首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The origin of eukaryotic cell nuclei by symbiosis of Archaea in Bacteria was proposed on the basis of the phylogenetic topologies of genes. However, it was not possible to conclude whether or not the genes involved were authentic representative genes. Furthermore, using the BLAST and FASTA programs, the similarity of open reading frame (ORF) groups between three domains (Eukarya, Archaea and Bacteria) was estimated at one threshold. Therefore, their similarities at other thresholds could not be clarified. Here we use our newly developed 'homology-hit analysis' method, which uses multiple thresholds, to determine the origin of the nucleus. We removed mitochondria-related ORFs from yeast ORFs, and determined the number of yeast orthologous ORFs in each functional category to the ORFs in six Archaea and nine Bacteria at several thresholds (E-values) using the BLAST. Our results indicate that yeast ORFs related to the nucleus may share their origins with archaeal ORFs, whereas ORFs that are related to the cytoplasm may share their origins with bacterial ORFs. Our results thus strongly support the idea of nucleus symbiosis.  相似文献   

2.
Attempts were made to define the relationship among the three domains (eukaryotes, archaea, and eubacteria) using phylogenetic tree analyses of 16S rRNA sequences as well as of other protein sequences. Since the results are inconsistent, it is implied that the eukaryotic genome has a chimeric structure. In our previous studies, the origin of eukaryotes to be the symbiosis of archaea into eubacteria using the whole open reading frames (ORF) of many genomes was suggested. In these studies, the species participating in the symbiosis were not clarified, and the effect of gene duplication after speciation (in-paralog) was not addressed. To avoid the influence of the in-paralog, we developed a new method to calculate orthologous ORFs. Furthermore, we separated eukaryotic in-paralogs into three groups by sequence similarity to archaea, eubacteria (other than -proteobacteria), and -proteobacteria and treated them as individual organisms. The relationship between the three ORF groups and the functional classification was clarified by this analysis. The introduction of this new method into the phylogenetic tree analysis of 66 organisms (4 eukaryotes, 13 archaea, and 49 eubacteria) based on gene content suggests the symbiosis of pyrococcus into -proteobacteria as the origin of eukaryotes.  相似文献   

3.
Amino acid sequence alignments of orthologous ribosomal proteins found in Bacteria, Archaea, and Eukaryota display, relative to one another, an unusual segment or block structure, with major evolutionary implications. Within each of the prokaryotic phylodomains the sequences exhibit substantial similarity, but cross-domain alignments break up into (a) universal blocks (conserved in both phylodomains), (b) bacterial blocks (unalignable with any archaeal counterparts), and (c) archaeal blocks (unalignable with any bacterial counterparts). Sequences of those eukaryotic cytoplasmic riboproteins that have orthologs in both Bacteria and Archaea, exclusively match the archaeal block structure. The distinct blocks do not correlate consistently with any identifiable functional or structural feature including RNA and protein contacts. This phylodomain-specific block pattern also exists in a number of other proteins associated with protein synthesis, but not among enzymes of intermediary metabolism. While the universal blocks imply that modern Bacteria and Archaea (as defined by their translational machinery) clearly have had a common ancestor, the phylodomain-specific blocks imply that these two groups derive from single, phylodomain-specific types that came into existence at some point long after that common ancestor. The simplest explanation for this pattern would be a major evolutionary bottleneck, or other scenario that drastically limited the progenitors of modern prokaryotic diversity at a time considerably after the evolution of a fully functional translation apparatus. The vast range of habitats and metabolisms that prokaryotes occupy today would thus reflect divergent evolution after such a restricting event. Interestingly, phylogenetic analysis places the origin of eukaryotes at about the same time and shows a closer relationship of the eukaryotic ribosome-associated proteins to crenarchaeal rather than euryarchaeal counterparts.  相似文献   

4.
We have implemented a statistically based approach to comparative genomics that allows us to define and characterize distributional patterns of conceptually translated open reading frames (ORFs) at different confidence levels based on pairwise FASTA matches. In this report, we apply this methodology to nine microbial genomes, focusing particularly on phyletic and functional patterns of ORF distribution within and between the two prokaryotic domains of life, Bacteria and Archaea. We examine patterns of presence and absence of matches, determine the universal ORF set, analyze features of genome specialization between closely related organisms, and present genomic evidence for the monophyly of Archaea. These analyses illustrate how a quantitative approach to comparative genomics can illuminate questions of fundamental biological significance.  相似文献   

5.
We analyzed length differences of eukaryotic, bacterial and archaeal proteins in relation to function, conservation and environmental factors. Comparing Eukaryotes and Prokaryotes, we found that the greater length of eukaryotic proteins is pervasive over all functional categories and involves the vast majority of protein families. The magnitude of these differences suggests that the evolution of eukaryotic proteins was influenced by processes of fusion of single-function proteins into extended multi-functional and multi-domain proteins. Comparing Bacteria and Archaea, we determined that the small but significant length difference observed between their proteins results from a combination of three factors: (i) bacterial proteomes include a greater proportion than archaeal proteomes of longer proteins involved in metabolism or cellular processes, (ii) within most functional classes, protein families unique to Bacteria are generally longer than protein families unique to Archaea and (iii) within the same protein family, homologs from Bacteria tend to be longer than the corresponding homologs from Archaea. These differences are interpreted with respect to evolutionary trends and prevailing environmental conditions within the two prokaryotic groups.  相似文献   

6.
The ubiquity of mechanosensitive (MS) channels triggered a search for their functional homologs in Archaea. Archaeal MS channels were found to share a common ancestral origin with bacterial MS channels of large and small conductance, and sequence homology with several proteins that most likely function as MS ion channels in prokaryotic and eukaryotic cell-walled organisms. Although bacterial and archaeal MS channels differ in conductive and mechanosensitive properties, they share similar gating mechanisms triggered by mechanical force transmitted via the lipid bilayer. In this review, we suggest that MS channels of Archaea can bridge the evolutionary gap between bacterial and eukaryotic MS channels, and that MS channels of Bacteria, Archaea and cell-walled Eukarya may serve similar physiological functions and may have evolved to protect the fragile cellular membranes in these organisms from excessive dilation and rupture upon osmotic challenge.  相似文献   

7.
Aquaporins (AQPs) are a family of channel proteins, which transport water and/or small solutes across cell membranes. AQPs are present in Bacteria, Eukarya, and Archaea. The classical AQP evolution paradigm explains the inconsistent phylogenetic trees by multiple transfer events and emphasizes that the assignment of orthologous AQPs is not possible, making it difficult to integrate functional information. Recently, a novel phylogenetic framework of eukaryotic AQP evolution showed congruence between eukaryotic AQPs and organismal trees identifying 32 orthologous clusters in plants and animals (Soto et al. Gene 503:165–176, 2012). In this article, we discuss in depth the methodological strength, the ability to predict functionality and the AQP community perception about the different paradigms of AQP evolution. Moreover, we show an updated review of AQPs transport functions in association with phylogenetic analyses. Finally, we discuss the possible effect of AQP data integration in the understanding of water and solute transport in eukaryotic cells.  相似文献   

8.
We examine the translated open reading frames (ORFs) of the yeast Saccharomyces cerevisiae, focusing on those that have FASTA matches in phyletically defined sets of completely sequenced genomes. On this basis, we identify archaeal yeast, bacterial yeast, universal yeast, and yeast ORFs that do not have a match in any of nine prokaryote genomes. Similarly, we examine the yeast mitochondrial genome and the subset of the yeast nuclear ORFs identified as being involved in mitochondrial biogenesis. For the yeast ORFs that match one or more ORFs in these prokaryote genomes, we examine the phyletic and functional distributions of these matches as a function of match strength. These results provide genome level insights into the origin of the eukaryotic cell and the origin of mitochondria. More generally, they exemplify how the growing database of prokaryote genome sequences can help us understand eukaryote genomes.  相似文献   

9.
The 54-kDa signal recognition particle and the receptor SR alpha, two proteins involved in the cotranslational translocation of proteins, are paralogs. They originate from a gene duplication that occurred prior to the last universal common ancestor, allowing one to root the universal tree of life. Phylogenetic analysis using standard methods supports the generally accepted cluster of Archaea and Eucarya. However, a new method increasing the signal-to-noise ratio strongly suggests that this result is due to a long-branch attraction artifact, with the Bacteria evolving fastest. In fact, the Archaea/Eucarya sisterhood is recovered only by the fast-evolving positions. In contrast, the most slowly evolving positions, which are the most likely to retain the ancient phylogenetic signal, support the monophyly of prokaryotes. Such a eukaryotic rooting provides a simple explanation for the high similarity of Archaea and Bacteria observed in complete-genome analysis, and should prompt a reconsideration of current views on the origin of eukaryotes.  相似文献   

10.
Primary sequence patterns based on known conserved sites in eukaryotic protein kinases were used to search for eukaryotic-like protein kinase sequences in a six-frame translation of the bacterial subsection of GenBank. This search identified a previously unrecognized eukaryotic-like protein kinase gene in three related methanogenic archaebacteria, Methanococcus vannielii, M. voltae, and M. thermolithotrophicus. The proposed coding sequences are located in orthologous open reading frames (ORFs): ORF547, ORF294, and ORF114, respectively. The C-terminus of the ORFs contains 9 of the 11 subdomains characteristically conserved within the eukaryotic protein kinase catalytic domain. The N-terminus of the ORFs is similar to a putative glycoprotease in Pasteurella haemolytica and its homologue in Escherichia coli, the orfX gene. This is the first report of a eukaryotic-like protein kinase sequence observed in Archaebacteria.  相似文献   

11.
The genome sequence of Thermotoga maritima revealed that 24% of its open reading frames (ORFs) showed the highest similarity scores to archaeal genes in BLAST analyses. Here we screened 16 strains from the genus Thermotoga and other related Thermotogales for the occurrence of two of these "archaeal" genes: the gene encoding the large subunit of glutamate synthase (gltB) and the myo-inositol 1P synthase gene (ino1). Both genes were restricted to the Thermotoga species within the Thermotogales. The distribution of the two genes, along with results from phylogenetic analyses, showed that they were acquired from Archaea during the divergence of the Thermotogales. Database searches revealed that three other bacteria-Dehalococcoides ethenogenes, Sinorhizobium meliloti, and Clostridium difficile-possess archaeal-type gltBs, and the phylogenetic analyses confirmed at least two lateral gene transfer (LGT) events between Bacteria and Archaea. These LGT events were also strongly supported by gene structure data, as the three domains in bacterial-type gltB are homologous to three independent ORFs in Archaea and Bacteria with archaeal-type gltBs. The ino1 gene has a scattered distribution among Bacteria, and apart from the Thermotoga strains it is found only in Aquifex aeolicus, D. ethenogenes, and some high-G+C Gram-positive bacteria. Phylogenetic analysis of the ino1 sequences revealed three highly supported prokaryotic clades, all containing a mixture of archaeal and bacterial sequences, and suggested that all bacterial ino1 genes had been recruited from archaeal donors. The Thermotoga strains and A. aeolicus acquired this gene independently from different archaeal species. Although transfer of genes from hyperthermophilic Archaea may have facilitated the evolution of bacterial hyperthermophily, between-domain transfers also affect mesophilic species. For hyperthermophiles, we hypothesize that LGT may be as much a consequence as the cause of adaptation to hyperthermophily.  相似文献   

12.
Cellular membrane lipids, of which phospholipids are the major constituents, form one of the characteristic features that distinguish Archaea from other organisms. In this study, we focused on the steps in archaeal phospholipid synthetic pathways that generate polar lipids such as archaetidylserine, archaetidylglycerol, and archaetidylinositol. Only archaetidylserine synthase (ASS), from Methanothermobacter thermautotrophicus, has been experimentally identified. Other enzymes have not been fully examined. Through database searching, we detected many archaeal hypothetical proteins that show sequence similarity to members of the CDP alcohol phosphatidyltransferase family, such as phosphatidylserine synthase (PSS), phosphatidylglycerol synthase (PGS) and phosphatidylinositol synthase (PIS) derived from Bacteria and Eukarya. The archaeal hypothetical proteins were classified into two groups, based on the sequence similarity. Members of the first group, including ASS from M. thermautotrophicus, were closely related to PSS. The rough agreement between PSS homologue distribution within Archaea and the experimentally identified distribution of archaetidylserine suggested that the hypothetical proteins are ASSs. We found that an open reading frame (ORF) tends to be adjacent to that of ASS in the genome, and that the order of the two ORFs is conserved. The sequence similarity of phosphatidylserine decarboxylase to the product of the ORF next to the ASS gene, together with the genomic context conservation, suggests that the ORF encodes archaetidylserine decarboxylase, which may transform archaetidylserine to archaetidylethanolamine. The second group of archaeal hypothetical proteins was related to PGS and PIS. The members of this group were subjected to molecular phylogenetic analysis, together with PGSs and PISs and it was found that they formed two distinct clusters in the molecular phylogenetic tree. The distribution of members of each cluster within Archaea roughly corresponded to the experimentally identified distribution of archaetidylglycerol or archaetidylinositol. The molecular phylogenetic tree patterns and the correspondence to the membrane compositions suggest that the two clusters in this group correspond to archaetidylglycerol synthases and archaetidylinositol synthases. No archaeal hypothetical protein with sequence similarity to known phosphatidylcholine synthases was detected in this study.  相似文献   

13.
Retroids in archaea: phylogeny and lateral origins   总被引:3,自引:0,他引:3  
  相似文献   

14.
The discovery of Mimivirus, with its very large genome content, made it possible to identify genes common to the three domains of life (Eukarya, Bacteria and Archaea) and to generate controversial phylogenomic trees congruent with that of ribosomal genes, branching Mimivirus at its root. Here we used sequences from metagenomic databases, Marseillevirus and three new viruses extending the Mimiviridae family to generate the phylogenetic trees of eight proteins involved in different steps of DNA processing. Compared to the three ribosomal defined domains, we report a single common origin for Nucleocytoplasmic Large DNA Viruses (NCLDV), DNA processing genes rooted between Archaea and Eukarya, with a topology congruent with that of the ribosomal tree. As for translation, we found in our new viruses, together with Mimivirus, five proteins rooted deeply in the eukaryotic clade. In addition, comparison of informational genes repertoire based on phyletic pattern analysis supports existence of a clade containing NCLDVs clearly distinct from that of Eukarya, Bacteria and Archaea. We hypothesize that the core genome of NCLDV is as ancient as the three currently accepted domains of life.  相似文献   

15.
The replicon model has initiated a major research line in molecular biology: the study of DNA replication mechanisms. Until now, the majority of studies have focused on a limited set of model organisms, mainly from Bacteria or Opisthokont eukaryotes (human, yeasts) and a few viral systems. However, molecular evolutionists have shown that the living world is more complex and diverse than believed when the operon model was proposed. Comparison of DNA replication proteins in the three domains, Archaea, Bacteria, and Eukarya, have surprisingly revealed the existence of two distinct sets of non-homologous cellular DNA replication proteins, one in Bacteria and the other in Archaea and Eukarya, suggesting that the last universal common ancestor possibly still had an RNA genome. A major puzzle is the presence in eukaryotes of the unfaithful DNA polymerase alpha (Pol α) to prime Okazaki fragments. Interestingly, Pol α is specifically involved in telomere biosynthesis, and its absence in Archaea correlates with the absence of telomeres. The recent discovery of telomere-like GC quartets in eukaryotic replication origins suggests a link between Pol α and the overall organization of the eukaryotic chromosome. As previously proposed by Takemura, Pol α might have originated from a mobile element of viral origin that played a critical role in the emergence of the complex eukaryotic genomes. Notably, most large DNA viruses encode DNA replication proteins very divergent from their cellular counterparts. The diversity of viral replication machineries compared to cellular ones suggests that DNA and DNA replication mechanisms first originated and diversified in the ancient virosphere, possibly explaining why they are so many different types of replication machinerie.  相似文献   

16.
The complete nucleotide sequence of the archaeal conjugative plasmid, pNOB8, from the Sulfolobus isolate NOB8-H2, was determined. The plasmid is 41 229 bp in size and contains about 50 ORFs. Several direct sequence repeats are present, the largest of which is a perfect 85-bp repeat and a site of intraplasmid recombination in foreign Sulfolobus hosts. This recombination event produces a major deletion variant, pNOB8-33, which is not stably maintained. Less than 20% of the ORFs could be assigned putative functions after extensive database searches. Tandem ORFs 315 and 470, within the deleted 8-kb region, show significant sequence similarity to the protein superfamilies of ParA (whole protein) and ParB (N-terminal half), respectively, that are important for plasmid and chromosome partitioning in bacteria. A putative cis-acting element is also present that exhibits six 24-mer repeats containing palindromic sequences which are separated by 39 or 42 bp. By analogy with bacterial systems, this element may confer plasmid incompatibility and define a group of incompatible plasmids in Archaea. Although several ORFs can form putative trans-membrane or membrane-binding segments, only two ORFs show significant sequence similarity to bacterial conjugative proteins. ORF630b aligns with the TrbE protein superfamily, which contributes to mating pair formation in Bacteria, while ORF1025 aligns with the TraG protein superfamily. We infer that the conjugative mechanism for Sulfolobus differs considerably from known bacterial mechanisms. Finally, two transposases were detected; ORF413 is flanked by an imperfect 32-bp inverted repeat with a 5-bp direct repeat at the ends, and ORF406 is very similar in sequence to an insertion element identified in the Sulfolobus solfataricus P2 genome. Received: March 10, 1998 / Accepted: May 2, 1998  相似文献   

17.
Cell wall types of Bacteria and Archaea The acaryote microorganisms are divided into the two domains Bacteria and Archaea. The third domain represent the Eukarya. There is no universal cell wall polymer found in all Bacteria and Archaea. Due to their morphology several cell wall types can be identified, but the chemical diversity of the individual polymers is considerably greater. Certain cell wall polymers are limited to one of the two domains of Bacteria or Archaea like the murein of the Bacteria or the pseudomurein of some methanogens. Peptidoglycans (murein, pseudomurein) do not occur in eukaryotes. On the other hand individual cell wall polymers possess similarities to polymers of other domains. The structural principle of the methanochondroitin is also implemented in the eukaryotic connective tissue. The cell wall polymers consist frequently of glycoconjugates in which the amino acid content (glycoproteins) or the glycan moiety (proteoglycan‐like polymers) predominate. Both components (carbohydrates, amino acids) can also occur in similar amounts (peptidoglycan). There exist also cell wall polymers, which consist only of glycans (slimes, methanochondroitin) or amino acids (proteins, poly‐γ‐D‐glutamyl polymers). Cell wall‐free species (Mycoplasma) also occur. The chemical composition of the cell surface polymers was one of the first phenotypic characteristics that supported the 16 sRNA concept of Carl Woese to assign acaryote organisms into the two domains Bacteria and Archaea. A common feature of all Archaea is the lack of muramic acid and an outer membrane. The later occurs in the gramnegative Bacteria. During the evolution of Bacteria and Archaea a great variety of chemically different cell wall polymers has been developed which allow the growth and interaction of Bacteria and Archaea in different habitats. In this paper, some important surface polymers of Bacteria and Archaea are presented according to their chemical composition.  相似文献   

18.
19.
It is desirable to estimate a tree of life, a species tree including all available species in the 3 superkingdoms, Archaea, Bacteria, and Eukaryota, using not a limited number of genes but full-scale genome information. Here, we report a new method for constructing a tree of life based on protein domain organizations, that is, sequential order of domains in a protein, of all proteins detected in a genome of an organism. The new method is free from the identification of orthologous gene sets and therefore does not require the burdensome and error-prone computation. By pairwise comparisons of the repertoires of protein domain organizations of 17 archaeal, 136 bacterial, and 14 eukaryotic organisms, we computed evolutionary distances among them and constructed a tree of life. Our tree shows monophyly in Archaea, Bacteria, and Eukaryota and then monophyly in each of eukaryotic kingdoms and in most bacterial phyla. In addition, the branching pattern of the bacterial phyla in our tree is consistent with the widely accepted bacterial taxonomy and is very close to other genome-based trees. A couple of inconsistent aspects between the traditional trees and the genome-based trees including ours, however, would perhaps urge to revise the conventional view, particularly on the phylogenetic positions of hyperthermophiles.  相似文献   

20.
DNA replication origins fire stochastically in fission yeast   总被引:10,自引:0,他引:10       下载免费PDF全文
DNA replication initiates at discrete origins along eukaryotic chromosomes. However, in most organisms, origin firing is not efficient; a specific origin will fire in some but not all cell cycles. This observation raises the question of how individual origins are selected to fire and whether origin firing is globally coordinated to ensure an even distribution of replication initiation across the genome. We have addressed these questions by determining the location of firing origins on individual fission yeast DNA molecules using DNA combing. We show that the firing of replication origins is stochastic, leading to a random distribution of replication initiation. Furthermore, origin firing is independent between cell cycles; there is no epigenetic mechanism causing an origin that fires in one cell cycle to preferentially fire in the next. Thus, the fission yeast strategy for the initiation of replication is different from models of eukaryotic replication that propose coordinated origin firing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号