首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Annual blooms of the toxic dinoflagellate Karenia brevis in the eastern Gulf of Mexico represent one of the most predictable global harmful algal bloom (HAB) events, yet remain amongst the most difficult HABs to effectively monitor for human and environmental health. Monitoring of Karenia blooms is necessary for a variety of precautionary, management and predictive purposes. These include the protection of public health from exposure to aerosolized brevetoxins and the consumption of toxic shellfish, the protection and management of environmental resources, the prevention of bloom associated economic losses, and the evaluation of long term ecosystem trends and for potential future bloom forecasting and prediction purposes. The multipurpose nature of Karenia monitoring, the large areas over which blooms occur, the large range of Karenia cell concentrations (from 5 × 103 cells L?1 to >1 × 106 cells L?1) over which multiple bloom impacts are possible, and limitations in resources and knowledge of bloom ecology have complicated K. brevis monitoring, mitigation and management strategies. Historically, K. brevis blooms were informally and intermittently monitored on an event response basis in Florida, usually in the later bloom stages after impacts (e.g. fish kills, marine mammal mortalities, respiratory irritation) were noted and when resources were available. Monitoring of different K. brevis bloom stages remains the most practical method for predicting human health impacts and is currently accomplished by the state of Florida via direct microscopic counts of water samples from a state coordinated volunteer HAB monitoring program. K. brevis cell concentrations are mapped weekly and disseminated to stakeholders via e-mail, web and toll-free phone numbers and provided to Florida Department of Agriculture and Consumer Services (FDACS) for management of both recreational and commercial shellfish beds in Florida and to the National Oceanic and Atmospheric Administration (NOAA) for validation of the NOAA Gulf of Mexico HAB bulletin for provision to environmental managers. Many challenges remain for effective monitoring and management of Karenia blooms, however, including incorporating impact specific monitoring for the diverse array of potential human and environmental impacts associated with blooms, timely detection of offshore bloom initiation, sampling of the large geographic extent of blooms which often covers multiple state boundaries, and the involvement of multiple Karenia species other than K. brevis (several of which have yet to be isolated and described) with unknown toxin profiles. The implementation and integration of a diverse array of optical, molecular and hybrid Karenia detection technologies currently under development into appropriate regulatory and non-regulatory monitoring formats represents a further unique challenge.  相似文献   

2.
《Harmful algae》2010,9(6):898-909
Using shipboard data collected from the central west Florida shelf (WFS) between 2000 and 2001, an optical classification algorithm was developed to differentiate toxic Karenia brevis blooms (>104 cells l−1) from other waters (including non-blooms and blooms of other phytoplankton species). The identification of K. brevis blooms is based on two criteria: (1) chlorophyll a concentration ≥1.5 mg m−3 and (2) chlorophyll-specific particulate backscattering at 550 nm  0.0045 m2 mg−1. The classification criteria yielded an overall accuracy of 99% in identifying both K. brevis blooms and other waters from 194 cruise stations. The algorithm was validated using an independent dataset collected from both the central and south WFS between 2005 and 2006. After excluding data from estuarine and post-hurricane turbid waters, an overall accuracy of 94% was achieved with 86% of all K. brevis bloom data points identified successfully. Satisfactory algorithm performance (88% overall accuracy) was also achieved when using underway chlorophyll fluorescence and backscattering data collected during a repeated alongshore transect between Tampa Bay and Florida Bay in 2005 and 2006. These results suggest that it may be possible to use presently available, commercial optical backscattering instrumentation on autonomous platforms (e.g. moorings, gliders, and AUVs) for rapid and timely detection and monitoring of K. brevis blooms on the WFS.  相似文献   

3.
The West Florida Shelf (WFS) encompasses a range of environments from inshore estuarine to offshore oligotrophic waters, which are frequently the site of large and persistent blooms of the toxic dinoflagellate, Karenia brevis. The goals of this study were to characterize the nitrogen (N) nutrition of plankton across the range of environmental conditions on the WFS, to quantify the percentage of the plankton N demand met through in situ N regeneration, and to determine whether planktonic N nutrition changes when high concentrations of Karenia are present. In the fall of 2007, 2008, and 2009 we measured ambient nutrient concentrations and used stable isotope techniques to measure rates of primary production and uptake rates of inorganic N (ammonium, NH4+, and nitrate, NO3), and organic N and carbon (C; urea and amino acids, AA) in estuarine, coastal, and offshore waters, as well as coastal sites with Karenia blooms present. In parallel, we also measured rates of in situ N regeneration – NH4+ regeneration, nitrification, and photoproduction of NH4+, nitrite and AA. Based on microscope observations, ancillary measurements, and previous monitoring history, Karenia blooms sampled represented three bloom stages – initiation in 2008, maintenance in 2007, and late maintenance/stationary phase in 2009. Nutrient concentrations were highest at estuarine sampling sites and lowest at offshore sites. Uptake of NH4+ and NO3 provided the largest contribution to N nutrition at all sites. At the non-Karenia sites, in situ rates of NH4+ regeneration and nitrification were generally sufficient to supply these substrates equal to the rates at which they were taken up. At Karenia sites, NO3 was the most important N substrate during the initiation phase, while NH4+ was the most important N form used during bloom maintenance and stationary phases. Rates of NH4+ regeneration were high but insufficient (85 ± 36% of uptake) to support the measured NH4+ uptake at all the Karenia sites although nitrification rates far exceeded uptake rates of NO3. Taken together our results support the “no smoking gun” nutrient hypothesis that there is no single nutrient source or strategy that can explain Karenia's frequent dominance in the waters where it occurs. Consistent with other papers in this volume, our results indicate that Karenia can utilize an array of inorganic and organic N forms from a number of N sources.  相似文献   

4.
Blooms of Karenia brevis plague the West Florida Shelf (WFS) region in the Gulf of Mexico (GOM) where they exert harmful effects on aquatic biota and humans. Because productivity on the WFS is N limited, new N inputs into the region are thought to trigger blooms of K. brevis. Here we examine the potential for new N inputs via N2 fixation by Trichodesmium and other diazotrophic plankton to contribute to the N demand of K. brevis. Because of possible methodological biases, we also compared N2 fixation rates by cultured Trichodesmium using the 15N2 bubble addition method and the 15N2 saturated seawater. Both methods yielded identical results in 12 and 24 h incubations; however, there was more variability in rate estimates made using the bubble addition method. Pelagic N2 fixation rates by other planktonic diazotrophs ranged from 0 to 13.6 nmol N L−1 d−1, comparable to or higher than rates observed in oligotrophic gyres. These rates should be considered conservative estimates because they were made using the bubble addition method. Integrating over our study area, we estimate that new inputs of N to the WFS via N2 fixation are on the order of 0.011 Tmol N annually. Further, we measured directly the trophic transfer of recently fixed N2 to co-occurring plankton that included K. brevis and found that up to 47% of N2 fixed was transferred to non-diazotrophic plankton even in short (<6 h) incubations where N2 fixation was likely underestimated.  相似文献   

5.
Autonomous underwater gliders with customized sensors were deployed in October 2011 on the central West Florida Shelf to measure a Karenia brevis bloom, which was captured in satellite imagery since late September 2011. Combined with in situ taxonomy data, satellite measurements, and numerical circulation models, the glider measurements provided information on the three-dimensional structure of the bloom. Temperature, salinity, fluorescence of colored dissolved organic matter (CDOM) and chlorophyll-a, particulate backscattering coefficient, and K. brevis-specific chlorophyll-a concentrations were measured by the gliders over >250 km from the surface to about 30-m water depth on the shallow shelf. At the time of sampling the bloom was characterized by uniform vertical structures, with relatively high chlorophyll-a and CDOM fluorescence, low temperature, and high salinity. Satellite data extracted along the glider tracks demonstrated coherent spatial variations as observed by the gliders. Further, the synoptic satellite observations revealed the bloom evolution during the 7 months between late September 2011 and mid April 2012, and showed the maximum bloom size of ∼3000 km2 around 23 November. The combined satellite and in situ data also confirmed that the ratio of satellite-derived fluorescence line height (FLH) to particulate backscattering coefficient at 547 nm (bbp(547)) could be used as a better index than FLH alone to detect K. brevis blooms. Numerical circulation models further suggested that the bloom could have been initiated offshore and advected onshore via the bottom Ekman layer. The case study here demonstrates the unique value of an integrated coastal ocean observing system in studying harmful algal blooms (HABs).  相似文献   

6.
This study represents the most comprehensive assessment of kinetic parameters for Karenia brevis to date as it encompasses natural populations sampled during three different bloom years in addition to cultured strains under controlled conditions. Nitrogen (N) uptake kinetics for ammonium (NH4+), nitrate (NO3), urea, an amino acid mixture, individual amino acids (glutamate and alanine), and humic substrates were examined for the toxic red tide dinoflagellate, K. brevis, during short term incubations (0.5–1 h) using 15N tracer techniques. Experiments were conducted using natural populations collected during extensive blooms along the West Florida Shelf in October 2001, 2002, and 2007, and in cultured strains (CCFWC 251 and CCFWC 267) obtained from the Florida Fish and Wildlife Institute culture collection. Kinetic parameters for the maximum uptake velocity (Vmax), half-saturation concentration (Ks), and the affinity constant (α) were determined. The affinity constant is considered a more accurate indicator of substrate affinity at low concentrations. K. brevis took up all organic substrates tested, including N derived from humic substances. Uptake rates of the amino acid mixture and some NO3 incubations did not saturate even at the highest substrate additions (50–200 μmol N L−1). Based upon the calculated α values, the greatest substrate preference was for NH4+ followed by NO3  urea, humic compounds and amino acids. The ability of K. brevis to utilize a variety of inorganic and organic substrates likely helps it flourish under a wide range of nutrient conditions from bloom initiation in oligotrophic waters offshore to bloom maintenance near shore where ambient nutrient concentrations may be orders of magnitude greater.  相似文献   

7.
8.
This contribution represents a review of the historical and recent literature describing the environmental factors that relate to the distribution, growth, primary production, nutrient requirements and utilization along with hypotheses that are extant for the initiation, growth, maintenance and termination of Karenia brevis blooms on the West Florida Shelf. Potential nutrient sources that support blooms and relate to recent questions on the duration, frequency, and intensity of WFS blooms are summarized and some thoughts are presented which relate to the question of why K. brevis, a slow growing dinoflagellate, becomes dominant in a nearshore shelf region that is typically dominated by diatoms.There is no single hypothesis that can account for blooms of K. brevis along the west coast of Florida. Of the approximately 24 thoughts and hypotheses described herein (including the 1880s speculation), seven are related to rainfall and/or riverine flux, six invoke the benthos or bottom flux in one form or another, seven involve water column hydrodynamics or are unrelated to the benthos or land sources, and four are primarily chemical/allelopathy based. Nutrient sources for growth and maintenance range from atmospheric deposition, N-fixation, riverine and benthic flux, and zooplankton excretion to decaying fish killed by the toxic dinoflagellate with no one source being conclusively identified as a primary contributor to prolonged bloom maintenance. Insufficient information is available to delimit specific mechanisms that may play a role in the termination of K. brevis blooms. However, general processes such as macro- and microzooplankton grazing, bacterial and viral cell lysis, and dispersal by physical advection and the break down of fronts, that originally may have acted as concentrating mechanisms, are reviewed.  相似文献   

9.
Confined to Texas, USA, for more than 20 years, brown tides caused by Aureoumbra lagunensis emerged in the Indian River Lagoon and Mosquito Lagoon, Florida, USA, during 2012 and 2013, affording the opportunity to assess whether hypotheses developed regarding the occurrence of these blooms are ecosystem-specific. To examine the extent to which top-down (e.g. grazing) and bottom-up (e.g. nutrients) processes controlled the development of Aureoumbra blooms in Florida, nitrogen (N) uptake, nutrient amendment, and seawater-dilution, zooplankton grazing experiments were performed and the responses of Aureoumbra and competing phytoplankton were evaluated. During the study, Aureoumbra comprised up to 98% of total phytoplankton biomass, achieved cell densities exceeding 2 × 106 cells mL−1, and contained isotopically lighter N compared to non-bloom plankton populations, potentially reflecting the use of recycled N. Consistent with this hypothesis, N-isotope experiments revealed that urea and ammonium accounted for >90% of N uptake within bloom populations whereas nitrate was a primary N source for non-bloom populations. Low levels (10 μM) of experimental ammonium enrichment during blooms frequently enhanced the growth of Aureoumbra and resulted in the growth rates of Aureoumbra exceeding those of phycoerythrin-containing, but not phycocyanin-containing, cyanobacteria. A near absence of grazing pressure on Aureoumbra further enabled this species to out-grow other phytoplankton populations. Given this alga is generally known to resist zooplankton grazing under hypersaline conditions, these findings collectively suggest that moderate loading rates of reduced forms of nitrogenous nutrients (e.g ammonium, urea) into other subtropical, hypersaline lagoons could make them susceptible to future brown tides caused by Aureoumbra.  相似文献   

10.
The toxic marine dinoflagellate, Karenia brevis (the species responsible for most of red tides or harmful algal blooms in the Gulf of Mexico), is known to be able to swim vertically to adapt to the light and nutrient environments, nearly all such observations have been made through controlled experiments using cultures. Here, using continuous 3-dimensional measurements by an ocean glider across a K. brevis bloom in the northeastern Gulf of Mexico between 1 and 8 August 2014, we show the vertical migration behavior of K. brevis. Within the bloom where K. brevis concentration is between 100,000 and 1,000,000 cells L−1, the stratified water shows a two-layer system with the depth of pycnocline ranging between 14–20 m and salinity and temperature in the surface layer being <34.8 and >28 °C, respectively. The bottom layer shows the salinity of >36 and temperature of <26 °C. The low salinity is apparently due to coastal runoff, as the top layer also shows high amount of colored dissolved organic matter (CDOM). Within the top layer, chlorophyll-a fluorescence shows clear diel changes in the vertical structure, an indication of K. brevis vertical migration at a mean speed of 0.5–1 m h−1. The upward migration appears to start at sunrise at a depth of 8–10 m, while the downward migration appears to start at sunset (or when surface light approaches 0) at a depth of ∼2 m. These vertical migrations are believed to be a result of the need of K. brevis cells for light and nutrients in a stable, stratified, and CDOM-rich environment.  相似文献   

11.
Blooms of the toxic dinoflagellate Karenia mikimotoi (K. mikimotoi) have occurred frequently in the East China Sea in recent decades and were responsible for massive mortalities of abalones in Fujian coastal areas in 2012, however, little is known about the effects of these blooms on other marine organisms. In this study, the toxic effects and the possible mechanisms of toxicity of K. mikimotoi from Fujian coastal waters on typical marine organisms at different trophic levels, including zooplankton (Brachionus plicatilis, Artemia salina, Calanus sinicus, and Neomysis awatschensis) and aquaculture species (Penaeus vannamei and Scophthalmus maximus) were investigated. At a bloom density of 3 × 104 cells/mL, the Fujian strain of K. mikimotoi significantly affected the tested organisms, which had mortality rates at 96 h of 100, 23, 20, 97, 33, and 53%, respectively. Moreover, the intact cell suspension was toxic to all tested species, whereas cell-free culture and the ruptured cell suspension had no significant effects on the tested organisms. Possible mechanisms for this toxic effect, including reactive oxygen species (ROS) and hemolytic toxins, were evaluated. For K. mikimotoi, 0.014 ± 0.004 OD/(104 cells) superoxide (O2) and 3.00 ± 0.00 nmol/(104 cells) hydrogen peroxide (H2O2) were measured, but hydrogen peroxide did not affect rotifers at that concentration, and rotifers were not protected from the lethal effects of K. mikimotoi when the enzymes superoxide dismutase and catalase were added to counteract the ROS. The lipophilic extract of K. mikimotoi had a hemolytic effect on rabbit erythrocytes but exhibited no significant toxicity. These results suggest that this strain of K. mikimotoi can have detrimental effects on several typical marine organisms and that its toxicity may be associated with intact cells but is not related to ROS or hemolytic toxins.  相似文献   

12.
The toxic HAB dinoflagellate Karenia brevis (Davis) G. Hansen & Ø. Moestrup (formerly Gymnodinium breve) exhibits a migratory pattern atypical of dinoflagellates: cells concentrate in a narrow (∼0–5 cm) band at the water surface during daylight hours due to phototactic and negative geotactic responses, then disperse downward at night via non-tactic, random swimming. The hypothesis that this daylight surface aggregation behavior significantly influences bacterial and algal productivity and nutrient cycling within blooms was tested during a large, high biomass (chlorophyll a >19 μg L−1) K. brevis bloom in October of 2001 by examining the effects of this surface layer aggregation on inorganic and organic nutrient concentrations, cellular nitrogen uptake, primary and bacterial productivity and the stable isotopic signature (δ15N, δ13C) of particulate material. During daylight hours, concentrations of K. brevis and chlorophyll a in the 0–5 cm surface layer were enhanced by 131% (±241%) and 32.1% (±86.1%) respectively compared with an integrated water sample collection over a 0–1 m depth. Inorganic (NH4, NO3+2, PO4, SiO4) and organic (DOP, DON) nutrient concentrations were also elevated within the surface layer as was both bacterial and primary productivity. Uptake of nitrogen (NH4+, NO3, urea, dissolved primary amines, glutamine and alanine) compounds by K. brevis was greatest in the surface layer for all compounds tested, with the greatest enhancement evident in urea uptake rates, from 0.08 × 10−5 ng N K. brevis cell−1 h−1 to 3.1 × 10−5 ng N K. brevis cell−1 h−1. These data suggests that this surface aggregation layer is not only an area of concentrated cells within K. brevis blooms, but also an area of increased biological activity and nutrient cycling, especially of nitrogen. Additionally, the classic dinoflagellate migration paradigm of a downward migration for access to elevated NO3 concentrations during the dark period may not apply to certain dinoflagellates such as K. brevis in oligotrophic nearshore areas with no significant nitricline. For these dinoflagellates, concentration within a narrow surface layer in blooms during daylight hours may enhance nutrient supply through biological cycling and photochemical nutrient regeneration.  相似文献   

13.
Nearly annual blooms of the marine dinoflagellate Karenia brevis, which initiate offshore on the West Florida Shelf in oligotrophic waters, cause widespread environmental and economic damage. The success of K. brevis as a bloom-former is partially attributed to its ability to use a diverse suite of nutrients from natural and anthropogenic sources, although relatively little is known about the ability of K. brevis and the closely related Karenia mikimotoi to use a variety of organic sources of phosphorus, including phosphomonoesters, phosphodiesters, and phosphonates. Through a series of bioassays, this study characterized the ability of axenic and nonaxenic K. brevis and K. mikimotoi clones isolated from Florida waters to use a variety of organic phosphorus compounds as the sole source of phosphorus for growth, comparing this utilization to that of inorganic sources of phosphate. Differing abilities of axenic and nonaxenic K. brevis and K. mikimotoi cultures to use phosphorus from the compounds evaluated were documented. Specifically, growth of axenic cultures was greatest on inorganic phosphorus and was not supported on the phosphomonoester phytate, or generally on phosphodiesters or phosphonates. The nonaxenic cultures were able to use organic compounds that the axenic cultures were not able to use, often after lags in growth, highlighting a potential role of co-associated bacterial communities to transform nutrients to bioavailable forms. Given the ability of K. brevis and K. mikimotoi to use a diverse suite of inorganic and organic phosphorus, bloom mitigation strategies should consider all nutrient forms.  相似文献   

14.
Brevetoxins are a family of ladder-frame polyether toxins produced by the marine dinoflagellate Karenia brevis. During blooms of K. brevis, inhalation of brevetoxins aerosolized by wind and wave action can lead to asthma-like symptoms in persons at the beach. Consumption of either shellfish or finfish contaminated by K. brevis blooms can lead to the development of neurotoxic shellfish poisoning. The toxic effects of brevetoxins are due to binding at a defined site on, and subsequent activation of, voltage-sensitive sodium channels (VSSCs) in cell membranes (site 5). In addition to brevetoxins, K. brevis produces several other ladder-frame compounds. One of these compounds, brevenal, has been shown to antagonize the effects of brevetoxin. In an effort to further characterize the effects of brevenal, a radioactive analog ([3H]-brevenol) was produced by reducing the terminal aldehyde moiety of brevenal to an alcohol using tritiated sodium borohydride. A KD of 67 nM and Bmax of 7.1 pmol/mg protein were obtained for [3H]-brevenol in rat brain synaptosomes, suggesting a 1:1 matching with VSSCs. Brevenal and brevenol competed for [3H]-brevenol binding with Ki values of 75 nM and 56 nM, respectively. However, although both brevenal and brevenol inhibited brevetoxin binding, brevetoxin was completely ineffective at competition for [3H]-brevenol binding. After examining other site-specific compounds, it was determined that [3H]-brevenol binds to a site that is distinct from the other known sites on the sodium channel, including the brevetoxin site, (site 5) although some interaction with site 5 is apparent.  相似文献   

15.
Zooplankton responses to toxic algae are highly variable, even towards taxonomically closely related species or different strains of the same species. Here, the individual level feeding behavior of a copepod, Temora longicornis, was examined which offered 4 similarly sized strains of toxic dinoflagellate Alexandrium spp. and a non-toxic control strain of the dinoflagellate Protoceratium reticulatum. The strains varied in their cellular toxin concentration and composition and in lytic activity. High-speed video observations revealed four distinctly different strain-specific feeding responses of the copepod during 4 h incubations: (i) the ‘normal’ feeding behavior, in which the feeding appendages were beating almost constantly to produce a feeding current and most (90%) of the captured algae were ingested; (ii) the beating activity of the feeding appendages was reduced by ca. 80% during the initial 60 min of exposure, after which very few algae were captured and ingested; (iii) capture and ingestion rates remained high, but ingested cells were regurgitated; and (iv) the copepod continued beating its appendages and captured cells at a high rate, but after 60 min, most captured cells were rejected. The various prey aversion responses observed may have very different implications to the prey and their ability to form blooms: consumed but regurgitated cells are dead, captured but rejected cells survive and may give the prey a competitive advantage, while reduced feeding activity of the grazer may be equally beneficial to the prey and its competitors. These behaviors were not related to lytic activity or overall paralytic shellfish toxins (PSTs) content and composition and suggest that other cues are responsible for the responses.  相似文献   

16.
《Harmful algae》2009,8(1):119-128
Karlodinium veneficum is a common member of the phytoplankton in coastal ecosystems, usually present at relatively low cell abundance (102 to 103 mL−1), but capable of forming blooms of 104 to 105 cells mL−1 under appropriate conditions. We present evidence consistent with the hypothesis that prey abundance, particularly the abundance of nano-planktonic cryptophytes, is a key factor driving the formation of toxic K. veneficum blooms in eutrophic environments. K. veneficum is known to increase growth rate 2- to 3-fold in culture through mixotrophic nutrition, but the role of feeding in bloom formation has not been directly examined. We find that toxic K. veneficum blooms are correlated with cryptophytes abundance changes. We find a wide range of mixotrophic feeding capabilities (0–4 prey per predator per day) among genetically distinct strains of K. veneficum when fed a common prey. Finally, we find that toxic K. veneficum is capable of feeding on a wide range of cryptophyte species varying in size (31–421 μm3 per cell) and phylogenetic affinity, although ingestion rates of different prey vary significantly. While abiotic conditions (e.g. nutrients and advection) are an important aspect of K. veneficum bloom formation in eutrophic environments, our results reinforce the need for a broader view of conditions leading to toxic K. veneficum blooms including biotic factors such as prey availability.  相似文献   

17.
The first recorded bloom of Karenia spp., resulting in brevetoxin in oysters, in the low salinity waters of the Northern Gulf of Mexico (NGOMEX) occurred in November 1996. It raised questions about the salinity tolerance of Karenia spp., previously considered unlikely to occur at salinities <24 psu, and the likelihood that the bloom would reoccur in the NGOMEX. Salinity was investigated as a factor controlling Karenia spp. abundance in the field, using data from the NGOMEX 1996 bloom and Florida coastal waters from 1954 to 2004, and growth and toxin production in cultures of Karenia brevis (Davis) G. Hansen and Moestrup. During the NGOMEX bloom, Karenia spp. occurred much more frequently at low salinities than in Florida coastal waters over the last 50 years. The data suggest that the NGOMEX bloom started on the NW Florida Shelf, an area with a higher frequency of Karenia spp. at low salinities than the rest of Florida, and was transported by an unusual westward surface current caused by Tropical Storm Josephine. The minimum salinity at which growth occurred in culture ranged between 17.5 and 20 psu, but the optimal salinity ranged between low values of 20 or 25 and high values of 37.5–45 psu, depending on the clone. The effect of salinity on toxin production in one clone of K. brevis was complex, but at all salinities brevetoxin levels were highest during the stationary growth phase, suggesting that aging, high density blooms may pose the greatest public health threat. The results demonstrate that Karenia spp. can be a public health threat in low salinity areas, but the risk in the NGOMEX is relatively low. No bloom has occurred since the 1996 event, which was probably associated with a special set of conditions: a bloom along the Florida Panhandle and a tropical storm with a track that set up a westward current.  相似文献   

18.
The dinoflagellate Karenia brevis causes harmful algal blooms commonly referred to as red tides that are prevalent along Florida’s gulf coast. Severe blooms often cause fish kills, turbid water, and hypoxic events all of which can negatively impact local fisheries. The stone crab, Menippe mercenaria, is a ˜$25 million per year fishery that occurs primarily along Florida’s gulf coast. On the west Florida shelf, red tides occur from fall through spring, although severe blooms can occur during the summer. During the summer, stone crabs are reproductive and release larvae that are transported offshore where K. brevis blooms originate. This study determined the effects of K. brevis exposure on the survivorship, vertical swimming behavior, and oxygen consumption of stage-1 larval stone crabs. Survivorship was determined by exposing larvae to high (> 1 × 106 cells L−1) and medium (˜1 × 105 cells L−1) K. brevis concentrations for 96-hrs and were compared to controls that had no algae present. Larval swimming behavior (i.e., geotaxis) and oxygen consumption were monitored after 6-hr exposure to K. brevis. After 96-hrs of exposure, mortality was 100% and 30% for larvae in the high and medium concentrations of K. brevis, respectively, relative to the control. Larval swimming behavior was reversed in the K. brevis treatment; however oxygen consumption rates did not differ among treatments. These results suggest that severe blooms during the summer may reduce larval supply and serve as a potential bottleneck for new individuals recruiting into the fishery in years following a K. brevis bloom.  相似文献   

19.
A bloom of Karenia brevis Davis developed in September 2007 near Jacksonville, Florida and subsequently progressed south through east Florida coastal waters and the Atlantic Intracoastal Waterway (ICW). Maximum cell abundances exceeded 106 cells L−1 through October in the northern ICW between Jacksonville and the Indian River Lagoon. The bloom progressed further south during November, and terminated in December 2007 at densities of 104 cells L−1 in the ICW south of Jupiter Inlet, Florida. Brevetoxins were subsequently sampled in sediments and seagrass epiphytes in July and August 2008 in the ICW. Sediment brevetoxins occurred at concentrations of 11–15 ng PbTx-3 equivalents (g dry wt sediment)−1 in three of five basins in the northern ICW during summer 2008. Seagrass beds occur south of the Mosquito Lagoon in the ICW. Brevetoxins were detected in six of the nine seagrass beds sampled between the Mosquito Lagoon and Jupiter Inlet at concentrations of 6–18 ng (g dry wt epiphytes)−1. The highest brevetoxins concentrations were found in sediments near Patrick Air Force Base at 89 ng (g dry wt sediment)−1. In general, brevetoxins occurred in either seagrass epiphytes or sediments. Blades of the resident seagrass species have a maximum life span of less than six months, so it is postulated that brevetoxins could be transferred between epibenthic communities of individual blades in seagrass beds. The occurrence of brevetoxins in east Florida coast sediments and seagrass epiphytes up to eight months after bloom termination supports observations from the Florida west coast that brevetoxins can persist in marine ecosystems in the absence of sustained blooms. Furthermore, our observations show that brevetoxins can persist in sediments where seagrass communities are absent.  相似文献   

20.
Human respiratory and gastrointestinal illnesses can result from exposures to brevetoxins originating from coastal Florida red tide blooms, comprising the marine alga Karenia brevis (K. brevis). Only limited research on the extent of human health risks and illness costs due to K. brevis blooms has been undertaken to date. Because brevetoxins are known neurotoxins that are able to cross the blood-brain barrier, it is possible that exposure to brevetoxins may be associated with neurological illnesses. This study explored whether K. brevis blooms may be associated with increases in the numbers of emergency department visits for neurological illness. An exposure-response framework was applied to test the effects of K. brevis blooms on human health, using secondary data from diverse sources. After controlling for resident population, seasonal and annual effects, significant increases in emergency department visits were found specifically for headache (ICD-9 784.0) as a primary diagnosis during proximate coastal K. brevis blooms. In particular, an increased risk for older residents (≥55 years) was identified in the coastal communities of six southwest Florida counties during K. brevis bloom events. The incidence of headache associated with K. brevis blooms showed a small but increasing association with K. brevis cell densities. Rough estimates of the costs of this illness were developed for hypothetical bloom occurrences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号