首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of iron on the activity of the plasma membrane H(+)-ATPase (PMA) from corn root microsomal fraction (CRMF) was investigated. In the presence of either Fe(2+) or Fe(3+) (100-200 microM of FeSO(4) or FeCl(3), respectively), 80-90% inhibition of ATP hydrolysis by PMA was observed. Half-maximal inhibition was attained at 25 microM and 50 microM for Fe(2+) and Fe(3+), respectively. Inhibition of the ATPase activity was prevented in the presence of metal ion chelators such as EDTA, deferoxamine or o-phenanthroline in the incubation medium. However, preincubation of CRMF in the presence of 100 microM Fe(2+), but not with 100 microM Fe(3+), rendered the ATPase activity (measured in the presence of excess EDTA) irreversibly inhibited. Inhibition was also observed using a preparation further enriched in plasma membranes by gradient centrifugation. Addition of 0.5 mM ATP to the preincubation medium, either in the presence or in the absence of 5 mM MgCl(2), reduced the extent of irreversible inhibition of the H(+)-ATPase. Addition of 40 microM butylated hydroxytoluene and/or 5 mM dithiothreitol, or deoxygenation of the incubation medium by bubbling a stream of argon in the solution, also caused significant protection of the ATPase activity against irreversible inhibition by iron. Western blots of CRMF probed with a polyclonal antiserum against the yeast plasma membrane H(+)-ATPase showed a 100 kDa cross-reactive band, which disappeared in samples previously exposed to 500 microM Fe(2+). Interestingly, preservation of the 100 kDa band was observed when CRMF were exposed to Fe(2+) in the presence of either 5 mM dithiothreitol or 40 microM butylated hydroxytoluene. These results indicate that iron causes irreversible inhibition of the corn root plasma membrane H(+)-ATPase by oxidation of sulfhydryl groups of the enzyme following lipid peroxidation.  相似文献   

2.
J Pnitz  W Roos 《Journal of bacteriology》1994,176(17):5429-5438
Hyphal cells of three fungal species of the genus Penicillium reduced the nonpermeable, external electron acceptor hexabromoiridate IV (HBI IV). In Penicillium cyclopium, the rate of HBI IV reduction by hyphal cells was drastically increased by the addition of beta-glucose. The stimulation showed high specificity for this sugar and did not require its uptake and cellular metabolism. Cell wall oxidases (e.g., glucose oxidase) did not seem to be involved in the reduction of HBI IV, as no measurable H2O2 was formed from added glucose and removal of oxygen had no effect. We propose that there is a glucose-binding component outside the plasma membrane which controls transmembrane electron fluxes in response to external glucose. Reduction of HBI IV was accompanied by rapid acidification of the cellular interior (measured by confocal pH topography). Subsequently, the outer medium was acidified of the cellular interior (measured by confocal pH topography). Subsequently, the outer medium was acidified with an e-/H+ stoichiometry of > 1. In plasma membrane vesicles containing endogenous electron donors, the membrane-residing fluoroprobe Di-8-ANEPPS reported a transient depolarization of the membrane potential triggered by the external electron acceptor. Inhibitors of ATP-dependent proton pumping enhanced the extent of this depolarization, inhibited the subsequent normalization of membrane potential, and, in whole cells, reduced the amount of redox-triggered proton extrusion. From these and other findings, it is concluded that the observed trans-plasma membrane redox process activates the H(+)-ATPase via membrane depolarization and cytosolic acidification.  相似文献   

3.
Although aluminum (AL) toxicity has been widely studied in monocotyledonous crop plants, the mechanism of Al impact on economically important dicotyledonous plants is poorly understood. Here, we report the spatial pattern of Al-induced root growth inhibition, which is closely associated with inhibition of H(+)-ATPase activity coupled with decreased surface negativity of plasma membrane (PM) vesicles isolated from apical 5-mm root segments of squash (Cucurbita pepo L. cv Tetsukabuto) plants. High-sensitivity growth measurements indicated that the central elongation zone, located 2 to 4 mm from the tip, was preferentially inhibited where high Al accumulation was found. The highest positive shifts (depolarization) in zeta potential of the isolated PM vesicles from 0- to 5-mm regions of Al-treated roots were corresponded to pronounced inhibition of H(+)-ATPase activity. The depolarization of PM vesicles isolated from Al-treated roots in response to added Al in vitro was less than that of control roots, suggesting, particularly in the first 5-mm root apex, a tight Al binding to PM target sites or irreversible alteration of PM properties upon Al treatment to intact plants. In line with these data, immunolocalization of H(+)-ATPase revealed decreases in tissue-specific H(+)-ATPase in the epidermal and cortex cells (2--3 mm from tip) following Al treatments. Our report provides the first circumstantial evidence for a zone-specific depolarization of PM surface potential coupled with inhibition of H(+)-ATPase activity. These effects may indicate a direct Al interaction with H(+)-ATPase from the cytoplasmic side of the PM.  相似文献   

4.
5.
The hydrophobic, photoactivatable probe TID [3-trifluoromethyl-3-(m-[125I]iodophenyl)diazirine] was used to label the plasma membrane H(+)-ATPase from Saccharomyces cerevisiae. The H(+)-ATPase accounted for 43% of the total label associated with plasma membrane protein and incorporated 0.3 mol of [125I]TID per mol of 100 kDa polypeptide. The H(+)-ATPase was purified by octyl glucoside extraction and glycerol gradient centrifugation, and was cleaved by either cyanogen bromide digestion or limited tryptic proteolysis to isolate labeled fragments. Cyanogen bromide digestion resulted in numerous labeled fragments of mass less than 21 kDa. Seven fragments suitable for microsequence analysis were obtained by electrotransfer to poly(vinylidene difluoride) membranes. Five different regions of amino-acid sequence were identified, including fragments predicted to encompass both membrane-spanning and cytoplasmic protein structure domains. Most of the labeling of the cytoplasmic domain was concentrated in a region comprising amino acids 347 to 529. This catalytic region contains the site of phosphorylation and was previously suggested to be hydrophobic in character (Goffeau, A. and De Meis, L. (1990) J. Biol. 265, 15503-15505). Complementary labeling information was obtained from an analysis of limited tryptic fragments enriched for hydrophobic character. Six principal labeled fragments, of 29.6, 20.6, 16, 13.1, 11.4 and 9.7 kDa, were obtained. These fragments were found to comprise most of the putative transmembrane region and a portion of the cytoplasmic region that overlapped with the highly labeled active site-containing cyanogen bromide fragment. Overall, the extensive labeling of protein structure domains known to lie outside the bilayer suggests that [125I]TID labeling patterns cannot be unambiguously interpreted for the purpose of discerning membrane-embedded protein structure domains. It is proposed that caution should be applied in the interpretation of [125I]TID labeling patterns of the yeast plasma membrane H(+)-ATPase and that new and diverse approaches should be developed to provide a more definitive topology model.  相似文献   

6.
A novel system for generating large interior positive membrane potentials in proteoliposomes was used to examine the effects of membrane voltage on reconstituted plasma membrane H(+)-ATPase from Saccharomyces cerevisiae. The membrane potential-generating system was dependent upon the lipophilic electron carrier tetracyanoquinodimethane, located within the bilayer, to mediate electron flow from vesicle entrapped ascorbate to external K3Fe(CN)6. Membrane potential formation was followed by the potential-dependent probe oxonol V and was found to rapidly reach a steady-state which lasted at least 90 s. A membrane potential of approximately 254 mV was determined under optimal conditions and ATP hydrolysis by wild-type H(+)-ATPase was inhibited from 34 to 46% under these conditions. In contrast, membrane potential had little effect on pma1-105 mutant enzyme suggesting that it is defective in electrogenic proton translocation. Applied membrane voltage was also found to alter the sensitivity of wild-type enzyme to vanadate at concentrations less than 50 microM. These data suggest a coupling between the charge-transfer and ATP hydrolysis domains and establish a solid basis for future probing of the electrogenic properties of the yeast H(+)-ATPase.  相似文献   

7.
To investigate the mechanism by which fusicoccin (FC) induces the activation of the plasma membrane (PM) H(+)-ATPase, we used phenylarsine oxide (PAO), a known inhibitor of protein tyrosine-phosphatases. PAO was supplied in vivo in the absence or presence of FC to radish (Raphanus sativus L.) seedlings and cultured Arabidopsis cells prior to PM extraction. Treatment with PAO alone caused a slight decrease of PM H(+)-ATPase activity and, in radish, a decrease of PM-associated 14-3-3 proteins. When supplied prior to FC, PAO drastically inhibited FC-induced activation of PM H(+)-ATPase, FC binding to the PM, and the FC-induced increase of the amount of 14-3-3 associated with the PM. On the contrary, PAO was completely ineffective on all of the above-mentioned parameters when supplied after FC. The H(+)-ATPase isolated from PAO-treated Arabidopsis cells maintained the ability to respond to FC if supplied with exogenous, nonphosphorylated 14-3-3 proteins. Altogether, these results are consistent with a model in which the dephosphorylated state of tyrosine residues of a protein(s), such as 14-3-3 protein, is required to permit FC-induced association between the 14-3-3 protein and the PM H(+)-ATPase.  相似文献   

8.
The specific properties and characteristics of the H+-ATPase, lipid and fatty acids content and composition in plasma membrane vesicles isolated from pea seedlings grown under clinorotation (2 rev/min) and stationary conditions were studied.  相似文献   

9.
10.
The effect of external inorganic nitrogen and K+ content on K+ uptake from low-K+ solutions and plasma membrane (PM) H+-ATPase activity of sorghum roots was studied. Plants were grown for 15 days in full-nutrient solutions containing 0.2 or 1.4 mM K+ and inorganic nitrogen as NO3-, NO3-/NH4+ or NH4+ and then starved of K+ for 24, 48 and 72 h. NH4+ in full nutrient solution significantly affected the uptake efficiency and accumulation of K+, and this effect was less pronounced at the high K+ concentration. In contrast, the translocation rate of K+ to the shoot was not altered. Depletion assays showed that plants grown with NH4+ more efficiently depleted the external K+ and reached higher initial rates of low-K+ uptake than plants grown with NO3-. One possible influence of K+ content of shoot, but not of roots, on K+ uptake was evidenced. Enhanced K+-uptake capacity was correlated with the induction of H+ extrusion by PM H+-ATPase. In plants grown in high K+ solutions, the increase in the active H+ gradient was associated with an increase of the PM H+-ATPase protein concentration. In contrast, in plants grown in solutions containing 0.2 mM K+, only the initial rate of H+-pumping and ATP hydrolysis were affected. Under these conditions, two specific isoforms of PM H+-ATPase were detected, independent of the nitrogen source and deficiency period. No change in enzyme activity was observed in NO3--grown plants. The results suggest that K+ homeostasis in NH4+-grown sorghum plants may be regulated by a high capacity for K+ uptake, which is dependent upon the H+-pumping activity of PM H+-ATPase.  相似文献   

11.
12.
The plant plasma membrane H(+)-ATPase: structure, function and regulation   总被引:1,自引:0,他引:1  
The proton-pumping ATPase (H(+)-ATPase) of the plant plasma membrane generates the proton motive force across the plasma membrane that is necessary to activate most of the ion and metabolite transport. In recent years, important progress has been made concerning the identification and organization of H(+)-ATPase genes, their expression, and also the kinetics and regulation of individual H(+)-ATPase isoforms. At the gene level, it is now clear that H(+)-ATPase is encoded by a family of approximately 10 genes. Expression, monitored by in situ techniques, has revealed a specific distribution pattern for each gene; however, this seems to differ between species. In the near future, we can expect regulatory aspects of gene expression to be elucidated. Already the expression of individual plant H(+)-ATPases in yeast has shown them to have distinct enzymatic properties. It has also allowed regulatory aspects of this enzyme to be studied through random and site-directed mutagenesis, notably its carboxy-terminal region. Studies performed with both plant and yeast material have converged towards deciphering the way phosphorylation and binding of regulatory 14-3-3 proteins intervene in the modification of H(+)-ATPase activity. The production of high quantities of individual functional H(+)-ATPases in yeast constitutes an important step towards crystallization studies to derive structural information. Understanding the specific roles of H(+)-ATPase isoforms in whole plant physiology is another challenge that has been approached recently through the phenotypic analysis of the first transgenic plants in which the expression of single H(+)-ATPases has been up- or down-regulated. In conclusion, the progress made recently concerning the H(+)-ATPase family, at both the gene and protein level, has come to a point where we can now expect a more integrated investigation of the expression, function and regulation of individual H(+)-ATPases in the whole plant context.  相似文献   

13.
More than 11 different P-type H(+)-ATPases have been identified in Arabidopsis by DNA cloning. The subcellular localization for individual members of this proton pump family has not been previously determined. We show by membrane fractionation and immunocytology that a subfamily of immunologically related P-type H(+)-ATPases, including isoforms AHA2 and AHA3, are primarily localized to the plasma membrane. To verify that AHA2 and AHA3 are both targeted to the plasma membrane, we added epitope tags to their C-terminal ends and expressed them in transgenic plants. Both tagged isoforms localized to the plasma membrane, as indicated by aqueous two-phase partitioning and sucrose density gradients. In contrast, a truncated AHA2 (residues 1-193) did not, indicating that the first two transmembrane domains alone are not sufficient for plasma membrane localization. Two epitope tags were evaluated: c-myc, a short, 11-amino acid sequence, and beta-glucuronidase (GUS), a 68-kD protein. The c-myc tag is recommended for its sensitivity and specific immunodetection. GUS worked well as an epitope tag when transgenes were expressed at relatively high levels (e.g. with AHA2-GUS944); however, evidence suggests that GUS activity may be inhibited when a GUS domain is tethered to an H(+)-ATPase complex. Nevertheless, the apparent ability to localize a GUS protein to the plasma membrane indicates that a P-type H(+)-ATPase can be used as a delivery vehicle to target large, soluble proteins to the plasma membrane.  相似文献   

14.
Subunit composition of vacuolar membrane H(+)-ATPase from mung bean   总被引:11,自引:0,他引:11  
The vacuolar H(+)-ATPase from mung bean hypocotyls was solubilized from the membrane with lysophosphatidycholine and purified by QAE-Toyopearl column chromatography. The purified ATPase was active only in the presence of exogenous phospholipid and was inhibited by nitrate, dicyclohexyl carbodiimide and Triton X-100, but not by vanadate or azide. Dodecyl sulfate/polyacrylamide gel electrophoresis of the purified ATPase yielded ten polypeptides of molecular masses of 68 kDa, 57 kDa, 44 kDa, 43 kDa, 38 kDa, 37 kDa 32 kDa, 16 kDa, 13 kDa and 12 kDa. All polypeptides remained in the peak activity fraction after glycerol density gradient centrifugation. Nine of them, excluding the 43-kDa polypeptide, comigrated in a polyacrylamide gradient gel in the presence of 0.1% Triton X-100. The 16-kDa polypeptide could be labeled with [14C]dicyclohexylcarbodiimide. The amino-terminal amino acid sequence of the isolated 68-kDa polypeptide generally agreed with that deduced from the cDNA for the carrot 69-kDa subunit [Zimniak, L., Dittrich, P., Gogarten, J. P., Kibak, H. & Taiz, L. (1988) J. Biol. Chem. 263, 9102-9112]. Thus, mung bean vacuolar H(+)-ATPase seems to consist of nine distinct subunits.  相似文献   

15.
The crystal structures of the Ca(2+)- and H(+)-ATPases shed light into the membrane embedded domains involved in binding and ion translocation. Consistent with site-directed mutagenesis, these structures provided additional evidence that membrane-spanning segments M4, M5, M6 and M8 are the core through which cations are pumped. In the present study, we have used alanine/serine scanning mutagenesis to study the structure-function relationships within M6 (Leu-721-Pro-742) of the yeast plasma membrane ATPase. Of the 22 mutants expressed and analyzed in secretory vesicles, alanine substitutions at two well conserved residues (Asp-730 and Asp-739) led to a complete block in biogenesis; in the mammalian P-ATPases, residues corresponding to Asp-730 are part of the cation-binding domain. Two other mutants (V723A and I736A) displayed a dramatic 20-fold increase in the IC(50) for inorganic orthovanadate compared to the wild-type control, accompanied by a significant reduction in the K(m) for Mg-ATP, and an alkaline shift in the pH optimum for ATP hydrolysis. This behavior is apparently due to a shift in equilibrium from the E(2) conformation of the ATPase towards the E(1) conformation. By contrast, the most striking mutants lying toward the extracellular side in a helical structure (L721A, I722A, F724A, I725A, I727A and F728A) were expressed in secretory vesicles but had a severe reduction of ATPase activity. Moreover, all of these mutants but one (F728A) were unable to support yeast growth when the wild-type chromosomal PMA1 gene was replaced by the mutant allele. Surprisingly, in contrast to M8 where mutations S800A and E803Q (Guerra et al., Biochim. Biophys. Acta 1768: 2383-2392, 2007) led to a dramatic increase in the apparent stoichiometry of H(+) transport, three substitutions (A726S, A732S and T733A) in M6 showed a reduction in the apparent coupling ratio. Taken together, these results suggest that M6 residues play an important role in protein stability and function, and probably are responsible for cation binding and stoichiometry of ion transport as suggested by homology modeling.  相似文献   

16.
One of the mechanisms through which some strategy I plants respond to Fe-deficiency is an enhanced acidification of the rhizosphere due to proton extrusion. It was previously demonstrated that under Fe-deficiency, a strong increase in the H(+)-ATPase activity of plasma membrane (PM) vesicles isolated from cucumber roots occurred. This result was confirmed in the present work and supported by measurement of ATP-dependent proton pumping in inside-out plasma membrane vesicles. There was also an attempt to clarify the regulatory mechanism(s) which lead to the activation of the H(+)-ATPase under Fe-deficiency conditions. Plasma membrane proteins from Fe-deficient roots submitted to immunoblotting using polyclonal antibodies showed an increased level in the 100 kDa polypeptide. When the plasma membrane proteins were treated with trypsin a 90 kDa band appeared. This effect was accompanied by an increase in the enzyme activity, both in the Fe-deficient and in the Fe-sufficient extracts. These results suggest that the increase in the plasma membrane H(+)-ATPase activity seen under Fe-deficiency is due, at least in part, to an increased steady-state level of the 100 kDa polypeptide.  相似文献   

17.
The influence of drought stress on the ATP and p-nitrophenyl phosphate (PNPP) hydrolysis activity by plasma membrane H+-ATPase was investigated using purified plasma membrane vesicles from wheat leaves by two-phase partitioning. Drought stress increased the ATPase activity, and the optimal pH was shifted from 6.5 to about 7.0. Drought stress also stimulated the PNPP hydrolysis rate. The Km for PNPP hydrolysis was moved from 4.49 ± 0.33 mM to 3.64 ± 0.12 mM. In addition, the PNPP hydrolysis was more sensitive to vanadate under drought compared to the control. However, the inhibitory effect of hydroxylamine on the ATPase was not changed by the present drought stress. In addtion, drought stress also decreased the trypsin activation of PNPP hydrolysis by PM H+-ATPase. These results suggested that drought stress altered the catalytic mechanism of the plasma membrane H+-ATPase, and the stimulation of its activity by drought stress was mainly due to increase of the catalytic activity of its phosphatase domain. It is also suggested that drought stress might alter the structure or property of the C-terminal end of PM H+-ATPase, therefore increasing the catalytic activity of the phosphatase domain.  相似文献   

18.
The stimulation of the plasma membrane (PM) H+-ATPase by boric acid was studied on a microsomal fraction (MF) obtained from ungerminated, boron-dependent pollen grains of Lilium longiflorum Thunb. which usually need boron for germination and tube growth. ATP hydrolysis and H+ transport activity increased by 14 and 18%, respectively, after addition of 2-4 mM boric acid. The optimum of boron stimulation was at pH 6.5-8.5 for ATP hydrolysis and at pH 6.5-7.5 for H+ transport. No boron stimulation was detected when vanadate was added to the MF, whereas an increase of 10-20% in ATP hydrolysis and H+ transport was still measured in the presence of inhibitors specific for V -type ATPase (nitrate and bafilomycin) and F-type ATPase (azide), respectively. A vanadate-sensitive increase in ATP hydrolysis activity was also observed in partially permeabilized vesicles (0.001%[w/v] Triton X-100) suggesting a direct interaction between borate and the PM H+-ATPase rather than a weak acid-induced stimulation. Additionally, we measured the effect of boron on membrane voltage (Vm) of ungerminated pollen grains and observed small hyperpolarizations in 48% of all experiments. Exposing pollen grains to a more acidic pH of 4 caused a depolarization, followed in some experiments by a repolarization (21%). In the presence of 2 mM boron such hyperpolarizations, perhaps caused by an enhanced activity of the H+-ATPase, were measured in 58% of all tested pollen grains. The effects of boron on Vm may be reduced by additional stimulation of a K+ inward current of opposite direction to the H+-ATPase. All experiments indicate that boron stimulates an electrogenic transport system in the plasma membrane which is sensitive to vanadate and has a pH optimum around 7, i.e. the plasma membrane H+-ATPase. A boron-increased PM H+-ATPase activity in turn may stimulate germination and growth of pollen tubes.  相似文献   

19.
Experiments were conducted to determine conditions essential for electrophoretic characterization of a detergent-extracted plasma membrane fraction from corn (Zea mays L.) roots. Sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis (PAGE) initially gave poor resolution of polypeptides in the plasma membrane fraction and, upon detergent treatment for purification of the proton-pumping adenosine triphosphatase (ATPase), showed no enrichment for a 100 kilodalton catalytic subunit characteristic of the ATPase. In contrast to SDS-PAGE, phenol urea acetic acid (PAU)-PAGE clearly resolved two polypeptides in the 100 kilodalton region that were enriched during detergent treatment and indicated at least one polypeptide forms a phosphorylated intermediate characteristic of the ATPase. Problems with SDS-PAGE were found to be caused, in part, by a combination of endogenous proteases and heat-induced aggregation of high molecular weight proteins. The usually standard procedure of boiling the sample prior to SDS-PAGE caused the aggregation of the 100 kilodalton polypeptides. By controlling for proteases using chymostatin and/or phenylmethane sulfonyl floride, and not boiling the sample prior to electrophoresis, two polypeptides were clearly resolved by SDS-PAGE in the 100 kilodalton region of Triton X-114-extracted membranes from corn, oat, barley, and tomato.  相似文献   

20.
Light activates proton (H(+))-ATPases in guard cells, to drive hyperpolarization of the plasma membrane to initiate stomatal opening, allowing diffusion of ambient CO(2) to photosynthetic tissues. Light to darkness transition, high CO(2) levels and the stress hormone abscisic acid (ABA) promote stomatal closing. The overall H(+)-ATPase activity is diminished by ABA treatments, but the significance of this phenomenon in relationship to stomatal closure is still debated. We report two dominant mutations in the OPEN STOMATA2 (OST2) locus of Arabidopsis that completely abolish stomatal response to ABA, but importantly, to a much lesser extent the responses to CO(2) and darkness. The OST2 gene encodes the major plasma membrane H(+)-ATPase AHA1, and both mutations cause constitutive activity of this pump, leading to necrotic lesions. H(+)-ATPases have been traditionally assumed to be general endpoints of all signaling pathways affecting membrane polarization and transport. Our results provide evidence that AHA1 is a distinct component of an ABA-directed signaling pathway, and that dynamic downregulation of this pump during drought is an essential step in membrane depolarization to initiate stomatal closure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号