首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A recombinant Escherichia coli was engineered to produce the commercially important amino acid L: -phenylalanine (L: -Phe) using glycerol as the carbon source. Compared to the conventionally used glucose and sucrose, glycerol is a less expensive carbon source. As phenylalanine dehydrogenase (PheDH) activity is involved in the last step of L: -Phe synthesis in E. coli, a phenylalanine dehydrogenase gene (phedh) from the thermotolerant Bacillus lentus was cloned into pRSFDuet-1 (pPheDH) and expressed in E. coli BL21(DE3). The resulting clone had a limited ability to produce L: -Phe from glycerol, possibly because of a poor glycerol uptake by the cell, or an inability to excrete L: -Phe, or both. Therefore, yddG gene encoding an aromatic amino acid exporter and glpF gene encoding a glycerol transport facilitator were coexpressed with the phedh in a reengineered E. coli. In a glycerol medium, the maximum L: -Phe production rates of the clones pPY (phedh and yddG genes) and pPYF (phedh, yddG and glpF genes) were 1.4- and 1.8-fold higher than the maximum production rate of the pPheDH clone. The better producing pPYF clone was further evaluated in a 5?l stirred-tank fermenter (37?°C, an aeration rate of 1 vvm, an agitation speed of 400?rpm). In the fermenter, the maximum concentration of L: -Phe (366?mg/l) was achieved in a much shorter period compared to in the shake flasks. In the latter, the highest titer of L: -Phe was only 76?% of the maximum value attained in the fermenter.  相似文献   

2.
Escherichia coli MG1655 (DE3) with the ability to synthesize butanol from glycerol was constructed by metabolic engineering. The genes thil, adhe2, bcs operon (crt, bcd, etfB, etfA, and hbd) were cloned into the plasmid vectors, pETDuet-1 and pACYCDuet-1, then the two resulting plasmids, pACYC-thl-bcs and pET-adhe2, were transferred to E. coli, and the recombinant strain was able to synthesize up to 18.5 mg/L butanol on a glycerol-containing medium. After the glycerol transport protein gene GlpF was expressed, the butanol production was improved to 22.7 mg/L. The competing pathway of byproducts, such as ethanol, succinate, and lactate, was subsequently deleted to improve the 1-butanol production to 97.9 mg/L. Moreover, a NADH regeneration system was introduced into the E. coli, and finally a 154.0 mg/L butanol titer was achieved in a laboratory-scale shake-flask experiment.  相似文献   

3.
dl-Alanine was produced from glucose in an Escherichia coli pfl pps poxB ldhA aceEF pTrc99A-alaD strain which lacked pyruvate-formate lyase, phosphoenolpyruvate (PEP) synthase, pyruvate oxidase, lactate dehydogenase, components of the pyruvate dehydogenase complex and over-produced alanine dehydrogenase (ALD). A two-phase process was developed with cell growth under aerobic conditions followed by alanine production under anaerobic conditions. Using the batch mode, cells grew to 5.3 g/l in 9 h with the accumulation of 6–10 g acetate/l, and under subsequent anaerobic conditions achieved 34 g alanine/l in 13 h with a yield of 0.86 g/g glucose. Using the fed-batch mode at μ = 0.15 h−1, only about 1 g acetate/l formed in the 25 h required for the cells to reach 5.6 g/l, and 88 g alanine/l accumulated during the subsequent 23 h. This fed-batch process attained an alanine volumetric productivity of 4 g/lh during the production phase, and a yield that was essentially 1 g/g.  相似文献   

4.
Crude glycerol, generated as waste by-product in biodiesel production process, has been considered as an important carbon source for converting to value-added bioproducts recently. Free fatty acids (FFAs) can be used as precursors for the production of biofuels or biochemicals. Microbial biosynthesis of FFAs can be achieved by introducing an acyl–acyl carrier protein thioesterase into Escherichia coli. In this study, the effect of metabolic manipulation of FFAs synthesis cycle, host genetic background and cofactor engineering on FFAs production using glycerol as feed stocks was investigated. The highest concentration of FFAs produced by the engineered stain reached 4.82 g/L with the yield of 29.55% (g FFAs/g glycerol), about 83% of the maximum theoretical pathway value by the type II fatty acid synthesis pathway. In addition, crude glycerol from biodiesel plant was also used as feedstock in this study. The FFA production was 3.53 g/L with a yield of 24.13%. The yield dropped slightly when crude glycerol was used as a carbon source instead of pure glycerol, while it still can reach about 68% of the maximum theoretical pathway yield.  相似文献   

5.
Wang F  Qu H  Tian P  Tan T 《Biotechnology journal》2007,2(6):736-742
Glycerol dehydratase (EC 4.2.1.30), as one of the key enzymes in converting glycerol to the valuable intermediate 1,3-propanediol, is important for biochemical industry. The dhaB genes encoding coenzyme B(12)-dependent glycerol dehydratase in Klebsiella pneumoniae were cloned and expressed in Escherichia coli. An effective co-expression system of multiple subunits protein was constructed. Heterologous expression vectors were constructed using the splicing by overlap extension-PCR technique to co-express the three subunits of the glycerol dehydratase. After induction by isopropyl-beta-D-thiogalactopyranoside, SDS-PAGE analysis revealed that: (i) only the alpha subunit of glycerol dehydratase was expressed in direct expression system, (ii) the three subunits of glycerol dehydratase with predicted molecular massess of 64 (agr;), 22 (beta), and 16 kDa (gamma) were expressed simultaneously in co-expression system, and (iii) the fusion expression system expressed the fusion protein of 99 kDa. Enzyme assay showed that the activities of three heterologous expression products were 27.4, 2.3, and 0.2 U/mg. The highest enzyme activity was almost 17 times of that in K. pneumoniae. The recombinant enzyme was purified and biochemically characterized. The apparent Km values of the enzyme for coenzyme B(12) and 1, 2-propanediol were 8.5 nM and 1.2 mM, respectively. The enzyme showed maximum activity at pH 8.5 and 37 degrees C.  相似文献   

6.
In this study, we report the enzymatic production of glycerol acetate from glycerol and methyl acetate. Lipases are essential for the catalysis of this reaction. To find the optimum conditions for glycerol acetate production, sequential experiments were designed. Type of lipase, lipase concentration, molar ratio of reactants, reaction temperature and solvents were investigated for the optimum conversion of glycerol to glycerol acetate. As the result of lipase screening, Novozym 435 (Immobilized Candida antarctica lipase B) was turned out to be the optimal lipase for the reaction. Under the optimal conditions (2.5 g/L of Novozym 435, 1:40 molar ratio of glycerol to methyl acetate, 40 °C and tert-butanol as the solvent), glycerol acetate production was achieved in 95.00% conversion.  相似文献   

7.
Recombinant hG-CSF was expressed in Pichia pastoris under the control of the AOX1 promoter. In this study, the glycerol feeding rate was adjusted to achieve the maximum attainable specific growth rate before induction. Using a two-stage glycerol feeding method, the specific growth rate was changed from a maximum value of 0.21 h−1 (at the beginning of feeding) to 0.15 h−1 prior to induction. With this approach, the final dry cell wt and rhG-CSF yield achieved was close to 120 g l−1 and 320 mg l−1, respectively. Our study found that the two-stage feeding method allowed the overall productivity of rhG-CSF to increase 2.9 times that of the conventional fed-batch method.  相似文献   

8.
Fed-batch cultures of recombinant Escherichia coli HB101 were investigated to obtain high cell density and large amounts of β-galactosidase (β-gal). E. coli HB1010 was transformed with a hybrid plasmid pTREZ1, which contained a β-gal gene controlled by the trp promoter. In fed-batch cultures of recombinant E. coli, when the cell concentration reached around 13 g/l, the cell growth stopped and large amounts of inhibitory substances have accumulated in the broth. These inhibitory substances were isolated and identified. Acetate produced by the cells was evidently the main inhibitor of cell growth and β-gal production. Since the cells proved to assimilate acetate, the feed rate was controlled with acetate concentration monitoring in the fed-batch culture. As a result, the acetate concentration was maintained at a low level and cells grew smoothly without acetate-induced inhibition. Cell concentration and β-gal quantity reached high values of 28 g/l and 64 U/ml, respectively.  相似文献   

9.
杨鹏  王琦  咸漠  赵广  薛永常 《微生物学通报》2014,41(10):1961-1968
【目的】解决前期研究中所构建的以甘油为底物合成聚3-羟基丙酸(P3HP)的代谢途径中存在两个主要的问题——细胞内还原力不平衡和质粒丢失,以提高P3HP的产量。【方法】克隆来源于肺炎克雷伯氏菌的1,3-丙二醇(1,3-PDO)氧化还原酶基因,构建P3HP和1,3-PDO联产的菌株,解决细胞内还原力不平衡的问题。利用自杀性载体系统介导的同源重组技术,将甘油脱水酶及其激活因子的基因整合到大肠杆菌基因组中,提高质粒的稳定性。同时,对发酵条件进行优化。【结果】菌种改造和发酵条件优化显著提高了P3HP产量,在摇瓶条件下到达2.7 g/L,比以前的报道提高2倍,并可同时得到2.4 g/L 1,3-PDO。【结论】该重组大肠杆菌合成P3HP的产量得到提高,具有较好的工业化生产前景。  相似文献   

10.
Penicillin G acylase (pac) gene was cloned into a stable asd + vector (pYA292) and expressed in Escherichia coli. This recombinant strain produced 1000 units penicillin G acylase g–1 cell dry wt, which is 23-fold more than that produced by parental Escherichia coli ATCC11105. This enzyme was purified to 16 units mg–1 protein by a novel two-step process.  相似文献   

11.
The hydrolase (Thermobifida fusca hydrolase; TfH) from T. fusca was produced in Escherichia coli as fusion protein using the OmpA leader sequence and a His6 tag. Productivity could be raised more than 100-fold. Both batch and fed-batch cultivations yield comparable cell specific productivities whereas volumetric productivities differ largely. In the fed-batch cultivations final rTfH concentrations of 0.5 g L−1 could be achieved. In batch cultivations the generated rTfH is translocated to the periplasm wherefrom it is completely released into the extracellular medium. In fed-batch runs most of the produced rTfH remains as soluble protein in the cytoplasm and only a fraction of about 35% is translocated to the periplasm. Migration of periplasmic proteins in the medium is obviously coupled with growth rate and this final transport step possibly plays an important role in product localization and efficacy of the Sec translocation process.  相似文献   

12.
13.
Fed-batch culture strategy is often used for increasing production of heterologous recombinant proteins in Escherichia coli. This study was initiated to investigate the effects of dissolved oxygen concentration (DOC), complex nitrogen sources and pH control agents on cell growth and intracellular expression of streptokinase (SK) in recombinant E. coli BL21(DE3). Increase in DOC set point from 30% to 50% did not affect SK expression in batch culture where as similar increase in fed-batch cultivation led to a significant improvement in SK expression (from 188 to 720 mg l−1). This increase in SK could be correlated with increase in plasmid segregational stability. Supplementation of production medium with yeast extract and tryptone and replacement of liquid ammonia with NaOH as pH control agent further enhanced SK expression without affecting cell growth. Overall, SK concentration of 1120 mg l−1 representing 14-fold increase in SK production on process scale-up from flask to bioreactor scale fed-batch culture is the highest reported concentration of SK to date.  相似文献   

14.
15.
Benzoic acid (BA) is an important platform aromatic compound in chemical industry and is widely used as food preservatives in its salt forms. Yet, current manufacture of BA is dependent on petrochemical processes under harsh conditions. Here we report the de novo production of BA from glucose using metabolically engineered Escherichia coli strains harboring a plant-like β-oxidation pathway or a newly designed synthetic pathway. First, three different natural BA biosynthetic pathways originated from plants and one synthetically designed pathway were systemically assessed for BA production from glucose by in silico flux response analyses. The selected plant-like β-oxidation pathway and the synthetic pathway were separately established in E. coli by expressing the genes encoding the necessary enzymes and screened heterologous enzymes under optimal plasmid configurations. BA production was further optimized by applying several metabolic engineering strategies to the engineered E. coli strains harboring each metabolic pathway, which included enhancement of the precursor availability, removal of competitive reactions, transporter engineering, and reduction of byproduct formation. Lastly, fed-batch fermentations of the final engineered strain harboring the β-oxidation pathway and the strain harboring the synthetic pathway were conducted, which resulted in the production of 2.37 ± 0.02 g/L and 181.0 ± 5.8 mg/L of BA from glucose, respectively; the former being the highest titer reported by microbial fermentation. The metabolic engineering strategies developed here will be useful for the production of related aromatics of high industrial interest.  相似文献   

16.
Journal of Industrial Microbiology & Biotechnology - l-Serine is widely used in pharmaceutical, food and cosmetic industries, and the direct fermentation to produce l-serine from cheap carbon...  相似文献   

17.
18.
Pachysolen tannophilus has recently been shown to be able to convert d-xylose, a pentose, to ethanol. Previously, d-xylose had been considered to be nonfermentable by yeasts. The present study shows that the organism can be used to obtain ethanol from other carbohydrates previously considered as nonfermentable, either by P. tannophilus in particular, d-galactose, or by yeasts in general, glycerol. Such identification for d-galactose allows P. tannophilus to be considered for fermentation of four of the five major plant monosaccharides: d-glucose, d-mannose, d-galactose and d-xylose. The ability to ferment glycerol is of potential use, in part, for the conversion of glycerol derived from algae into ethanol.  相似文献   

19.
代谢工程大肠杆菌利用甘油高效合成L-乳酸   总被引:2,自引:0,他引:2  
以甘油为碳源高效合成L-乳酸有助于推进油脂水解产业和生物可降解材料制造业的共同发展。为此,首先分别从凝结芽胞杆菌Bacillus coagulans CICIM B1821和大肠杆菌Escherichia coli CICIM B0013中克隆了L-乳酸脱氢酶基因BcoaLDH和D-乳酸脱氢酶 (LdhA) 的启动子片段PldhA。将两条DNA片段连接组成了表达盒PldhA-BcoaLDH。然后将上述表达盒通过同源重组删除FMN为辅酶的L-乳酸脱氢酶编码基因lldD的同时克隆入ldhA基因缺失菌株E. coli CICIM B0013-080C (ack-pta pps pflB dld poxB adhE frdA ldhA)的染色体上,获得了L-乳酸高产菌株E. coli CICIM B0013-090B (B0013-080C,lldD::PldhA-BcoaLDH)。考察了菌株CICIM B0013-090B不同培养温度下代谢利用甘油和合成L-乳酸的特征后,建立并优化了一种新型L-乳酸变温发酵工艺。在7 L发酵罐上,发酵27 h,积累L-乳酸132.4 g/L,产酸强度4.90 g/(L·h),甘油到L-乳酸的得率为93.7%,L-乳酸的光学纯度达到99.95%。  相似文献   

20.
A feb-batch operation for the production of bovine somatotropin (bST) under the control of tryptophan promoter in Escherichia coli was investigated. The plasmid used contains a two-cistron system and altered codon usage for higher expression of bST. Specific growth rate is an important parameter in the fermentation, because it affects the production of growth-inhibitory organic acids and the expression of recombinant protein. The feeding rate was adjusted to keep the specific growth rate constant in this study. The variable growth yield expressed as a function of time was used for the calculation of the feeding rate. The growth yield decreases during the fermentation as product expression is induced. The specific growth rate was well controlled; however, intracellular bST concentration decreased at high cell concentrations. This is considered to be due to degradation by proteases. The decrease was prevented by an exponential feeding of the yeast extract as an organic nitrogen source. (c) 1994 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号