首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Piper betle L., a dioecious shade-loving perennial climber is one of the important Pan-Asiatic plants. More than hundred landraces having marked variation in leaf chlorophyll (Chl) content are in cultivation in India. In this study, role of chlorophyllase (Chlase) in Chl homeostasis and post-harvest breakdown was investigated in two contrasting P. betle landraces Kapoori Vellaikodi (KV) with light green and Khasi Shillong (KS) with dark green leaves. The two landraces showed negative correlation between Chl content and Chlase activity in fresh as well as stored leaves. Accumulation of chlorophyllide a (Chlid a) was correlated with the level of Chlase activity, which was higher in KV than KS. The overall response of abscisic acid (ABA) and benzylaminopurine (BAP) was similar in KV and KS, however, the time-course was different. ABA-induced Chl loss was accompanied by rise in Chlase activity in KV and KS and the delay in Chl loss by BAP was accompanied by reduction in Chlase activity. While there were significant differences in Chlase activity in KV and KS, only minor differences were observed in the enzyme properties like pH and temperature optima, Km and Vmax. No landrace-related differences were observed on the effect of metal ions and functional group reagents/amino acid effectors on Chlase activity. These results showed that despite significant differences in Chl content and Chlase activity between landraces KV and KS, the properties of Chlase were similar. The findings show that in P. betle Chlase is involved in Chl homeostasis and also in Chl degradation during post-harvest storage and responds to hormonal regulations. These findings might be useful in predicting the stability of Chl during post-harvest storage and also the shelf-life in other P. betle landraces.  相似文献   

3.
Gender based differences in response to low temperature stress in leaf chlorophyll (Chl), and carotenoids (Car) contents and chlorophyllase (Chlase) activity were monitored in male (Kapoori Vellaikodi and Madras Pan Kapoori) and female (Bangla Mahoba, Desi Bangla and Kaker) betel vine landraces. Although female plants contained nearly two fold more Chl than male counterparts, the low temperature induced Chl loss was comparable, however, male plants showed higher Chl a/b ratio than females. Chlase activity increased due to cold stress in all the landraces. Male plants always showed higher activities of Chlase, which may be one of the reasons for the rather low Chl contents in male plants.  相似文献   

4.
The in vitro properties of semi-purified chlorophyllase (chlorophyll-chlorophyllido hydrolase, EC 3.1.1.14) from Capsicum annuum fruits have been studied. The enzyme showed an optimum of activity at pH 8.5 and 50 degrees C. Substrate specificity was studied for chlorophyll (Chl) a, Chl b, pheophytin (Phe) a and Phe b, with Km values of 10.70, 4.04, 2.67 and 6.37 microM respectively. Substrate inhibition was found for Phe b at concentrations higher than 5 microM. Chlorophyllase action on Chl a' and Chl b' was also studied but no hydrolysis was observed, suggesting that the mechanism of action depends on the configuration at C-13(2) in the chlorophyll molecule, with the enzyme acting only on compounds with R132 stereochemistry. The effect of various metals (Mg2+, Hg2+, Cu2+, Zn2+ Co2+, Fe2+ and Fe3+) was also investigated, and a general inhibitory effect was found, this being more marked for Hg2+ and Fe2+. Functional groups such as -SH and -S-S- seemed to participate in the formation of the enzyme-substrate complex. Chelating ion and the carbonyl group at C3 appeared to be important in substrate recognition by the enzyme. The method for measuring Chlase activity, including HPLC separation of substrate and product, has been optimized.  相似文献   

5.
Chlorophyllase (Chlase) catalyzes the initial step of chlorophyll (Chl)-degradation, but the physiological significance of this reaction is still ambiguous. Common understanding of its role is that Chlase is involved in de-greening processes such as fruit ripening, leaf senescence, and flowering. But there is a possibility that Chlase is also involved in turnover and homeostasis of Chls. Among the de-greening processes, autumnal coloration is one of the most striking natural phenomena, but the involvement of Chlase during autumnal coloration is not clear. Previously, it was shown that Chlase activity and expression level of the Chlase gene were not increased during autumnal coloration in Ginkgo biloba, indicating that Chlase does not work specially in the de-greening processes in G. biloba. In this study, we characterized the recombinant Chlase and analyzed its subcellular localization to understand the role of the cloned Chlase of G. biloba (GbCLH). GbCLH exhibited its highest activity at pH 7.5, 40 degrees C. Kinetic analysis revealed that GbCLH hydrolyzes pheophytin (Pheo) a and Chl a more rapidly than Pheo b and Chl b. Transient expression analysis of 40 N-terminus amino acids of GbCLH fused with GFP (green fluorescent protein) and subcellular fractionation showed that GbCLH localizes within chloroplasts. Together with our previous results, property of GbCLH and its location within the chloroplasts suggest that GbCLH plays a role in the turnover and homeostasis of Chls in green leaves of G. biloba.  相似文献   

6.
The purpose of the study was to investigate the effects of aluminum (Al) exposure on bone mineral elements, trace elements, and bone mineral density (BMD) in rats. One hundred Wistar rats were divided randomly into two groups. Experimental rats were given drinking water containing aluminum chloride (AlCl3, 430 mg Al3+/L), whereas control rats were given distilled water for up to 150 days. Ten rats were sacrificed in each group every 30 days. The levels of Al, calcium (Ca), phosphorus (P), magnesium (Mg), zinc (Zn), iron (Fe), copper (Cu), manganese (Mn), selenium (Se), boron (B), and strontium (Sr) in bone and the BMD of femur were measured. Al-treated rats showed lower deposition of Ca, P, and Mg compared with control rats. Levels of trace elements (Zn, Fe, Cu, Mn, Se, B, and Sr) were significantly lower in the Al-treated group than in the control group from day 60, and the BMD of the femur metaphysis in the Al-treated group was significantly lower than in the control group on days 120 and 150. These findings indicate that long-term Al exposure reduces the levels of mineral and trace elements in bone. As a result, bone loss was induced (particularly in cancellous bone).  相似文献   

7.
The toxic conditions of Oxisol soils attributed to oranging symptoms of rice grown in the Sitiung Transmigration area, Sumatra, Indonesia were evaluated in the laboratory. Changes of pH and Eh of flooded soils, and concentrations of nutrients in the soils and in the rice plants were measured. The soils were clayey, kaolinitic, isohyperthermic, Typic Haplorthox. It was found that Eh of the soils sharply decreased from an average value of +460 ± 150 mV to –217 ± 15 mV following 60 days of flooding (DF). During the same period of flooding, soil pH increased from an average value of 5.2 ± 0.6 to 6.6 ± 0.2. Concentrations of NaOAc extractable Fe, Mn, Zn, Cu, Mo, Ca, Mg, P, and K, but not Al, increased markedly whereas their water-soluble form, except Fe, decreased slightly following 60 DF. Leaf tissue analyses indicated that 13, 51 and 58% of the rice plant samples contained potentially toxic level of Mn, Fe and Al, respectively, as their contents were higher than the assumed threshold toxicity levels of 2500, 300, and 300 mg kg–1. Thirteen, 16, 2, and 3% of the leaf tissue also contained potentially deficient levels of P, K, Ca, and Mg, respectively. The oranging symptom in the rice leaf tissue appeared to be due to indirect toxicity of Fe, Mn, and Al, i.e., Fe-induced, Mn-induced, and Al-induced deficiency of P, K, Ca and Mg. As a result of the relatively high concentrations of NaOAc extractable Fe, Mn, and Al in the soil solution, root growth was limited and coated with iron and manganese oxides thereby reducing the root's capacity to absorb nutrients from the soils.The work was supported by USAID Grant No. DPE-5542-G-SS-4055-00 (3.F-10). Contribution from the Wetland Biogeochemistry Institute, Louisiana State University, Baton Rouge, LA 70803-7511, USA.  相似文献   

8.
9.
模拟酸雨胁迫下钙对龙眼光合功能的调节作用   总被引:18,自引:2,他引:16  
以福建省主栽品种乌龙岭龙眼为材料研究了模拟酸雨胁迫下钙对龙眼光合功能的调节作用 .结果表明 ,叶绿体的反应介质中Ca2 + 浓度在 0~ 5mmol·L-1范围内可增加其光还原活性 ,以 3 .5mmol·L-1的活性最高 ,比对照增加 41.90 % ;而 2mmol·L-1EGTA会使其活性下降 2 6 .0 6 % ;Mn2 + 和Mg2 + 对光还原活性均有抑制作用 .0~ 6mmol·L-1的Ca2 + 可提高叶绿体的光合磷酸化活性 ,最适的浓度为 4.5mmol·L-1;0~ 8mmol·L-1的Ca2 + 可提高叶绿体超氧物歧化酶 (SOD)活性 ,最适浓度为 6mmol·L-1.pH 3 .0的酸雨胁迫下 ,10mmol·L-1和 15mmol·L-1Ca(NO3) 2 均可减缓叶绿素的降解 ,稳定叶圆片的膜结构 ,降低膜透性 ,以 15mmol·L-1的效果较佳 ;Ca(NO3) 2 浓度超过 2 0mmol·L-1加剧了酸雨对叶片的伤害作用 .喷15mmol·L-1Ca(NO3) 2 可增加叶片光合速率 ,表现出模拟酸雨胁迫下钙对龙眼叶片的良好保护作用 .  相似文献   

10.
Chen LS  Qi YP  Liu XH 《Annals of botany》2005,96(1):35-41
* BACKGROUND AND AIMS: Under high photon flux, excitation energy may be in excess in aluminum (Al)-treated leaves, which use a smaller fraction of the absorbed light in electron transport due to decreased CO2 assimilation compared with normal leaves. The objectives of this study were to test the hypothesis that the antioxidant systems are up-regulated in Al-treated citrus leaves and correlate with protection from photoxidative damage, and to test whether xanthophyll cycle-dependent thermal energy dissipation is involved in dissipating excess excitation energy. * METHODS: 'Cleopatra' tangerine seedlings were fertilized and irrigated daily for 8 weeks with quarter-strength Hoagland's nutrient solution containing Al at a concentration of 0 or 2 mM from Al2(SO4)3.18H2O. Thereafter, leaf absorptance, chlorophyll (Chl) fluorescence, Al, pigments, antioxidant enzymes and metabolites were measured on fully expanded leaves. * KEY RESULTS: Compared with control leaves, energy was in excess in Al-treated leaves, which had smaller thermal energy dissipation, indicated by non-photochemical quenching (NPQ). In contrast, conversion of violaxanthin (V) to antheraxanthin (A) and zeaxanthin (Z) at midday increased in both treatments, but especially in Al-treated leaves, although A + Z accounted for less 40 % of the total xanthophyll cycle pool in them. Activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDAR), dehydroascorbate reductase (DHAR), glutathione reductase (GR) and catalase (CAT), and concentrations of ascorbate (AsA), dehydroascorbate (DASA), reduced glutathione (GSH) and oxidized glutathione (GSSG) were higher in Al-treated than in control leaves. * CONCLUSIONS: These results corroborate the hypothesis that, compared with control leaves, antioxidant systems are up-regulated in Al-treated citrus leaves and protect from photoxidative damage, whereas thermal energy dissipation was decreased. Thus, antioxidant systems are more important than thermal energy dissipation in dissipating excess excitation energy in Al-treated citrus leaves.  相似文献   

11.
Branchlets of broccoli (Brassica oleracea L.) were used to examine ethylene-stimulated chlorophyll catabolism. Branchlets treated with: 1) air (CK); 2) 1 µL·L–1 1-methylcyclopropene (1-MCP) for 14 hr at 20 °C; 3) 1000 µL·L–1 ethylene (C2H4) for 5 hr at 20 °C; or 4) 1-MCP then C2H4, were stored in the dark at 20 °C for up to 3 d. Chlorophyll (Chl) content and branchlet hue angle decreased during the storage period and 1-MCP treatment delayed this change. Chl degradation in broccoli was accelerated by exposure to C2H4, especially for Chl a. Prior treatment with 1-MCP prevented degreening stimulated by C2H4. Lipoxygenase activity was not altered by any of the treatments, however, 1-MCP with or without ethylene resulted in reduced activity of chlorophyllase (Chlase) and peroxidase (POD). Exposure to C2H4 stimulated Chlase activity and extended the duration of high POD activity. Treatment with 1-MCP followed by C2H4 resulted in reduced POD activity and delayed the increase in Chlase activity. The results suggest chlorophyll in broccoli can be degraded via the POD – hydrogen peroxide system. Exposure to C2H4 enhances activity of Chlase and extends the duration of high POD activity, and these responses may accelerate degreening. Treatment with 1-MCP delays yellowing of broccoli, an effect that may be due to the 1-MCP-induced reduction in POD and Chlase activities.  相似文献   

12.
用ICP-AES法测定了十和田/丽粳2号/十和田BC4F5回交重组自交系264个株系糙米Zn含量及其在株型间的遗传变异,分析了糙米Zn含量与16种元素(K、P、S、Mg、Ca、Mo、Ni、Fe、Cr、Na、Al、Cu、Sn、B、Mn和Sr)、9个农艺性状(结实率、实粒数、秕粒数、穗长、有效穗、花药长度、花药宽度、穗茎节间长和倒2叶长)、MDA(丙二醛)含量、3种酶(POD、SOD、CAT)活性间相关性,旨在揭示糙米Zn与其他元素、稻米产量、稻耐冷性等关联性。结果表明:回交重组自交群体糙米Zn含量为正态分布,有超亲优势株系;糙米Zn含量与8种元素(K、S、P、Mg、Ca、Fe、B、Mn)含量呈极显著相关,与5种元素(S、Mg、Ni、Cr、Al)含量呈显著偏相关;初步认为糙米Zn含量与稻米产量及耐冷性为负相关,与酶活性相关性不显著。  相似文献   

13.
寇江涛 《生态学杂志》2020,39(3):855-864
为了探讨外源2,4-表油菜素内酯(2,4-epibrassinolide,EBR)诱导燕麦(Avena sativa L.)幼苗抗盐性的效果及其生理调节机制,以"青引2号"和"加燕2号"燕麦为材料,研究NaCl胁迫下施用外源EBR对燕麦幼苗无机离子吸收、运输和分配的影响。结果表明:100mmol·L-1NaCl胁迫下,"青引2号"和"加燕2号"燕麦幼苗叶片和根系中的Na+、Cl-含量均显著升高,对阳离子的吸收产生了拮抗作用,导致燕麦幼苗叶片和根系中的K+、Ca2+、Mg2+、Mn2+、Fe2+、Zn2+、Cu2+含量显著降低,离子稳态平衡被打破;100 mmol·L-1NaCl胁迫下,施用0.01μmol·L-1外源EBR后,"青引2号"和"加燕2号"燕麦幼苗叶片和根系中的Na+和Cl-含量显著降低,促进了燕麦幼苗根系对K+、Ca2+、Mg2+、Fe2+、Mn2+、Cu2+和Zn2+的吸收,叶片和根系中K+/Na+、Cl-/Na+、Ca2+/Na+、Mg2+/Na+、Fe2+/Na+、Mn2+/Na+、Cu2+/Na+和Zn2+/Na+显著升高,并且有效调控燕麦幼苗体内无机离子的运输比和阳离子的运输选择性比率,离子稳态重新达到平衡状态;说明外源EBR能够缓解NaCl胁迫下Na+和Cl-对燕麦幼苗所造成的离子毒害作用,有效调控燕麦幼苗对无机离子的选择性吸收、运输和分配,对维持燕麦幼苗体内的离子稳态平衡具有正向调控作用。  相似文献   

14.
D R Brandt  E M Ross 《Biochemistry》1986,25(22):7036-7041
The effects of Al3+ and F- on the catecholamine-stimulated GTPase cycle were studied by using reconstituted phospholipid vesicles that contained purified beta-adrenergic receptor and the stimulatory GTP-binding protein of the adenylate cyclase system, Gs. Al3+/F- activated reconstituted Gs to levels previously reported for detergent-solubilized, purified Gs, although both activation and deactivation were faster in the reconstituted preparation. Under these conditions, Al3+/F- did not inhibit by more than 15% the beta-adrenergic agonist-stimulated GTPase activity of the vesicles nor did it significantly inhibit the rates of GTP binding, GTP hydrolysis, or GDP release. When Mg2+ (50 mM) was used instead of agonist to promote GTP hydrolysis in the receptor-Gs vesicles, Al3+/F- was found to inhibit GTP gamma S binding, GDP release, and steady-state GTPase activity to unstimulated levels. These data can be interpreted as indicating that the receptor catalyzes nucleotide exchange by Gs faster or more efficiently than does Mg2+.  相似文献   

15.
Balakrishnan  K.  Rajendran  C.  Kulandaivelu  G. 《Photosynthetica》2000,38(3):477-479
Photosynthetica - Fe, Mn, and Zn affected the chlorophyll (Chl) content whereas Fe deficiency caused larger reduction of total chlorophyll content than Mg and Zn deficiencies. Mg deficient mango...  相似文献   

16.
The present study was conducted to assess in rats the effects of oral aluminum (Al) exposure on calcium (Ca), magnesium (Mg), manganese (Mn), copper (Cu), zinc (Zn), and iron (Fe) accumulation and urinary excretion. Three groups of plug-positive Sprague-Dawley (SD) rats were given by gavage 0, 200, and 400 mg/kg/d of Al(OH)3 on gestational days 1–20. Three groups of nonpregnant female SD rats of the same age received Al(OH)3 by gavage at the same doses for 20 consecutive days. At the end of the treatment period, 24-h urine samples were collected for analysis of Al and essential elements. Subsequently, all animals were sacrificed and samples of liver, bone, spleen, kidneys, and brain were removed for metal analyses. With some exceptions, the urinary amounts of Al, Mn, and Cu excreted by pregnant animals as well as the urinary levels of Al excreted by nonpregnant rats were higher in the Al-treated groups than in the respective control groups. Although higher Al levels were found in the liver of pregnant rats, the concentrations of Al in the brain of these animals were lower than those found in the same tissues of nonpregnant rats. With regard to the essential elements, tissue accumulation was most affected in pregnant than in nonpregnant animals. In pregnant rats, the hepatic and renal concentrations of Ca, Mg, Mn, Cu, Zn, and Fe, as well as the levels of Ca in bone, and the concentrations of Cu in brain were significantly higher in the Al-exposed groups than in the control group. According to the current results, oral Al exposure during pregnancy can produce significant changes in the tissue distribution of a number of essential elements.  相似文献   

17.
Dilnawaz  F.  Mohapatra  P.  Misra  M.  Ramaswamy  N.K.  Misra  A.N. 《Photosynthetica》2001,39(4):557-563
Wheat (Triticum aestivum L. cv. Sonalika) seedlings were grown in Hoagland solution. Primary leaves were harvested at 8, 12, and 15 d and cut into five equal segments. Contents of photosynthetic pigments and proteins, and photosystem 2 (PS2) activity increased from base to apex of these leaves. Chlorophyll (Chl) content was maximum at 12 d in all the leaf segments, but PS2 activity showed a gradual decline from 8 to 15 d in all leaf segments. In sharp contrast, the CO2 fixation ability of chloroplasts increased from 8 to 15 d. CO2 fixation ability of chloroplasts started to decline from base to apex of 15-d-old seedlings, where the content of ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (RuBPCO-LSU) increased acropetally. RuBPCO-LSU content was maximum in all the leaf segments in 12-d-old seedlings. This shows a distinctive pattern of PS2, Chl, CO2 fixation ability of chloroplasts, and RuBPCO-LSU content along the axis of leaf lamina during development and senescence. RuBPCO-LSU (54 kDa) degraded to fragments of 45, 42, 37, 19, and 16 kDa products which accumulated along the leaf axis during ageing of chloroplasts. Thus the CO2 fixation ability of chloroplasts declines earlier than PS2 activity and photosynthetic pigment contents along the leaf lamina.  相似文献   

18.
It was shown that IgGs purified from the sera of healthy Wistar rats contain several different bound Me2+ ions and oxidize 3,3'-diaminobenzidine through a H2O2-dependent peroxidase and H2O2-independent oxidoreductase activity. IgGs have lost these activities after removing the internal metal ions by dialysis against EDTA. External Cu2+ or Fe2+ activated significantly both activities of non-dialysed IgGs containing different internal metals (Fe > or = Pb > or = Zn > or = Cu > or = Al > or = Ca > or = Ni > or = Mn > Co > or = Mg) showing pronounced biphasic dependencies corresponding to approximately 0.1-2 and approximately 2-5 mM of Me2+, while the curves for Mn2+ were nearly linear. Cu2+ alone significantly stimulated both the peroxidase and oxidoreductase activities of dialysed IgGs only at high concentration (> or = 2 mM), while Mn2+ weakly activated peroxidase activity at concentration >3 mM but was active in the oxidoreductase oxidation at a low concentration (<1 mM). Fe2+-dependent peroxidase activity of dialysed IgGs was observed at 0.1-5 mM, but Fe2+ was completely inactive in the oxidoreductase reaction. Mg2+, Ca2+, Zn2+, Al2+ and especially Co2+ and Ni2+ were not able to activate dialysed IgGs, but slightly activated non-dialysed IgGs. The use of the combinations of Cu2+ + Mn2+, Cu2+ + Zn2+, Fe2+ + Mn2+, Fe2+ + Zn2+ led to a conversion of the biphasic curves to hyperbolic ones and in parallel to a significant increase in the activity as compared with Cu2+, Fe2+ or Mn2+ ions taken separately; the rates of the oxidation reactions, catalysed by non-dialysed and dialysed IgGs, became comparable. Mg2+, Co2+ and Ni2+ markedly activated the Cu2+-dependent oxidation reactions catalysed by dialysed IgGs, while Ca2+ inhibited these reactions. A possible role of the second metal in the oxidation reactions is discussed.  相似文献   

19.
Our study aimed to evaluate intraspecific variability of pea (Pisum sativum L.) in Al tolerance and to reveal mechanisms underlying genotypic differences in this trait. At the first stage, 106 pea genotypes were screened for Al tolerance using root re-elongation assay based on staining with eriochrome cyanine R. The root re-elongation zone varied from 0.5 mm to 14 mm and relationships between Al tolerance and provenance or phenotypic traits of genotypes were found. Tolerance index (TI), calculated as a biomass ratio of Al-treated and non-treated contrasting genotypes grown in hydroponics for 10 days, varied from 30% to 92% for roots and from 38% to 90% for shoots. TI did not correlate with root or shoot Al content, but correlated positively with increasing pH and negatively with residual Al concentration in nutrient solution in the end of experiments. Root exudation of organic acid anions (mostly acetate, citrate, lactate, pyroglutamate, pyruvate and succinate) significantly increased in several Al-treated genotypes, but did not correlate with TI. Al-treatment decreased Ca, Co, Cu, K, Mg, Mn, Mo, Ni, S and Zn contents in roots and/or shoots, whereas contents of several elements (P, B, Fe and Mo in roots and B and Fe in shoots) increased, suggesting that Al toxicity induced substantial disturbances in uptake and translocation of nutrients. Nutritional disturbances were more pronounced in Al sensitive genotypes. In conclusion, pea has a high intraspecific variability in Al tolerance and this trait is associated with provenance and phenotypic properties of plants. Transformation of Al to unavailable (insoluble) forms in the root zone and the ability to maintain nutrient uptake are considered to be important mechanisms of Al tolerance in this plant species.  相似文献   

20.
Summary Information is limited on soil contamination of leaves from field-grown row crops, especially with respect to aluminum (Al) analyses. The objective of this study was to determine the influence of washing leaf samples with either deionized water or detergent solution on elemental analyses for several agronomic crop plants. The crop plants sampled were corn (Zea mays L.), soybean (Glycine max L. Merr.), grain sorghum (Sorghum bicolor L. Moench), and wheat (Triticum aestivum L.). The crops were grown on a range of soil types, soil pH values, and tillage practices. Samples of upper leaves and lower leaves were collected separately. The samples were either not washed, washed with deionized water, or washed with detergent solution. After drying, grinding, and digesting, the samples were analyzed for Al, nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu). For all crop plants and conditions studied, there was no effect on measured N, P, K, Ca, Mg, Mn, Zn, or Cu concentrations, but measured Al and Fe concentrations were influenced by washing. In general, washing had a greater effect on Al analyses than on Fe analyses. Soybean samples were most affected by washing, while wheat samples seemed to be least affected. The results reflected greater contamination of lower leaves than upper leaves. Decontamination procedures appear necessary prior to Al and Fe analyses of field-grown crop plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号