首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The distribution of different intermediate filament (IF) proteins in the embryonic chick spinal cord was examined at several stages of development using immunohistochemical techniques, analytic gel electrophoresis, and electron microscopy. We have found that: (1) the fibroblast-type IF protein (vimentin) is present in virtually all of the replicating neuroepithelial cells of the early neural tube, as well as in radial glia, astrocytes, and Schwann cells in later stages of development; (2) the fibroblast-type IF protein is not detectable in definitive neurons; (3) the neurofilament proteins are first detectable in postmitotic neuroblasts at about the time of initial axon formation and they are restricted to neurons; (4) the astrocyte-type IF protein (glial fibrillary acidic protein) is in definitive astrocytes, but not in radial glia; (5) the prekeratin proteins are restricted to cells of the leptomeninges; and (6) the muscle-type IF protein (desmin) is restricted to vascular tissue in and around the developing spinal cord. These findings suggest that the fibroblast-type IF protein is the only IF protein in the early neuroepithelial cells and that the progeny of these cells will follow one of three different patterns of IF protein expression: (1) continued expression of only the fibroblast-type IF protein (radial glia); (2) expression of both the fibroblast-type IF protein and the astrocyte-type IF protein (astrocytes); or (3) expression of only the neurofilament proteins (neurons).  相似文献   

2.
3.
Filaments of wool are heteropolymers formed by interaction of type I and type II intermediate filament (IF) proteins. There are four proteins in each of these two classes. Interaction of the reduced wool IF proteins was studied by two-dimensional electrophoresis which showed that complexes between type I and type II proteins were formed in solution at urea concentrations below 6 M. Complex formation between the carboxymethyl derivatives of wool IF proteins was studied using a filter binding assay in which radio-labelled individual components were allowed to react under various conditions with SDS-PAGE separated components after transfer to nitrocellulose. The results suggested that (i) absolute type specificity of interaction was maintained, (ii) fine specificity, i.e. preferential reaction between specific components is observed, (iii) wool IF proteins (hard keratins) also react, with the same type specificity, with soft keratins isolated from cow snout, (iv) the initial step in the polymerization sequence that leads to filament formation yields heterodimers.  相似文献   

4.
Testicular seminoma has in the past been considered to represent a germ cell tumor incapable of further differentiation. In recent years this view has been challenged on the basis of morphologic and chromosomal studies. Moreover, studies of intermediate filaments (IF) of seminoma cells have provided evidence of the capability of seminoma cells to differentiate in different directions. In the present study of the IF protein profile of 26 human testicular seminomas, using frozen as well as formalin-fixed, paraffin-embedded tissues, we report evidence of a heterogeneous differentiation potential inherent in these neoplasms. Thus, in 4 of the seminomas neither cytokeratins nor vimentin were detected; 3 showed vimentin positive cells but no cytokeratins; in 4 seminomas only cytokeratins were detected. In the remaining 15 cases both cytokeratins and vimentin were present, with occasional cells demonstrating coexpression of cytokeratin and vimentin. While the cytokeratins present were mostly of the "simple epithelial type", in 2 instances seminoma cells also contained cytokeratins 4 and 17, normally found in stratified and/or complex glandular epithelia. Furthermore, in 3 cases scattered tumor cells stained for desmin and in 2 other seminomas neurofilaments were identified. All of the cases showed variable positive staining for desmoplakins and desmoglein, indicative of the presence of desmosomes. It can therefore be concluded that, while some seminomas seem to be devoid of IFs, most of them show varied differentiation patterns usually with epithelial features but occasionally also with components commonly regarded as characteristic of myogenic or neurogenic differentiation. These observations may help to elucidate the relationship of seminomas to other germ cell tumors, and also contribute to our understanding of the histogenesis of these neoplasms.  相似文献   

5.
6.
7.
Aggregation of wool keratin intermediate filament proteins   总被引:1,自引:0,他引:1  
The wool keratin intermediate filament proteins were isolated as their S-carboxymethyl derivatives (S-carboxymethylkerateine A, SCMKA) and purified by gel filtration to remove residual non-helical protein of low molecular weight. The alpha-helix content of purified SCMKA was approximately 62% in agreement with that predicted for the alpha-helical coiled-coil segments from the amino acid sequences of the subunits. In aqueous buffer at pH 11 or in n-propanol (20% v/v) at pH 9.2 very large aggregates are dissociated and SCMKA exists largely as a mixture of the dimer (two-chain coiled-coil of Mr approximately 103,000) and the tetramer. The protein species are not in rapidly reversible equilibrium as judged from gel filtration and sedimentation equilibrium. It is probable that species with a range of association constants are present. The equilibrium is shifted towards the dimer with change of pH from 9.2 to 11 or by the addition of 20% (v/v) n-propanol. The tetrameric proteolytic digestion product which is derived from the 1B segment of the alpha-helical rod section of the keratin molecule dissociates in a similar way to intact SCMKA with increase of pH and in the presence of n-propanol. This indicates the importance of this region of the rod domain in the initial stages of the assembly of the filament. Electrostatic and hydrophobic interactions are implicated in the association of the two-chain coiled-coil to the tetramer both in intact SCMKA and the 1B segment tetramer. The results are discussed in relation to the intact dimeric and tetrameric complexes obtained from other intermediate filament types.  相似文献   

8.
The molecular subunit composition of neurofilaments (NFs) progressively changes during axon development. In developing Xenopus laevis spinal cord, peripherin emerges at the earliest stages of neurite outgrowth. NF-M and XNIF (an alpha-internexin-like protein) appear later, as axons continue to elongate, and NF-L is expressed after axons contact muscle. Because NFs are the most abundant component of the vertebrate axonal cytoskeleton, we must understand why these changes occur before we can fully comprehend how the cytoskeleton regulates axon growth and morphology. Knowing where these proteins are localized within developing neurites and how their expression changes with cell contact is essential for this understanding. Thus, we examined by immunofluorescence the expression and localization of these NF subunits within dissociated cultures of newly differentiating spinal cord neurons. In young neurites, peripherin was most abundant in distal neuritic segments, especially near branch points and extending into the central domain of the growth cone. In contrast, XNIF and NF-M were usually either absent from very young neurites or exhibited a proximal to distal gradient of decreasing intensity. In older neurites, XNIF and NF-M expression increased, whereas that of peripherin declined. All three of these proteins became more evenly distributed along the neurites, with some branches staining more intensely than others. At 24 h, NF-L appeared, and in 48-h cultures, its expression, along with that of NF-M, was greater in neurites contacting muscle cells, arguing that the upregulation of these two subunits is dependent on contact with target cells. Moreover, this contact had no effect on XNIF or peripherin expression. Our findings are consistent with a model in which peripherin plays an important structural role in growth cones, XNIF and NF-M help consolidate the intermediate filament cytoskeleton beginning in the proximal neurite, and increased levels of NF-L and NF-M help further solidify the cytoskeleton of axons that successfully reach their targets.  相似文献   

9.
Human cells grown in monolayer culture were microinjected with intermediate filament subunit proteins. In fibroblasts with a preexisting vimentin network, injected porcine glial fibrillary acidic protein (GFAP) co-localized with the vimentin network within 24 hours. Phosphorylated GFAP variants were found to become dephosphorylated concomitantly with their incorporation into filamentous structures. After microinjection of either porcine GFAP or murine vimentin into human carcinoma cells lacking cytoplasmic intermediate filaments, we observed that different types of filament networks developed. Whereas vimentin was incorporated into short filaments immediately after injection, GFAP was found to aggregate into rodlike structures. This may indicate a differential filament forming ability of these intermediate filament proteins in vivo.  相似文献   

10.
Characterization of dimer subunits of intermediate filament proteins   总被引:16,自引:0,他引:16  
The fundamental subunit of the various types of intermediate-sized filaments (IF) has been shown to be a tetramer that is thought to represent a double dimer, i.e. an array of two laterally packed coiled-coils of alpha-helices. The two-chain state of intact IF proteins had up to this point not been isolated and characterized as has been done for other fibrous alpha-helical coiled-coil proteins. Using buffers containing 3 M-guanidinium hydrochloride we prepared dimers by depolymerization of IF or by reconstitution from fully denatured molecules. Dimers of desmin (from chicken gizzard), vimentin (from bovine lens tissue and cultured human fibroblasts) and the neurofilament protein NF-L (from bovine brain) as well as in vitro formed homodimers of human and rat cytokeratins numbers 8 (A), 18 (D) and 19 ("40K"), are characterized by ultracentrifugation techniques (sedimentation velocity and equilibrium), electron microscopy and chemical cross-linking. The results show that IF proteins from discrete complexes of two polypeptide chains in parallel orientation and probably in coiled-coil configuration, which apparently have a high tendency to further associate into double dimers. Implications of these results for concepts of IF organization and IF protein assembly are discussed.  相似文献   

11.

Background  

Tanabin, transitin and nestin are type VI intermediate filament (IF) proteins that are developmentally regulated in frogs, birds and mammals, respectively. Tanabin is expressed in the growth cones of embryonic vertebrate neurons, whereas transitin and nestin are found in myogenic and neurogenic cells. Another type VI IF protein, synemin, is expressed in undifferentiated and mature muscle cells of birds and mammals. In addition to an IF-typical α-helical core domain, type VI IF proteins are characterized by a long C-terminal tail often containing distinct repeated motifs. The molecular evolution of type VI IF proteins remains poorly studied.  相似文献   

12.
Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) methods have been used to provide high-resolution separation of wool intermediate filament proteins (IFPs). An improved method of extraction was developed based on a previously published method. The improved method for extraction eliminates the use of dialysis and freeze-drying between the extraction and rehydration steps, allowing the extraction and rehydration for the first dimension gel to be achieved in one day. Improvements to the method for maintaining reducing conditions and chaotrope constitution, combined with low %T polyacrylamide gels, allowed the high-resolution separation of the two keratin IFP families and their individual family members. The IFPs were separated to produce a clearly defined spot pattern of higher intensity, with numerous minor spots not previously observed, and a marked improvement in the vertical resolution. Further work to analyse the composition of each of the protein spots has been made much easier by being able to separate the IFPs into discrete spots.  相似文献   

13.
The plakin family of cytolinkers interacts with intermediate filaments (IFs) through plakin repeat domain (PRD) and linker modules. Recent structure/function studies have established the molecular basis of envoplakin-PRD and periplakin-linker interactions with vimentin. Both plakin modules share a broad basic groove which recognizes acidic rod elements on IFs, a mechanism that is applicable to other plakin family members. This review postulates a universal IF engagement mechanism that illuminates the specific effects of pathogenic mutations associated with diseases including arrhythmogenic right ventricular cardiomyopathy, and reveals how diverse plakin proteins offer tailored IF tethering to ensure stable, dynamic and regulated cellular structures.  相似文献   

14.
Using double immuno-fluorescence techniques on frozen-thick sections, we have examined the fate of intermediate filaments during Con A receptor capping in lympnoid cells. Our results indicate that during capping intermediate filaments are preferrentially aggregated between the surface receptor cap structure and the cell nucleus. It is possible, therefore, that intermediate filaments are directly involved in lympnocyte capping.  相似文献   

15.
Genomic studies have shown that there are four abundant type I and type II intermediate filament proteins (IFPs) in wool. When separated using 2D-PAGE, the type I IFPs separated into four clearly defined major rows. The type II IFPs separated into two distinct staggered rows. The large number of spots seen by 2D-PAGE has previously been attributed to charge heterogeneity caused by post-translational modification of the protein. However, analysis of wool IFPs by 2D-PAGE techniques and mass spectrometry suggested an absence of phosphorylation or glycosylation modifications. Investigations with both the type I and type II IFPs showed that when single protein spots from a 2D-PAGE separation are eluted, re-focused and re-electrophoresed, several spots are formed on both the acidic and basic side of the original spot. Amino acid analysis, mass spectrometry and Ellman's assay support the hypothesis that the proteins have the same sequence but vary in isoelectric charge, due to differences in exposure of charged residues on the molecular surface. The cause of IFP charge heterogeneity is thus proposed to be a conformational equilibrium between several different forms of the same protein in the rehydration solution used for the first dimension.  相似文献   

16.
Monoclonal antibodies were prepared against a 46,000 mol wt major cytoplasmic protein from Drosophila melanogaster Kc cells. These antibodies reacted with the 46,000 and a 40,000 mol wt protein from Kc cells. Some antibodies showed cross-reaction with 55,000 (vimentin) and 52,000 mol wt (desmin) proteins from baby hamster kidney (BHK) cells that form intermediate sized filaments in vertebrate cells. In indirect immunofluorescence, the group of cross reacting antibodies stained a filamentous meshwork in the cytoplasm of vertebrate cells. In Kc cells the fluorescence seemed to be localized in a filamentous meshwork that became more obvious after the cells had flattened out on a surface. These cytoskeletal structures are heat-labile; the proteins in Kc or BHK cells rearrange after a brief heat shock, forming juxtanuclear cap structures.  相似文献   

17.
Blumenthal SS  Clark GB  Roux SJ 《Planta》2004,218(6):965-975
In immunoblot assays, at least three putative nuclear intermediate filament (NIF) proteins were detected in nuclear envelope-matrix (NEM) and lamin (L1) fractions of nuclei from plumules of dark-grown pea (Pisum sativum L.) seedlings. These NIF proteins had apparent molecular masses of ca. 65, 60, and 54 kDa (also referred to as p65, p60, and p54), and appeared as multiple isoelectric forms, with pIs ranging from ca. 4.8 to 6.0. Polyclonal and monoclonal antibodies were raised to the 65-kDa NIF protein bands excised from gels after electrophoresis. These anti-pea antibodies were specifically cross-reactive with the pea nuclear p65, p60, and p54 proteins and also with chicken lamins. Sequence alignment of peptide fragments obtained from the 65- and 60-kDa pea NIF proteins showed similarity with animal intermediate filament proteins such as lamins and keratins and with certain plant proteins predicted to have long coiled-coil domains. These pea NIF proteins were further purified and enriched from the NEM fraction using methods similar to those used for isolating animal lamins. When negatively stained and viewed by transmission electron microscopy, the filaments in the pea lamin (L1) fraction appeared to be 6–12 nm in diameter. As assayed by immunofluorescence cytochemistry using a confocal laser-scanning microscope, fixed pea plumule cells displayed uniform as opposed to peripheral nuclear staining by several of the antibody preparations, both polyclonal and monoclonal. This report describes the biochemical and immunological properties of these pea NIF proteins.Abbreviations IF Intermediate filament - L Lamin fraction - LM Lamina-matrix fraction - MAb JLA20 Anti-chicken actin monoclonal antibody - MAb LN43 Anti-human lamin B2 monoclonal antibody - MAb PL19 Anti-pea lamin #19 monoclonal antibody - MAb TIB 131 Anti-intermediate filament monoclonal antibody - N Nuclei fraction - NEM Nuclear envelope-matrix fraction - NIF Nuclear intermediate filament - PAb PL3 Anti-pea lamin #3 polyclonal antibody  相似文献   

18.
The content of glial fibrillary acidic protein (GFAP) was measured in human brain tumours with different histological structure, origin and rate of malignancy. The polypeptide composition of CFAP was established in human brain and tumours by SDS polyacrylamide gel electrophoresis followed by immunoblotting. In tumours with an astrocyte type of differentiation, GFAP was revealed as a set of immunologically related and partially degraded polypeptides with a molecular weight of around and below 37 kD. It was assumed that the appearance of intact GFAP polypeptides (49 kD) in some tumours may be considered as a result of penetration of reactive astrocytes into tumour tissue.  相似文献   

19.
K Weber  U Plessmann    W Ulrich 《The EMBO journal》1989,8(11):3221-3227
The giant body muscle cells of the nematode Ascaris lumbricoides show a complex three dimensional array of intermediate filaments (IFs). They contain two proteins, A (71 kd) and B (63 kd), which we now show are able to form homopolymeric filaments in vitro. The complete amino acid sequence of B and 80% of A have been determined. A and B are two homologous proteins with a 55% sequence identity over the rod and tail domains. Sequence comparisons with the only other invertebrate IF protein currently known (Helix pomatia) and with vertebrate IF proteins show that along the coiled-coil rod domain, sequence principles rather than actual sequences are conserved in evolution. Noticeable exceptions are the consensus sequences at the ends of the rod, which probably play a direct role in IF assembly. Like the Helix IF protein the nematode proteins have six extra heptads in the coil 1b segment. These are characteristic of nuclear lamins from vertebrates and invertebrates and are not found in vertebrate IF proteins. Unexpectedly the enhanced homology between lamins and invertebrate IF proteins continues in the tail domains, which in vertebrate IF proteins totally diverge. The sequence alignment necessitates the introduction of a 15 residue deletion in the tail domain of all three invertebrate IF proteins. Its location coincides with the position of the karyophilic signal sequence, which dictates nuclear entry of the lamins. The results provide the first molecular support for the speculation that nuclear lamins and cytoplasmic IF proteins arose in eukaryotic evolution from a common lamin-like predecessor.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号