions. The start-up of the reactor feed came entirely with glucose, applied at an organic loading rate (OLR) 1 kg COD/m3 d. Then the reactor was studied at different OLRs ranging from 2 to 11 kg COD/m3 d with pharmaceutical wastewater. The optimum OLR was found to be 9 kg COD/m3 d, where we found 65–75% COD and 80–94% of BOD reduction with biogas production containing 60–70% of methane and specific methanogenic activity was 320 ml CH4/g-VSS d. By the characterization studies of effluent using GC–MS, the hazardous compounds like phenol, l,2-methoxy phenol, 2,4,6-trichloro phenol, dibutyl phthalate, 1-bromo naphthalene, carbamazepine and antipyrine were present. After the treatment, these compounds degraded almost completely except carbamazepine. Thermophilic methanothrix and methanosaetae like bacteria are present in the granular sludge.  相似文献   

6.
Continuous flow experiments were performed to study the effects of acidogenic biomass development, induced by feeding with non-acidified substrate, on the operation and performance of an anaerobic membrane bioreactor (AnMBR). The AnMBR was operated at cross-flow velocities up to 1.5 m/s and fed with a gelatine–starch–ethanol mixture. A significant fraction of acidogenic biomass developed during reactor operation, which fully determined the sludge rheology, and influenced the particle size distribution. As a result, flux levels of only 6.5 l/m2 h were achieved, at a liquid superficial velocity of 1.5 m/s. Even though the soluble microbial products levels in the AMBR were as high as 14 g COD/l, the observed hydraulic flux was not limited by irreversible pore fouling, but by reversible cake layer formation. Propionate oxidation was the limiting step for the applied organic loading rate. The assessed specific methanogenic activity (SMA) with propionate as substrate was, however, similar to the values found by others during thermophilic treatment of non or partially acidified substrates in granular sludge bed reactors, indicating an appropriate level of the propionate oxidation capacity.  相似文献   

7.
Anaerobic bioenergy production processes including fermentative biohydrogen (BioH2), anaerobic digestion (AD) and bioelectrochemical system have been investigated for converting municipal waste or various biomass feedstock to useful energy carriers. However, the performance of a microbial fuel cell (MFC) fed on the effluent from a two-stage biogas production process has not yet been investigated extensively in continuous reactor operation on complex substrates. In this study we have investigated the extent to which a microbial fuel cell (MFC) can reduce COD and recover further energy from the effluent of a two-stage biohydrogen and biomethane system. The performance of a four-module tubular MFC was determined at six different organic loadings (0.036–6.149 g sCOD L−1 d−1) in terms of power generation, COD removal efficiency, coulombic efficiency (CE) and energy conversion efficiency (ECE). A power density of 3.1 W m−3 was observed at the OLR = 0.572 g sCOD L−1 d−1, which resulted in the highest CE (60%) and ECE (0.8%), but the COD removal efficiency decreased at higher organic loading rates (35.1–4.4%). The energy recovery was 92.95 J L−1 and the energy conversion efficiency, based on total influent COD was found to be 0.48–0.81% at 0.572 g sCOD L−1 d−1. However, the energy recovery by the MFC is only reported for a four-module reactor and improved performance can be expected with an extended module count, as chemical energy remained available for further electrogenesis.  相似文献   

8.
《Process Biochemistry》2014,49(12):2214-2219
We had proposed a novel method to reduce ammonia inhibition during thermophilic anaerobic digestion via recirculation of water-washed biogas into the headspace (R1 system) or liquid phase (R2 system) of reactors. The feasibility of reducing the ratio of recirculated biogas to biogas produced (called the biogas recirculation ratio) was investigated in the present study. Thermophilic anaerobic digestion at 53 °C and 60 °C with a biogas recirculation ratio of 150 facilitated stable digestion performance and biogas production at a higher organic loading rate of 7 g/L/d in the R1 system, while the ammonia removal efficiency increased 1.23-fold when the temperature increased from 53 °C to 60 °C. At 60 °C, the biogas recirculation ratios in the R1 and R2 systems decreased to 50 and 10, and the ammonia absorption rates were 6.1 and 8.3 mmol/L/d, respectively, without decreasing the anaerobic digestion performance. The ammonia absorption rate of 8.3 mmol/L/d in the R2 system was higher than the rate of 7.8 mmol/L/d at the biogas recirculation ratio of 150 in the R1 system. The hydrogen sulfide content in the biogas was reduced to less than 50 ppm by supplying air at 3% of the amount of biogas produced into the reactor.  相似文献   

9.
The wastewater produced in the process of canning fruit contains a syrup that consists mainly of sucrose. This syrup wastewater was treated by methane fermentation in an upflow anaerobic sludge blanket reactor. The organic loading rate of syrup wastewater was increased gradually as fermentation progressed. The higher the organic loading rate, the more methane gas evolved until the organic loading rate reached 30.3 kg COD m?3 d?1, at which point methane generation abruptly diminished because the loading rate was too high to stably operate the reactor. The changes in the microbial community, that of both bacteria and archaea in the granules, were analyzed simultaneously using PCR-DGGE during the fermentation process. Methanosaeta spp., which are methanogenic archaea that produce extracellular polymers indispensable for the formation of granules, were dominant when the methane gas vigorously evolved, and the iron-reducing bacterium belonging to genus Geobacter, which outcompetes methanogens, grew proportionally with the deterioration of methane fermentation.  相似文献   

10.
Anaerobic co-digestion of fruit and vegetable waste (FVW) and abattoir wastewater (AW) was investigated using anaerobic sequencing batch reactors (ASBRs). The effects of hydraulic retention time (HRT) and temperature variations on digesters performances were examined. At both 20 and 10 days biogas production for co-digestion was greater thanks to the improved balance of nutrients. The high specific gas productions for the different digestion processes were 0.56, 0.61 and 0.85 l g−1 total volatile solids (TVS) removal for digesters treating AW, FVW and AW + FVW, respectively. At an HRT of 20 days, biogas production rates from thermophilic digesters were higher on average than from mesophilic AW, FVW and AW + FVW digestion by 28.5, 44.5 and 25%, respectively. However, at 10 days of HRT results showed a decrease of biogas production rate for AW and AW + FVW digestion processes due to the high amount of free ammonia at high organic loading rate (OLR).  相似文献   

11.
A pilot-scale Sequencing Batch Reactor was operated during 307 days in order to treat swine slurry characterized by its high variable composition: organic and nitrogen applied loading rates and C/N ratio were 1.4–6.3 kg CODs/(m3 d), 0.5–2.5 kg N/(m3 d) and 1.9–9.4 g CODs/(g N), respectively. Aerobic granules successfully developed in the reactor and their physical properties remained rather stable despite the feeding composition variability. Organic and ammonia removal efficiency reached 61–73% and 56–77%, respectively, however ammonia was mainly oxidized to nitrite. The reactor had a good biomass retention capacity to select for granular biomass. However, its efficiency to retain the solids present in the feeding was low. Aerobic granulation in SBR systems appears as an interesting alternative to treat slurry in small livestock facilities where the implementation of anaerobic digestion systems is not a feasible option or the removal of nitrogenous compounds is required.  相似文献   

12.
An investigation of hydrodynamic conditions and their impacts on sludge digestion in internal circulation anaerobic digester (ICAD) was conducted. This novel sludge digester employing upflow reactor concept was composed of reaction zone, riser and downcomer, etc. Part of the generated biogas was injected to the reaction zone to intensify the circulation in ICAD in order to enhance the mass transfer. The advanced particle image velocimetry was used to explore the hydrodynamic conditions at micro scale. The results revealed that the average shear rate in the reaction zone and downcomer was linearly correlated with the Reynolds number; the shear rates in ICAD revealed an order as riser > downcomer > reaction zone. Thermophilic digestion of waste activated sludge in a pilot ICAD for 5.25 d combined with thermal pretreatment at 60 °C for 1 d was conducted under various hydrodynamic conditions. The survey at global level demonstrated that both the longer sludge retention time than the hydraulic retention time and the satisfactory mass transfer could be realized and as consequences, the maximal biogas production rate and VSS removal were obtained when the Reynolds number of the reaction zone was approximately 0.53. This digester under the optimal hydrodynamic conditions demonstrated good degradation capacity and buffer capability to resist various shock loadings.  相似文献   

13.
A large quantity of protein-rich distillery wastewater is produced during the process of bio-ethanol production from kitchen waste. It is difficult, however, to treat protein-rich distillery wastewater by anaerobic digestion due to ammonia inhibition. In this study, a novel method was investigated to reduce ammonia inhibition during thermophilic anaerobic digestion through the recirculation of water-washed biogas into the headspace (R1 system) or liquid phase (R2 system) of the reactors. The results show that the method greatly improved biogas production from distillery wastewater. R2 system achieved stable biogas production at a higher organic loading rate (OLR) of 4.0 g VTS/L/d than R1 system at 3.0 g VTS/L/d. At the same OLR, we observed a higher biogas production rate but lower accumulation of NH4+ and volatile fatty acids in the reactor, and higher ammonia absorption rate in the water tank of R2 system than R1 system. The better performance of R2 system could be attributed to the more efficient removal of ammonia from liquid phase. In addition, adjusting the C/N ratio of distillery wastewater from 9.0 to 11.4 significantly enhanced the maximum OLR from 3.0 to 7.0 g VTS/L/d in R1 system.  相似文献   

14.
Pulses of oil were added to completely mixed reactors fed with dairy cow manure and food waste, after achieving a stable performance at an organic loading rate of 4.6 ± 0.1 gCOD/(lreactor day), an oily waste effluent from a canned fish processing industry was fed in the form of pulses. The oil concentration rose up to 9, 12, 15 and 18 gCODoil/lreactor, after the pulse feeding in the reactor. The highest fat concentration of 18 gCODoil/lreactor promoted a persistent inhibition in the process of the continuous reactor, although in batch assays, the reactor content evidenced a capacity to degrade more oil and to degrade the accumulated organic matter. All the other pulses had a positive effect in the methane production. From a practical point of view, this work demonstrates that controlled intermittent inputs of oil can enhance the methane production in a co-digestion of cow manure and food waste.  相似文献   

15.
Biological treatment of synthetic wastewater containing Cu(II) ions was realized in an activated sludge unit with pre-adsorption of Cu(II) onto powdered waste sludge (PWS). Box-Behnken experimental design method was used to investigate Cu(II), chemical oxygen demand (COD) and toxicity removal performance of the activated sludge unit under different operating conditions. The independent variables were the solids retention time (SRT, 5–30 d), hydraulic residence time (HRT, 5–25 h), feed Cu(II) concentration (0–50 mg L?1) and PWS loading rate (0–4 g h?1) while percent Cu(II), COD, toxicity (TOX) removals and the sludge volume index (SVI) were the objective functions. The data were correlated with a quadratic response function (R2 = 0.99). Cu(II), COD and toxicity removals increased with increasing PWS loading rate and SRT while decreasing with the increasing feed Cu(II) concentration and HRT. Optimum conditions resulting in maximum Cu(II), COD, toxicity removals and SVI values were found to be SRT of 30 d, HRT 15 h, PWS loading rate 3 g h?1 and feed Cu(II) concentration of less than 30 mg L?1.  相似文献   

16.
The aim of this study was to explore the potential of three aquatic weeds, water hyacinth, cabomba, and salvinia, as substrates for anaerobic digestion. A set of four pilot-scale, batch digestions were undertaken to assess the yield and quality (% methane) of biogas from each plant species, and the rate of degradation. A set of 56 small-scale (100 mL) biological methane potential (BMP) tests were designed to test the repeatability of the digestions, and the impact of drying and nutrient addition.The results of the pilot-scale digestions show that both water hyacinth and cabomba are readily degradable, yielding 267 L biogas kg?1 VS and 221 L biogas kg?1 VS, respectively, with methane content of approximately 50%. There is evidence that the cabomba fed reactor leaked midway through the digestion therefore the biogas yield is potentially higher than measured in this case. Salvinia proved to be less readily degradable with a yield of 155 L biogas kg?1 VS at a quality of 50% methane.The BMPs showed that the variability was low for water hyacinth and cabomba but high for salvinia. They also showed that the addition of nutrient solution and manure did not significantly increase the biogas yields and that drying was detrimental to the anaerobic degradability of all three substrates.Based on these results treatment of both water hyacinth and cabomba by anaerobic digestion can be recommended. Anaerobic digestion of Salvinia cannot be recommended due to the low biogas yields and high variability for this substrate.  相似文献   

17.
This paper describes the thermophilic (55 °C) anaerobic biodegradation of a mixed feed composed of vinasses and cutting oil wastewater (COW) in a laboratory upflow anaerobic fixed-film reactor (UAFF) with a porous support medium. The experimental protocol was defined to examine the effect of increasing the percentage of cutting oil wastewater in the feed.The UAFF reactor was initially started-up with vinasses as the only carbon source at an organic loading rate of 22.3 kg COD/m3 day and HRT of 0.8 days using porous particles as the support (SIRAN). The percentage of organic matter composed of vinasses was subsequently reduced while increasing the amount of cutting oil until 100% of cutting oil wastewater was added in the feed. Four stages were considered in the study (0, 42.4, 66.6 and 100% COW). HRT was adjusted in order to maintain an approximately constant organic loading rate applied to the system. Under theses conditions, the UAFF reactor was subjected to a programme of steady-state operation with hydraulic retention times (HRT) in the range 0.8–0.15 days and organic loading rates (OLR) between 22.3 and 14.9 kg COD/m3 day in order to evaluate the treatment capacity of the system.The COD removal efficiency was found to be 87% COD and 94.6% TOC in the reactor when treating vinasses at 22.3 kg COD/m3 day. The volumetric methane level produced in the digester reached 0.45 m3/m3 day. After an operating period of 120 days, the reactor was fed with cutting oil wastewater (COW) as the only source of carbon. An OLR of 16.7 kg COD/m3 day was achieved with 85.8% COD removal efficiency (58.1%TOC) in the experimental UAFF reactor. Under these conditions the volumetric methane produced in the digester was negligible.Hence, COW can be removed, if not degraded, by anaerobic treatment in the presence of a biodegradable co-substrate. Wine vinasses degradation creates conditions for non-biological removal of COW constituents. More studies are necessary in order to test the mechanisms of organic removal when biodegradation apparently had ceased. Also, toxicity assays of COW are necessary to evaluate the toxicity to the methanogenic community.  相似文献   

18.
《Process Biochemistry》2007,42(3):466-471
The present study is an attempt to investigate if a long-term acclimation of digester contents to low-temperatures would improve wastewater treatment at low-temperatures similar to mesophilic ranges. The feasibility of low-temperature (15 °C) anaerobic treatment of synthetic wastewater in an upflow anaerobic sludge blanket reactor was studied using inoculum from a cattle manure digester adapted to 15 °C. The effect of varying hydraulic retention time was studied by decreasing the retention time from 7 days to 1 day. Under a constant temperature of 15 °C with a hydraulic retention time of 1 day and a corresponding loading rate of 7.2 g-chemical oxygen demand (COD)/l/day, 90–95% removal efficiency was achieved. The methane production of 250 l/kg-COD removed at standard temperature pressure (STP) is a major highlight of the study complementing the high treatment efficiency achieved. Loading rates >5 g-COD/l/day was accompanied by increase in effluent volatile fatty acids (VFA) concentrations. Due to the presence of a high concentration of active granular sludge in the lower compartment of the reactor, 80% reduction of COD occurred within the granular bed of the reactor. Treatment of low strength wastewater for a short period showed 70–75% removal efficiencies with methane yield of 300 l/kg-COD removed. Specific methanogenic activity profiles of the anaerobic biomass revealed low-temperature (15 °C) optima, indicating selection of cold-active microorganisms during the acclimation process. The SMA assays also indicate the development of a putatively psychrophilic acetoclastic methanogenic community and biogas analysis showed 75% efficiency in energy recovery as methane.  相似文献   

19.
In this research study a nitrifying/autotrophic denitrifying system was used for the post-treatment of an effluent coming from an anaerobic digester treating the wastewater produced in a fish canning industry. The nitrifying reactor achieved 100% of ammonia oxidation into nitrate. The effluent from this unit was fed to the autotrophic denitrifying reactor which treated a maximum sulphide loading rate (SLR) of 200 mg S2?/L d with removal percentages of 100% and 30% for sulphide and nitrate, respectively. The low nitrate removal efficiency is attributed to sulphide limitations.The operational costs of this system were estimated as 0.92 €/kg Nremoved, lower than those for conventional nitrification/denitrification processes. For nitrogen removal the SHARON/anammox processes is the cheapest option. However the combination of nitrification and autotrophic denitrification (using elemental sulphur) processes would present a better operational stability compared to the SHARON/anammox system.  相似文献   

20.
Direct interspecies electron transfer (DIET) has been typically proposed as mechanism of electron transfer among methanogenic populations in granules during anaerobic digestion where Geobacter species play a key role. Using anaerobic granules where Geobacteraceae members were not prevalent − representing only 0.3% of total bacteria −, tests incubated with two co-substrates showed that the rate of methanogenesis from formate and hydrogen diminished in the presence of a non-methanogenic co-substrate such as ethanol. This could indicate that biological DIET occurs and competes with hydrogen and formate during methanogenesis. Moreover, the addition of conductive microparticles, such as stainless steel and granular activated carbon, was found to increase methanogenic activity in disintegrated granules by 190 ± 18% and 175 ± 22% respectively as compared to disintegrated granules devoid of microparticles. The addition of non-conductive microparticles such as porcelain however decreased methanogenic activity by 65 ± 3% of the disrupted granules without microparticle activity. These results indicate that syntrophic bacteria from anaerobic sludge excluding Geobacter species can also carry out conductive mineral mediated DIET.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号