首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
Ganoderma lucidum is one of most widely used herbal medicine and functional food in Asia, and ganoderic acids (GAs) are its active ingredients. Regulation of GA biosynthesis and enhancing GA production are critical to using G. lucidum as a medicine. However, regulation of GA biosynthesis by various signaling remains poorly understood. This study investigated the role of apoptosis signaling on GA biosynthesis and presented a novel approach, namely apoptosis induction, to increasing GA production. Aspirin was able to induce cell apoptosis in G. lucidum, which was identified by terminal deoxynucleotidyl transferase mediated dUPT nick end labeling assay positive staining and a condensed nuclear morphology. The maximum induction of lanosta-7,9(11), 24-trien-3α-01-26-oic acid (ganoderic acid 24, GA24) production and total GA production by aspirin were 2.7-fold and 2.8-fold, respectively, after 1 day. Significantly lower levels of GA 24 and total GAs were obtained after regular fungal culture for 1.5 months. ROS accumulation and phosphorylation of Hog-1 kinase, a putative homolog of MAPK p38 in mammals, occurred after aspirin treatment indicating that both factors may be involved in GA biosynthetic regulation. However, aspirin also reduced expression of the squalene synthase and lanosterol synthase coding genes, suggesting that these genes are not critical for GA induction. To the best of our knowledge, this is the first report showing that GA biosynthesis is linked to fungal apoptosis and provides a new approach to enhancing secondary metabolite production in fungi.  相似文献   

5.
Ganoderic acids produced by Ganoderma lucidum, a well-known traditional Chinese medicinal mushroom, exhibit antitumor and antimetastasis activities. Genetic modification of G. lucidum is difficult but critical for the enhancement of cellular accumulation of ganoderic acids. In this study, a homologous genetic transformation system for G. lucidum was developed for the first time using mutated sdhB, encoding the iron-sulfur protein subunit of succinate dehydrogenase, as a selection marker. The truncated G. lucidum gene encoding the catalytic domain of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) was overexpressed by using the Agrobacterium tumefaciens-mediated transformation system. The results showed that the mutated sdhB successfully conferred carboxin resistance upon transformation. Most of the integrated transfer DNA (T-DNA) appeared as a single copy in the genome. Moreover, deregulated constitutive overexpression of the HMGR gene led to a 2-fold increase in ganoderic acid content. It also increased the accumulation of intermediates (squalene and lanosterol) and the upregulation of downstream genes such as those of farnesyl pyrophosphate synthase, squalene synthase, and lanosterol synthase. This study demonstrates that transgenic basidiomycete G. lucidum is a promising system to achieve metabolic engineering of the ganoderic acid pathway.  相似文献   

6.
Squalene is an effective antioxidant and a potential chemopreventive agent. In this work, the effect of methyl jasmonate (MJA) on squalene biosynthesis in microalga Schizochytrium mangrovei was investigated. The maximum squalene content (1.17 ± 0.06 mg/g cell dry weight, DW) reached during the next 3 h after MJA treatment (0.1 mM) at 48 h of cultivation, which was 60% higher than that of control. The activity of squalene synthase (SS) increased 2-fold over control at this point. The maximum cholesterol content of 0.45 ± 0.03 mg/g DW was reached at hour 51 when MJA concentration was 0.4 mM, whereas the squalene content was lower at this point. The observations suggested that the increased squalene content was resulted from an increased activity of SS. MJA could be used to regulate the key enzymes in squalene biosynthetic pathway for the increased production of this compound in thraustochytrids. This research also provided novel information on the stimulation effect of methyl jasmonate on the biosynthesis of essential intermediate involved in the primary metabolism in microorganism.  相似文献   

7.
Ganoderic triterpenoid (GT) is a promising anti-tumour constituent in Ganoderma lucidum. The aim of this study was to investigate induction by and a possible signalling mechanism of nitric oxide (NO) for GT synthesis. Compared to the control, the biomass decreased by 43.5% at 120 h and the GT yield increased by 40.94% at 72 h in the presence of a 5 mM NO donor sodium nitroprusside supplement. The gene expression profiles of G. lucidum in response to NO were investigated by RNA-sequencing. Functional annotation and an enrichment analysis of the differentially expressed genes indicated that NO inhibited mycelial growth probably via the suppression of the glycolysis genes involved in carbohydrate metabolism. NO may function directly as a regulator of gene expression in the mevalonate pathway to induce GT biosynthesis, and the hyper-production of GT in response to NO could also be accomplished by a signalling function involving Ca2+ and a reactive oxygen species (ROS) pathway. The results of this study are useful for large-scale GT production and can facilitate further studies on the endogenous signalling pathways involved in the GT biosynthetic pathway.  相似文献   

8.
Ganoderic acids (GAs) Mk, T, S and R exhibit promising anti-tumor effect, but they are difficult to purify from Ganoderma lucidum mycelia due to the presence of numerous analogs. In this work, a novel and efficient extraction/hydrolysis method was developed for the recovery of these four GAs from the mycelia of G. lucidum. By using a 50% aqueous ethanol solution containing 50 mmol/l HCl as extractant, extraction of GAs from mycelia and conversion of analogs impurities into the products of interest could be achieved in one step. This one-pot extraction/hydrolysis process increased the yield of GA-Mk, -T, -S and -R to 242%, 389%, 189% and 420%, respectively, compared to a raw sample without hydrolysis. Simultaneous purification of these four GAs was readily achieved in a single RP-HPLC run due to the conversion of analog impurities into corresponding desired GAs, and the purity and recovery of these four GAs were over 97% and 90%, respectively. The results demonstrated that the simultaneous extraction and hydrolysis process is simple and efficient and thus can act as a useful approach for enhanced recovery of those four GAs from G. lucidum mycelia.  相似文献   

9.
Effects of Coix lacryma-jobi oil (CLO) addition on the mycelia growth and production of bioactive metabolites, such as triterpenoids, exopolysaccharide (EPS), and intracellular polysaccharide (IPS) in the submerged culture of Ganoderma lucidum were studied. The results showed that when a level of 2% CLO was added at the beginning of culture, the biomass, triterpenoids, EPS, and IPS productions reached a maximum of 10.71 g/L, 92.94 mg/L, 0.33 g/L, and 0.389 g/L, respectively, that were 3.34-fold, 2.76-fold, 2.2-fold, and 2.23-fold compared to that of control. Analysis of fermentation kinetics of G. lucidum suggested that glucose concentration in the culture of CLO-added group decreased more quickly as compared to the control group from day 2 to day 7 of fermentation process, while the triterpenoids and polysaccharides biosynthesis were promoted at the same culture period. However, the culture pH profile was not affected by the addition of CLO. There were no new components in the two types of polysaccharides obtained by the addition of CLO. Enzyme activities analysis indicated CLO or its fatty acids affected the synthesis level of phosphoglucose isomerase and α-phosphoglucomutase at different stage.  相似文献   

10.
In this study, we evaluated the pharmacological effects of Ganoderma lucidum (G. lucidum) (water-extract) (0.003, 0.03 and 0.3 g/kg, 4-week oral gavage) consumption using the lean (+db/+m) and the obese/diabetic (+db/+db) mice. Different physiological parameters (plasma glucose and insulin levels, lipoproteins-cholesterol levels, phosphoenolpyruvate carboxykinase (PEPCK), 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG CoA reductase) and isolated aorta relaxation of both species were measured and compared. G. lucidum (0.03 and 0.3 g/kg) lowered the serum glucose level in +db/+db mice after the first week of treatment whereas a reduction was observed in +db/+m mice only fed with 0.3 g/kg of G. lucidum at the fourth week. A higher hepatic PEPCK gene expression was found in +db/+db mice. G. lucidum (0.03 and 0.3 g/kg) markedly reduced the PEPCK expression in +db/+db mice whereas the expression of PEPCK was attenuated in +db/+m mice (0.3 g/kg G. lucidum). HMG CoA reductase protein expression (in both hepatic and extra-hepatic organs) and the serum insulin level were not altered by G. lucidum. These data demonstrate that G. lucidum consumption can provide beneficial effects in treating type 2 diabetes mellitus (T2DM) by lowering the serum glucose levels through the suppression of the hepatic PEPCK gene expression.  相似文献   

11.
Ganoderic acid 3-hydroxy-lanosta-8,24-dien-26-oic acid (GA-HLDOA), an antitumor triterpenoid from the traditional Chinese medicinal higher fungus Ganoderma lucidum, is considered as a key precursor for biosynthesizing other ganoderic acids (GAs) with superior antitumor activities. Our previous study identified CYP5150L8 from G. lucidum as a lanosterol oxidase, and achieved heterologous biosynthesis of GA-HLDOA in Saccharomyces cerevisiae. However, low production of GA-HLDOA in either G. lucidum or heterologous host hindered its further investigation and application. In this study, we constructed a dual tunable system for balancing the expression of CYP5150L8 and a Ganoderma P450 reductase iGLCPR, and performed a comprehensive optimization of CYP5150L8 expression, iGLCPR expression, and glycerol usage. Then, we investigated the fermentation behavior of the best strain in optimized condition in flask and achieved 154.45 mg/L GA-HLDOA production, which was 10.7-fold higher compared with previous report. This study may facilitate the wide-spread application of GA-HLDOA and the discovery of unknown cytochrome P450s in downstream GAs biosynthesis.  相似文献   

12.
Ganoderma lucidum is a saprotrophic white-rot fungus which contains a rich set of cellulolytic enzymes. Here, we screened an array of potential 1,4-β-endoglucanases from G. lucidum based on the gene annotation library and found that one candidate gene, GlCel5A, exhibits CMC-hydrolyzing activity. The recombinant GlCel5A protein expressed in Pichia pastoris is able to hydrolyze CMC and β-glucan but not xylan and mannan. The enzyme exhibits optimal activity at 60 °C and pH 3–4, and retained 50% activity at 80 and 90 °C for at least 15 and 10 min. The crystal structure of GlCel5A and its complex with cellobiose, solved at 2.7 and 2.86 Å resolution, shows a classical (β/α)8 TIM-barrel fold as seen in other members of glycoside hydrolase family 5. The complex structure contains a cellobiose molecule in the +1 and +2 subsites, and reveals the interactions with the positive sites of the enzyme. Collectively, the present work provides the first comprehensive characterization of an endoglucanase from G. lucidum that possesses properties for industrial applications, and strongly encourages further studying in the cellulolytic enzyme system of G. lucidum.  相似文献   

13.
Ganoderic acids (GAs) are oxygenated lanostane-type triterpenoids from the traditional medicinal mushroom Ganoderma lucidum and of significant biological activities. Although a ganoderic acid 3-hydroxy-lanosta-8,24-dien-26-oic acid (HLDOA) was found to be biosynthesized from lanosterol, further post-modification of HLDOA is yet unclear. In this work, by using HLDOA as the substrate and a crude enzyme from G. lucidum as the biocatalyst, we observed a new peak in liquid chromatography from the reaction system. The product was purified and identified to be 3-oxo-lanosta-8,24-dien-26-oic acid (OLDOA), which may be converted from HLDOA by a putative dehydrogenase of G. lucidum. The work is useful to future manufacture of GAs as well as their biosynthetic pathway elucidation.  相似文献   

14.
Guanosine 5’-diphosphate (GDP)-l-fucose, an activated form of a nucleotide sugar, plays an important role in a wide range of biological functions. In this study, the enhancement of GDP-l-fucose production was attempted by supplementation of mannose, which is a potentially better carbon source to be converted into GDP-l-fucose than glucose, and combinatorial overexpression of the genes involved in the biosynthesis of GDP-d-mannose, a precursor of GDP-l-fucose. Supply of a mannose and glucose led to a 1.3-fold-increase in GDP-l-fucose concentration (52.5 ± 0.8 mg l?1) in a fed-batch fermentation of recombinant E. coli BL21star(DE3) overexpressing the gmd and wcaG genes, compared with the case using glucose as a sole carbon source. A maximum GDP-l-fucose concentration of 170.3 ± 2.3 mg l?1, corresponding to a 4.4-fold enhancement compared with the control strain overexpressing gmd and wcaG genes only, was achieved in a glucose-limited fed-batch fermentation of a recombinant E. coli BL21star(DE3) strain overexpressing manB, manC, gmd and wcaG genes. Further improvement of GDP-l-fucose production was not obtained by additional overexpression of the manA gene.  相似文献   

15.

Background

The wastes of pecan nut (Carya illinoinensis (Wangenh.) K. Koch) production are increasing worldwide and have high concentrations of tannins and phenols.

Aims

To study the biodegradation of lignocellulosic wastes of pecan used as solid substrate for the cultivation of the white-rot fungus Ganoderma lucidum (Curtis) P. Karst.

Methods

Six formulations of pecan wastes were used as solid substrate: pecan shells (PS100), pecan pericarp (PP100), pecan wood-chips (PB100), and the combinations PS50 + PP50, PB50 + PS50 and PB50 + PP50. The substrates were inoculated with a wild strain of G. lucidum collected in the Iberian Peninsula. The biodegradation capability of G. lucidum was estimated by using the mycelial growth rate, the biological efficiency, the production and the dry biological efficiency.

Results

Notably, all solid substrates were suitable for G. lucidum growth and mushroom yield. The best performance in mushroom yield was obtained with PB100 (55.4% BE), followed by PB50 + PP50 (31.7% BE) and PB50 + PS50 (25.4% BE). The mushroom yield in the substrates containing pecan wood-chips (PB) was significantly higher.

Conclusions

Our study is leading the way in attempting the cultivation of G. lucidum on lignocellulosic pecan waste. These results show an environmentally friendly alternative that increases the benefits for the global pecan industry, especially in rural areas, and transforms biomass into mushrooms with nutraceutical properties and biotechnological applications.  相似文献   

16.
Ginsenosides are the primary bioactive components of ginseng, which is a popular medicinal herb and exhibits diverse pharmacological activities. Protopanaxadiol is the aglycon of several dammarane-type ginsenosides, which also has anticancer activity. For microbial production of protopanaxadiol, dammarenediol-II synthase and protopanaxadiol synthase genes of Panax ginseng, together with a NADPH-cytochrome P450 reductase gene of Arabidopsis thaliana, were introduced into Saccharomyces cerevisiae, resulting in production of 0.05 mg/g DCW protopanaxadiol. Increasing squalene and 2,3-oxidosqualene supplies through overexpressing truncated 3-hydroxyl-3-methylglutaryl-CoA reductase, farnesyl diphosphate synthase, squalene synthase and 2,3-oxidosqualene synthase genes, together with increasing protopanaxadiol synthase activity through codon optimization, led to 262-fold increase of protopanaxadiol production. Finally, using two-phase extractive fermentation resulted in production of 8.40 mg/g DCW protopanaxadiol (1189 mg/L), together with 10.94 mg/g DCW dammarenediol-II (1548 mg/L). The yeast strains engineered in this work can serve as the basis for creating an alternative way for production of ginsenosides in place of extraction from plant sources.  相似文献   

17.
ALA (5-aminolevulinic acid) is an important intermediate in the synthesis of tetrapyrroles and the use of ALA has been gradually increasing in many fields, including medicine and agriculture. In this study, improved biological production of ALA in Corynebacterium glutamicum was achieved by overexpressing glutamate-initiated C5 pathway. For this purpose, copies of the glutamyl t-RNA reductase HemA from several bacteria were mutated by site-directed mutagenesis of which a HemA version from Salmonella typhimurium exhibited the highest ALA production. Cultivation of the HemA-expressing strain produced approximately 204 mg/L of ALA, while co-expression with HemL (glutamate-1-semialdehyde aminotransferase) increased ALA concentration to 457 mg/L, representing 11.6- and 25.9-fold increases over the control strain (17 mg/L of ALA). Further effects of metabolic perturbation were investigated, leading to penicillin addition that further improves ALA production to 584 mg/L. In an optimized flask fermentation, engineered C. glutamicum strains expressing the HemA and hemAL operon produced up to 1.1 and 2.2 g/L ALA, respectively, under glutamate-producing conditions. The final yields represent 10.7- and 22.0-fold increases over the control strain (0.1 g/L of ALA). From these findings, ALA biosynthesis from glucose was successfully demonstrated and this study is the first to report ALA overproduction in C. glutamicum via metabolic engineering.  相似文献   

18.
19.
20.
《Process Biochemistry》2010,45(12):1904-1911
To further enhance the accumulation of the bioactive metabolite ganoderic acid (GA) by fermentation of the medicinal mushroom Ganoderma lucidum, a novel integrated strategy was developed by simultaneously adopting a strategy of multiple Cu2+ additions, three-stage light irradiation and multi-pulse feeding of carbon and nitrogen sources. Maximal GA content (i.e., 4.1 mg/100 mg DW) and production (i.e., 720.8 mg/L) were obtained using the novel integrated strategy. Not only the biomass but also the total GA production obtained in this work is the highest reported for a shaker flask culture of G. lucidum. This work is useful for the large-scale production of GA by G. lucidum fermentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号