首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 0 毫秒
1.
DNA mismatch recognition is performed in eukaryotes by two heterodimers known as MutSα (Msh2/Msh6) and MutSβ (Msh2/Msh3) that must reside in the nucleus to function. Two putative Msh2 nuclear localization sequences (NLS) were characterized by fusion to green fluorescent protein (GFP) and site-directed mutagenesis in the context of Msh2. One NLS functioned in GFP targeting assays and both acted redundantly within Msh2. We examined nuclear localization of each of the MutS monomers in the presence and absence of their partners. Msh2 translocated to the nucleus in cells lacking Msh3 and Msh6; however, cells lacking Msh6 showed significantly decreased levels of nuclear Msh2. Furthermore, the overall protein levels of Msh2 were significantly diminished in the absence of Msh6, particularly if Msh2 lacked a functional NLS. Msh3 localized in the absence of Msh2, but Msh6 localization depended on Msh2 expressing functional NLSs. Overall, the nuclear levels of Msh2 and Msh6 decline when the other partner is absent. The data suggest a stabilization mechanism to prevent free monomer accumulation in the cytoplasm.  相似文献   

2.
We investigated the efficacy and mechanism of dimethylaminoparthenolide (DMAPT), an NF-κB inhibitor, to sensitize human lung cancer cells to X-ray killing in vitro and in vivo. We tested whether DMAPT increased the effectiveness of single and fractionated X-ray treatment through inhibition of NF-κB and/or DNA double-strand break (DSB) repair. Treatment with DMAPT decreased plating efficiency, inhibited constitutive and radiation-induced NF-κB binding activity, and enhanced radiation-induced cell killing by dose modification factors of 1.8 and 1.4 in vitro. X-ray fractionation demonstrated that DMAPT inhibited split-dose recovery/repair, and neutral DNA comet assays confirmed that DMAPT altered the fast and slow components of X-ray-induced DNA DSB repair. Knockdown of the NF-κB family member p65 by siRNA increased radiation sensitivity and completely inhibited split-dose recovery in a manner very similar to DMAPT treatment. The data suggest a link between inhibition of NF-κB and inhibition of DSB repair by DMAPT that leads to enhancement of X-ray-induced cell killing in vitro in non-small-cell lung cancer cells. Studies of A549 tumor xenografts in nude mice demonstrated that DMAPT enhanced X-ray-induced tumor growth delay in vivo.  相似文献   

3.
DNA double-strand breaks (DSBs) represent an important radiation-induced lesion and impaired DSB repair provides the best available correlation with radiosensitivity. Physical techniques for monitoring DSB repair require high, non-physiological doses and cannot reliably detect subtle defects. One outcome from extensive research into the DNA damage response is the observation that H2AX, a variant form of the histone H2A, undergoes extensive phosphorylation at the DSB, creating γH2AX foci that can be visualised by immunofluorescence. There is a close correlation between γH2AX foci and DSB numbers and between the rate of foci loss and DSB repair, providing a sensitive assay to monitor DSB repair in individual cells using physiological doses. However, γH2AX formation can occur at single-stranded DNA regions which arise during replication or repair and thus does not solely correlate with DSB formation. Here, we present and discuss evidence that following exposure to ionising radiation, γH2AX foci analysis can provide a sensitive monitor of DSB formation and repair and describe techniques to optimise the analysis. We discuss the limitations and benefits of the technique, enabling the procedure to be optimally exploited but not misused.  相似文献   

4.
Psoralen photoreaction produces covalent monoadducts and interstrand crosslinks in DNA. The interstrand DNA crosslinks are complex double strand lesions that require the involvement of multiple pathways for repair. Homologous recombination, which can carry out error-free repair, is a major pathway for crosslink repair; however, some recombination pathways can also produce DNA rearrangements. Psoralen photoreaction-induced recombination in yeast was measured using direct repeat substrates that can detect gene conversions, a form of conservative recombination, as well as deletions and triplications, which generate gene copy number changes. In repair-proficient cells the major products of recombination were gene conversions, along with substantial fractions of deletions. Deficiencies in DNA repair pathways increased non-conservative recombination products. Homologous recombination-deficient rad51, rad54, and rad57 strains had low levels of crosslink-induced recombination, and most products were deletions produced by single strand annealing. Nucleotide excision repair-deficient rad1 and rad2 yeast had increased levels of triplications, and rad1 cells had lower crosslink-induced recombination. Deficiencies in post-replication repair increased crosslink-induced recombination and gene copy number changes. Loss of REV3 function, in the error-prone branch, and of RAD5 and UBC13, in the error-free branch, produced moderate increases in deletions and triplications; rad18 cells, deficient in both post-replication repair sub-pathways, exhibited hyperrecombination, with primarily non-conservative products. Proper functioning of all the DNA repair pathways tested was required to maintain genomic stability and avoid gene copy number variation in response to interstrand crosslinks.  相似文献   

5.
Mitochondria-related oxidative damage is a primary event in aging and age-related neurodegenerative disorders. Some dietary treatments, such as antioxidant supplementation or the enrichment of mitochondrial membranes with less oxidizable fatty acids, reduce lipid peroxidation and lengthen life span in rodents. This study compares life-long feeding on monounsaturated fatty acids (MUFAs), such as virgin olive oil, and n-6 polyunsaturated fatty acids, such as sunflower oil, with or without coenzyme Q10 supplementation, with respect to age-related molecular changes in rat brain mitochondria. The MUFA diet led to diminished age-related phenotypic changes, with lipoxidation-derived protein markers being higher among the older animals, whereas protein carbonyl compounds were lower. It is noteworthy that the MUFA diet prevented the age-related increase in levels of mitochondrial DNA deletions in the brain mitochondria from aged animals. The findings of this study suggest that age-related oxidative stress is related, at the mitochondrial level, to other age-related features such as mitochondrial electron transport and mtDNA alterations, and it can be modulated by selecting an appropriate dietary fat type and/or by suitable supplementation with low levels of the antioxidant/electron carrier molecule coenzyme Q.  相似文献   

6.
This paper reports further studies on the separation of DNAs with the antitumor drug cis-Pt(NH3)2Cl2. cis-Pt(NH3)2Cl2 permits resolution of the three DNA components from whole Saccharomyces cerevisiae in CsCl gradients, avoids pelleting of mitochondrial (β) DNA and does not require a critical molar ratio of platinum drug to DNA-P. However, the difficulty in removing all of the DNA-bound platinum may limit its preparative use. The linear relationship between the increase in buoyant density of platinized double-stranded DNA and its G + C content is employed to calculate a G + C content of 41.2% and 45.8% for α and γ DNA, respectively, using a value of 20% G + C for β DNA. In parallel experiments, we find that poly(dG)·poly(dC), which contains sequential guanine bases, exhibits an unexpectedly large buoyant density increase with cis-Pt(NH3)2 Cl2, while the buoyant density increase of poly[d(G-C)]is markedly retarded, indicating an effect of nucleotide base sequence on DNA separation. The trans platinum compound, which has no antitumor properties, separates DNAs on the basis of G + C content in a similar fashion, but does not preferentially increase the buoyant density of poly(dG)·poly(dC).  相似文献   

7.
8.
9.
As a solution to the problems of mass transfer limitation in submerged cultures and scale up of solid-state/liquid-surface cultures, an alternating liquid phase–air phase bioreactor was developed. It consisted of a bioreactor equipped with a siphon system and a reservoir. Aspergillus awamori was immobilized in loofa sponge inside the bioreactor and culture broth was pumped from the reservoir into the bioreactor. Each time the culture broth level reached a critical level, the broth automatically siphoned back into the reservoir. Thus the immobilized cells were alternatingly submerged and exposed to air. The duration of each phase was controlled by the pumping rate and with an on-off timer. During amylase production from soluble starch and raw cassava starch, the optima ratios of the liquid to air phases were 12 h : 12 h and 3 h : 6 h respectively. Saccharomyces cerevisiae IR2 was immobilized in the reservoir and the system was used for simultaneous amylase production, hydrolysis and ethanol production from raw cassava starch. The process was very stable for more than 7 batches with high ethanol yield of 0.46 g-ethanol/g-starch and productivity of 1.73 g-ethanol/L/h. These values are high, the system can be scaled up, and thus it has many potential applications.  相似文献   

10.
11.
5-Aza-2′-deoxycytidine (decitabine) is a drug targeting the epigenetic abnormalities of tumors. The basis for its limited efficacy in solid tumors is unresolved, but may relate to their indolent growth, their p53 genotype or both. We report that the primary molecular mechanism of decitabine—depletion of DNA methyltransferase-1 following its “suicide” inactivation—is not absolutely associated with cell cycle progression in HCT 116 colon cancer cells, but is associated with their p53 genotype. Control experiments affirmed that the secondary molecular effects of decitabine on global and promoter-specific CpG methylation and MAGE-A1 mRNA expression were S-phase dependent, as expected. Secondary changes in CpG methylation occurred only in growing cells ∼24–48 h after decitabine treatment; these epigenetic changes coincided with p53 accumulation, an index of DNA damage. Conversely, primary depletion of DNA methyltransferase-1 began immediately after a single exposure to 300 nM decitabine and it progressed to completion within ∼8 h, even in confluent cells arrested in G1 and G2/M. Our results suggest that DNA repair and remodeling activity in arrested, confluent cells may be sufficient to support the primary molecular action of decitabine, while its secondary, epigenetic effects require cell cycle progression through S-phase.Key words: 5-aza-2′-deoxycytidine, decitabine, DNA methyltransferase-1, suicide inactivation, p53, S-phase, cell cycle  相似文献   

12.
13.
DNA double strand breaks (DSBs) occur more frequently in TIS21?/? mouse embryo fibroblasts than that in wild type MEFs (wt-MEFs). Therefore, the role TIS21 plays in the DNA damage response was investigated. Adenoviral transduction of Huh7 tumor cells with the TIS21 gene accelerated the repair of DSBs induced by etoposide treatment as evaluated by clearance of γH2AX foci and the Comet assay. TIS21 increased methylation of Mre11 and protein arginine methyltransferase 1 (PRMT1) activity, leading to Mre11 activation in vitro and in vivo, as determined by immunoprecipitation and radiolabeling analyses. When downstream DNA damage response mediators were evaluated in various human cancer cells lines, TIS21 was found to strongly inhibit Chk2T68 and p53S20 phosphorylation by p-ATMS1981 but not p53S15. The loss of Chk2 activation after etoposide treatment reduced apoptosis in the cells by downregulating the expression of E2F1 and Bax. These data suggest that TIS21 regulates DSB repair and apoptosis. Expression of TIS21 promoted the repair of DSBs and reduced apoptosis by blocking the damage signal from p-ATMS1981 to Chk2T68–p53S20 via the activation of Mre11 and PRMT1.  相似文献   

14.
15.
Lafora disease (LD, OMIM254780, ORPHA501) is a rare neurodegenerative form of epilepsy related to mutations in two proteins: laforin, a dual specificity phosphatase, and malin, an E3-ubiquitin ligase. Both proteins form a functional complex, where laforin recruits specific substrates to be ubiquitinated by malin. However, little is known about the mechanism driving malin–laforin mediated ubiquitination of its substrates. In this work we present evidence indicating that the malin–laforin complex interacts physically and functionally with the ubiquitin conjugating enzyme E2-N (UBE2N). This binding determines the topology of the chains that the complex is able to promote in the corresponding substrates (mainly K63-linked polyubiquitin chains). In addition, we demonstrate that the malin–laforin complex interacts with the selective autophagy adaptor sequestosome-1 (p62). Binding of p62 to the malin–laforin complex allows its recognition by LC3, a component of the autophagosomal membrane. In addition, p62 enhances the ubiquitinating activity of the malin–laforin E3-ubiquitin ligase complex. These data enrich our knowledge on the mechanism of action of the malin–laforin complex as an E3-ubiquitin ligase and reinforces the role of this complex in targeting substrates toward the autophagy pathway.  相似文献   

16.
17.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号