首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Apurinic/apyrimidinic (AP) sites are abundant DNA lesions arising from exposure to UV light, ionizing radiation, alkylating agents, and oxygen radicals. In human cells, AP endonuclease 1 (APE1) recognizes this mutagenic lesion and initiates its repair via a specific incision of the phosphodiester backbone 5' to the AP site. We have investigated a detailed mechanism of APE1 functioning using fluorescently labeled DNA substrates. A fluorescent adenine analogue, 2-aminopurine, was introduced into DNA substrates adjacent to the abasic site to serve as an on-site reporter of conformational transitions in DNA during the catalytic cycle. Application of a pre-steady-state stopped-flow technique allows us to observe changes in the fluorescence intensity corresponding to different stages of the process in real time. We also detected an intrinsic Trp fluorescence of the enzyme during interactions with 2-aPu-containing substrates. Our data have revealed a conformational flexibility of the abasic DNA being processed by APE1. Quantitative analysis of fluorescent traces has yielded a minimal kinetic scheme and appropriate rate constants consisting of four steps. The results obtained from stopped-flow data have shown a substantial influence of the 2-aPu base location on completion of certain reaction steps. Using detailed molecular dynamics simulations of the DNA substrates, we have attributed structural distortions of AP-DNA to realization of specific binding, effective locking, and incision of the damaged DNA. The findings allowed us to accurately discern the step that corresponds to insertion of specific APE1 amino acid residues into the abasic DNA void in the course of stabilization of the precatalytic complex.  相似文献   

2.
3.
Recent crystallographic studies reveal loops in human AP endonuclease 1 (APE1) that interact with the major and minor grooves of DNA containing apurinic/apyrimidinic (AP) sites. These loops are postulated to stabilize the DNA helix and the flipped out AP residue. The loop alpha8 interacts with the major groove on the 3' side of the AP site. To determine the essentiality of the amino acids that constitute the alpha8 loop, we created a mutant library containing random nucleotides at codons 222-229 that, in wild-type APE1, specify the sequence NPKGNKKN. Upon expression of the library (2 x 10(6) different clones) in Escherichia coli and multiple rounds of selection with the alkylating agent methyl-methane sulfonate (MMS), we obtained approximately 2 x 10(5) active mutants that complemented the MMS sensitivity of AP endonuclease-deficient E. coli. DNA sequencing showed that active mutants tolerated amino acid substitutions at all eight randomized positions. Basic and uncharged polar amino acids together comprised the majority of substitutions, reflecting the positively charged, polar character of the wild-type loop. Asn-222, Asn-226, and Asn-229 exhibited the least mutability, consistent with x-ray data showing that each asparagine contacts a DNA phosphate. Substitutions at residues 226-229, located nearer to the AP site, that reduced basicity or hydrogen bonding potential, increased Km 2- to 6-fold and decreased AP site binding; substitutions at residues 222-225 exhibited lesser effects. This initial mutational analysis of the alpha8 loop supports and extends the conclusion of crystallographic studies that the loop is important for binding of AP.DNA and AP site incision.  相似文献   

4.
Apurinic/apyrimidinic endonuclease 1 (APE1) is the major mammalian enzyme in DNA base excision repair that cleaves the DNA phosphodiester backbone immediately 5′ to abasic sites. Recently, we identified APE1 as an endoribonuclease that cleaves a specific coding region of c-myc mRNA in vitro, regulating c-myc mRNA level and half-life in cells. Here, we further characterized the endoribonuclease activity of APE1, focusing on the active-site center of the enzyme previously defined for DNA nuclease activities. We found that most site-directed APE1 mutant proteins (N68A, D70A, Y171F, D210N, F266A, D308A, and H309S), which target amino acid residues constituting the abasic DNA endonuclease active-site pocket, showed significant decreases in endoribonuclease activity. Intriguingly, the D283N APE1 mutant protein retained endoribonuclease and abasic single-stranded RNA cleavage activities, with concurrent loss of apurinic/apyrimidinic (AP) site cleavage activities on double-stranded DNA and single-stranded DNA (ssDNA). The mutant proteins bound c-myc RNA equally well as wild-type (WT) APE1, with the exception of H309N, suggesting that most of these residues contributed primarily to RNA catalysis and not to RNA binding. Interestingly, both the endoribonuclease and the ssRNA AP site cleavage activities of WT APE1 were present in the absence of Mg2+, while ssDNA AP site cleavage required Mg2+ (optimally at 0.5-2.0 mM). We also found that a 2′-OH on the sugar moiety was absolutely required for RNA cleavage by WT APE1, consistent with APE1 leaving a 3′-PO42− group following cleavage of RNA. Altogether, our data support the notion that a common active site is shared for the endoribonuclease and other nuclease activities of APE1; however, we provide evidence that the mechanisms for cleaving RNA, abasic single-stranded RNA, and abasic DNA by APE1 are not identical, an observation that has implications for unraveling the endoribonuclease function of APE1 in vivo.  相似文献   

5.
Non-coding apurinic/apyrimidinic (AP) sites are generated at high frequency in genomic DNA via spontaneous hydrolytic, damage-induced or enzyme-mediated base release. AP endonuclease 1 (APE1) is the predominant mammalian enzyme responsible for initiating removal of mutagenic and cytotoxic abasic lesions as part of the base excision repair (BER) pathway. We have examined here the ability of wild-type (WT) and a collection of variant/mutant APE1 proteins to cleave at an AP site within a nucleosome core particle. Our studies indicate that, in comparison to the WT protein and other variant/mutant enzymes, the incision activity of the tumor-associated variant R237C and the rare population variant G241R are uniquely hypersensitive to nucleosome complexes in the vicinity of the AP site. This defect appears to stem from an abnormal interaction of R237C and G241R with abasic DNA substrates, but is not simply due to a DNA binding defect, as the site-specific APE1 mutant Y128A, which displays markedly reduced AP-DNA complex stability, did not exhibit a similar hypersensitivity to nucleosome structures. Notably, this incision defect of R237C and G241R was observed on a pre-assembled DNA glycosylase·AP-DNA complex as well. Our results suggest that the BER enzyme, APE1, has acquired distinct surface residues that permit efficient processing of AP sites within the context of protein-DNA complexes independent of classic chromatin remodeling mechanisms.  相似文献   

6.
Human 8-oxoguanine-DNA glycosylase (OGG1) is the main human base excision protein that removes a mutagenic lesion 8-oxoguanine (8-oxoG) from DNA. Since OGG1 has DNA glycosylase and weak abasic site (AP) lyase activities and is characterized by slow product release, turnover of the enzyme acting alone is low. Recently it was shown that human AP endonuclease (APE1) enhances the activity of OGG1. This enhancement was proposed to be passive, resulting from APE1 binding to or cleavage of AP sites after OGG1 dissociation. Here we present evidence that APE1 could actively displace OGG1 from its product, directly increasing the turnover of OGG1. We have observed that APE1 forms an electrophoretically detectable complex with OGG1 cross-linked to DNA by sodium borohydride. Using oligonucleotide substrates with a single 8-oxoG residue located in their 5'-terminal, central or 3'-terminal part, we have demonstrated that OGG1 activity does not increase only for the first of these three substrates, indicating that APE1 interacts with the DNA stretch 5' to the bound OGG1 molecule. In kinetic experiments, APE1 enhanced the product release constant but not the rate constant of base excision by OGG1. Moreover, OGG1 bound to a tetrahydrofuran analog of an abasic site stimulated the activity of APE1 on this substrate. Using a concatemeric DNA substrate, we have shown that APE1 likely displaces OGG1 in a processive mode, with OGG1 remaining on DNA but sliding away in search for a new lesion. Altogether, our data support a model in which APE1 specifically recognizes an OGG1/DNA complex, distorts a stretch of DNA 5' to the OGG1 molecule, and actively displaces the glycosylase from the lesion.  相似文献   

7.
Human AP endonuclease 1 (APE1, REF1) functions within the base excision repair pathway by catalyzing the hydrolysis of the phosphodiester bond 5 ' to a baseless sugar (apurinic or apyrimidinic site). The AP endonuclease activity of this enzyme and two active site mutants were characterized using equilibrium binding and pre-steady-state kinetic techniques. Wild-type APE1 is a remarkably potent endonuclease and highly efficient enzyme. Incision 5 ' to AP sites is so fast that a maximal single-turnover rate could not be measured using rapid mixing/quench techniques and is at least 850 s(-1). The entire catalytic cycle is limited by a slow step that follows chemistry and generates a steady-state incision rate of about 2 s(-1). Site-directed mutation of His-309 to Asn and Asp-210 to Ala reduced the single turnover rate of incision 5 ' to AP sites by at least 5 orders of magnitude such that chemistry (or a step following DNA binding and preceding chemistry) and not a step following chemistry became rate-limiting. Our results suggest that the efficiency with which APE1 can process an AP site in vivo is limited by the rate at which it diffuses to the site and that a slow step after chemistry may prevent APE1 from leaving the site of damage before the next enzyme arrives to continue the repair process.  相似文献   

8.
The major human AP endonuclease APE1 (HAP1, APEX, Ref1) initiates the repair of abasic sites generated either spontaneously, from attack of bases by free radicals, or during the course of the repair of damaged bases. APE1 therefore plays a central role in the base excision repair (BER) pathway. We report here that XRCC1, another essential protein involved in the maintenance of genome stability, physically interacts with APE1 and stimulates its enzymatic activities. A truncated form of APE1, lacking the first 35 amino acids, although catalytically proficient, loses the affinity for XRCC1 and is not stimulated by XRCC1. Chinese ovary cell lines mutated in XRCC1 have a diminished capacity to initiate the repair of AP sites. This defect is compensated by the expression of XRCC1. XRCC1, acting as both a scaffold and a modulator of the different activities involved in BER, would provide a physical link between the incision and sealing steps of the AP site repair process. The interaction described extends the coordinating role of XRCC1 to the initial step of the repair of DNA abasic sites.  相似文献   

9.
Base loss is common in cellular DNA, resulting from spontaneous degradation and enzymatic removal of damaged bases. Apurinic/apyrimidinic (AP) endonucleases recognize and cleave abasic (AP) sites during base excision repair (BER). APE1 (REF1, HAP1) is the predominant AP endonuclease in mammalian cells. Here we analyzed the influences of APE1 on the human BER pathway. Specifically, APE1 enhanced the enzymatic activity of both flap endonuclease1 (FEN1) and DNA ligase I. FEN1 was stimulated on all tested substrates, regardless of flap length. Interestingly, we have found that APE1 can also inhibit the activities of both enzymes on substrates with a tetrahydrofuran (THF) residue on the 5'-downstream primer of a nick, simulating a reduced abasic site. However once the THF residue was displaced at least a single nucleotide, stimulation of FEN1 activity by APE1 resumes. Stimulation of DNA ligase I required the traditional nicked substrate. Furthermore, APE1 was able to enhance overall product formation in reconstitution of BER steps involving FEN1 cleavage followed by ligation. Overall, APE1 both stimulated downstream components of BER and prevented a futile cleavage and ligation cycle, indicating a far-reaching role in BER.  相似文献   

10.
The methodology of determination of the thermodynamic parameters of fast stages of recognition and cleavage of DNA substrates is described for the enzymatic processes catalyzed by DNA glycosylases Fpg and hOGG1 and AP endonuclease APE1 during base excision repair (BER) pathway. For this purpose, stopped-flow pre-steady-state kinetic analysis of tryptophan fluorescence intensity changes in proteins and fluorophores in DNA substrates was performed at various temperatures. This approach made it possible to determine the changes of standard Gibbs free energy, enthalpy, and entropy of sequential steps of DNA-substrate binding, as well as activation enthalpy and entropy for the transition complex formation of the catalytic stage. The unified features of mechanism for search and recognition of damaged DNA sites by various enzymes of the BER pathway were discovered.  相似文献   

11.
HAP1, also known as APE/Ref-1, is the major apurinic/apyrimidinic (AP) endonuclease in human cells. Previous structural studies have suggested a possible role for the Asp-210 residue of HAP1 in the enzymatic function of this enzyme. Here, we demonstrate that substitution of Asp-210 by Asn or Ala eliminates the AP endonuclease activity of HAP1, while substitution by Glu reduces specific activity ~500-fold. Nevertheless, these mutant proteins still bind efficiently to oligonucleotides containing either AP sites or the chemically unrelated bulky p-benzoquinone (pBQ) derivatives of dC, dA and dG, all of which are substrates for HAP1. These results indicate that Asp-210 is required for catalysis, but not substrate recognition, consistent with enzyme kinetic data indicating that the HAP1–D210E protein has a 3000-fold reduced Kcat for AP site cleavage, but an unchanged Km. Through analysis of the binding of Asp-210 substitution mutants to oligonucleotides containing either an AP site or a pBQ adduct, we conclude that the absence of Asp-210 allows the formation of a stable HAP1–substrate complex that exists only transiently during the catalytic cycle of wild-type HAP1 protein. We interpret these data in the context of the structure of the HAP1 active site and the recently determined co-crystal structure of HAP1 bound to DNA substrates.  相似文献   

12.
In order to elucidate the mechanism of AP site recognition by Echerichia coli exonuclease III (exoIII), site-directed mutagenesis of the Tyr109, the Trp212, and the Phe213 residues, which were conserved in the type II AP endonuclease from various organisms and located in the vicinity of the catalytic site, was performed. The exoIII-W212S mutant lacked any detectable AP endonuclease activity and binding ability to the duplex DNA containing an AP site, while the exoIII-Y109S and exoIII-F213W mutants retained a low level of activities (13% and 83%, respectively, compared with wild-type exoIII). This study suggests that the Trp212 is an important component for abasic site recognition by the E. coli exonuclease III.  相似文献   

13.
The mechanisms by which AP endonucleases recognize AP sites have not yet been determined. Based on our previous study with Escherichia coli exonuclease III (ExoIII), the ExoIII family AP endonucleases probably recognize the DNA-pocket formed at an AP site. The indole ring of a conserved tryptophan residue in the vicinity of the catalytic site presumably intercalates into this pocket. To test this hypothesis, we constructed a series of mutants of ExoIII and human APE1. Trp-212 of ExoIII and Trp-280 of APE1 were critical to the AP endonuclease activity and binding to DNA containing an AP site. To confirm the ability of the tryptophan residue to intercalate with the AP site, we examined the interaction between an oligopeptide containing a tryptophan residue and an oligonucleotide containing AP sites, using spectrofluorimetry and surface plasmon resonance (SPR) technology. The tryptophan residue of the oligopeptide specifically intercalated into an AP site of DNA. The tryptophan residue in the vicinity of the catalytic site of the ExoIII family AP endonucleases plays a key role in the recognition of AP sites.  相似文献   

14.
The mammalian apurinic/apyrimidinic (AP) endonuclease (APE1) is a multifunctional protein that plays essential roles in DNA repair and gene regulation. We decomposed the APEs into 12 blocks of highly conserved sequence and structure (molegos). This analysis suggested that residues in molegos common to all APEs, but not to the less specific nuclease, DNase I, would dictate enhanced binding to damaged DNA. To test this hypothesis, alanine was substituted for N226 and N229, which form hydrogen bonds to the DNA backbone 3' of the AP sites in crystal structures of the APE1/DNA complex. While the cleavage rate at AP sites of both N226A and N229A mutants increased, their ability to bind to damaged DNA decreased. The ability of a double mutant (N226A/N229A) to bind damaged DNA was further decreased, while the V(max) was almost identical to that of the wild-type APE1. A double mutant at N226 and R177, a residue that binds to the same phosphate as N229, had a significantly decreased activity and substrate binding. As the affinity for product DNA was decreased in all the mutants, the enhanced reaction rate of the single mutants could be due to alleviation of product inhibition of the enzyme. We conclude that hydrogen bonds to phosphate groups 3' to the cleavage site is essential for APE1's binding to the product DNA, which may be necessary for efficient functioning of the base excision repair pathway. The results indicate that the molego analysis can aid in the redesign of proteins with altered binding affinity and activity.  相似文献   

15.
Repetitive DNA sequences, such as those present in microsatellites and minisatellites, telomeres, and trinucleotide repeats (linked to fragile X syndrome, Huntington disease, etc.), account for nearly 30% of the human genome. These domains exhibit enhanced susceptibility to oxidative attack to yield base modifications, strand breaks, and abasic sites; have a propensity to adopt non-canonical DNA forms modulated by the positions of the lesions; and, when not properly processed, can contribute to genome instability that underlies aging and disease development. Knowledge on the repair efficiencies of DNA damage within such repetitive sequences is therefore crucial for understanding the impact of such domains on genomic integrity. In the present study, using strategically designed oligonucleotide substrates, we determined the ability of human apurinic/apyrimidinic endonuclease 1 (APE1) to cleave at apurinic/apyrimidinic (AP) sites in a collection of tandem DNA repeat landscapes involving telomeric and CAG/CTG repeat sequences. Our studies reveal the differential influence of domain sequence, conformation, and AP site location/relative positioning on the efficiency of APE1 binding and strand incision. Intriguingly, our data demonstrate that APE1 endonuclease efficiency correlates with the thermodynamic stability of the DNA substrate. We discuss how these results have both predictive and mechanistic consequences for understanding the success and failure of repair protein activity associated with such oxidatively sensitive, conformationally plastic/dynamic repetitive DNA domains.  相似文献   

16.
Our genomic DNA is endlessly exposed to a wide variety of exogenous and endogenous DNA-damaging agents. One of the most abundant DNA lesions is an apurinic/apyrimidinic (AP) site, which in vivo, can form spontaneously or through various cellular pathways, including the repair activity of DNA glycosylase enzymes (Wilson & Barsky, 2001). Persistence of these AP sites is both highly mutagenic and cytotoxic to the cell (Loeb & Preston, 1986). AP endonuclease 1 (APE1), an Mg2+ dependent enzyme, is the major human endonuclease responsible for incising the DNA backbone at AP sites. Repair to canonical duplex DNA is then completed by DNA polymerase and DNA ligase. Recently, APE1, in conjunction with delivery of DNA-damaging agents, has become a target for chemotherapeutic research with the aim to inhibit APE1 activity (Fishel & Kelley, 2007). Therefore, an understanding of APE1 activity and its molecular mechanism is essential. In vitro, the authentic AP site is highly unstable and can undergo β-elimination, leading to a strand break (Strauss, Beard, Patterson & Wilson, 1997). Due to the fragility of the AP site, stable AP site analogs, such as the reduced AP site or tetrahydrofuran (THF) site, are typically used to study APE1 (Maher & Bloom, 2007; Strauss, Beard, Patterson & Wilson, 1997). In this work, we have performed the first comprehensive kinetic study of APE1 acting on the authentic AP site as well the reduced AP site and THF AP site analog. Transient-state kinetic experiments reveal that the strand incision chemistry step is fast, upwards of ~700?s?1 for all substrates, making APE1 one of the fastest DNA repair enzymes. Steady-state kinetic experiments reveal for each substrate, a slow, post chemistry step limits the steady-state rate. The steady-state rate for APE1 acting on authentic AP and AP-Red substrates is highly dependent on Mg2+ concentration, while the steady-state rate for THF site was not dependent on Mg2+ concentration. This comprehensive kinetic analysis reveal differences and similarities in the way APE1 processes the authentic AP site compared to AP site analogs. Furthermore, these differences require consideration when choosing AP site analogs to study APE1.  相似文献   

17.
The base excision repair pathway removes damaged DNA bases and resynthesizes DNA to replace the damage. Human alkyladenine DNA glycosylase (AAG) is one of several damage-specific DNA glycosylases that recognizes and excises damaged DNA bases. AAG removes primarily damaged adenine residues. Human AP endonuclease 1 (APE1) recognizes AP sites produced by DNA glycosylases and incises the phophodiester bond 5' to the damaged site. The repair process is completed by a DNA polymerase and DNA ligase. If not tightly coordinated, base excision repair could generate intermediates that are more deleterious to the cell than the initial DNA damage. The kinetics of AAG-catalyzed excision of two damaged bases, hypoxanthine and 1,N6-ethenoadenine, were measured in the presence and absence of APE1 to investigate the mechanism by which the base excision activity of AAG is coordinated with the AP incision activity of APE1. 1,N6-ethenoadenine is excised significantly slower than hypoxanthine and the rate of excision is not affected by APE1. The excision of hypoxanthine is inhibited to a small degree by accumulated product, and APE1 stimulates multiple turnovers by alleviating product inhibition. These results show that APE1 does not significantly affect the kinetics of base excision by AAG. It is likely that slow excision by AAG limits the rate of AP site formation in vivo such that AP sites are not created faster than can be processed by APE1.  相似文献   

18.
Apurinic/apyrimidinic (AP) endonuclease 1 (APE1) is the primary enzyme in mammals for the repair of abasic sites in DNA, as well as a variety of 3' damages that arise upon oxidation or as products of enzymatic processing. If left unrepaired, APE1 substrates can promote mutagenic and cytotoxic outcomes. We describe herein a dominant-negative form of APE1 that lacks detectable nuclease activity and binds substrate DNA with a 13-fold higher affinity than the wild-type protein. This mutant form of APE1, termed ED, possesses two amino acid substitutions at active site residues Glu(96) (changed to Gln) and Asp(210) (changed to Asn). In vitro biochemical assays reveal that ED impedes wild-type APE1 AP site incision function, presumably by binding AP-DNA and blocking normal lesion processing. Moreover, tetracycline-regulated (tet-on) expression of ED in Chinese hamster ovary cells enhances the cytotoxic effects of the laboratory DNA-damaging agents, methyl methanesulfonate (MMS; 5.4-fold) and hydrogen peroxide (1.5-fold). This MMS-induced, ED-dependent cell killing coincides with a hyperaccumulation of AP sites, implying that excessive DNA damage is the cause of cell death. Because an objective of the study was to identify a protein reagent that could be used in targeted gene therapy protocols, the effects of ED on cellular sensitivity to a number of chemotherapeutic compounds was tested. We show herein that ED expression sensitizes Chinese hamster ovary cells to the killing effects of the alkylating agent 1,3-bis(2-chloroethyl)-1-nitrosourea (also known as carmustine) and the chain terminating nucleoside analogue dideoxycytidine (also known as zalcitabine), but not to the radiomimetic bleomycin, the nucleoside analogue beta-D-arabinofuranosylcytosine (also known as cytarabine), the topoisomerase inhibitors camptothecin and etoposide, or the cross-linking agents mitomycin C and cisplatin. Transient expression of ED in the human cancer cell line NCI-H1299 enhanced cellular sensitivity to MMS, 1,3-bis(2-chloroethyl)-1-nitrosourea, and dideoxycytidine, demonstrating the potential usefulness of this strategy in the treatment of human tumors.  相似文献   

19.
Ape1, the major protein responsible for excising apurinic/apyrimidinic (AP) sites from DNA, cleaves 5' to natural AP sites via a hydrolytic reaction involving Mg2+. We report here that while Ape1 incision of the AP site analog tetrahydrofuran (F-DNA) was approximately 7300-fold reduced in 4 mM EDTA relative to Mg2+, cleavage of ethane (E-DNA) and propane (P-DNA) acyclic abasic site analogs was only 20 and 30-fold lower, respectively, in EDTA compared to Mg2+. This finding suggests that the primary role of the metal ion is to promote a conformational change in the ring-containing abasic DNA, priming it for enzyme-mediated hydrolysis. Mutating the proposed metal-coordinating residue E96 to A or Q resulted in a approximately 600-fold reduced incision activity for both P and F-DNA in Mg2+compared to wild-type. These mutants, while retaining full binding activity for acyclic P-DNA, were unable to incise this substrate in EDTA, pointing to an alternative or an additional function for E96 besides Mg2+-coordination. Other residues proposed to be involved in metal coordination were mutated (D70A, D70R, D308A and D308S), but displayed a relatively minor loss of incision activity for F and P-DNA in Mg2+, indicating a non-essential function for these amino acid residues. Mutations at Y171 resulted in a 5000-fold reduced incision activity. A Y171H mutant was fourfold less active than a Y171F mutant, providing evidence that Y171 does not operate as the proton donor in catalysis and that the additional role of E96 may be in establishing the appropriate active site environment via a hydrogen-bonding network involving Y171. D210A and D210N mutant proteins exhibited a approximately 25,000-fold reduced incision activity, indicating a critical role for this residue in the catalytic reaction. A D210H mutant was 15 to 20-fold more active than the mutants D210A or D210N, establishing that D210 likely operates as the leaving group proton donor.  相似文献   

20.
The major enzyme in eukaryotic cells that catalyzes the cleavage of apurinic/apyrimidinic (AP or abasic) sites is AP endonuclease 1 (APE1) that cleaves the phosphodiester bond on the 5′-side of AP sites. We found that the efficiency of AP site cleavage by APE1 was affected by the benzo[a]pyrenyl-DNA adduct (BPDE-dG) in the opposite strand. AP sites directly opposite of the modified dG or shifted toward the 5′ direction were hydrolyzed by APE1 with an efficiency moderately lower than the AP site in the control DNA duplex, whereas AP sites shifted toward the 3′ direction were hydrolyzed significantly less efficiently. For all DNA structures except DNA with the AP site shifted by 3 nucleotides in the 3′ direction (AP+3-BP-DNA), hydrolysis was more efficient in the case of (+)-trans-BPDE-dG. Using molecular dynamic simulation, we have shown that in the complex of APE1 with the AP+3-BP-DNA, the BP residue is located within the DNA bend induced by APE1 and contacts the amino acids in the enzyme catalytic center and the catalytic metal ion. The geometry of the APE1 active site is perturbed more significantly by the trans-isomer of BPDE-dG that intercalates into the APE1-DNA complex near the cleaved phosphodiester bond. The ability of DNA polymerases β (Polβ), λ and ι to catalyze gap-filling synthesis in cooperation with APE1 was also analyzed. Polβ was shown to inhibit the 3′  5′ exonuclease activity of APE1 when both enzymes were added simultaneously and to insert the correct nucleotide into the gap arising after AP site hydrolysis. Therefore, further evidence for the functional cooperation of APE1 and Polβ in base excision repair was obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号