首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The biochemical mechanisms by which hibernators cool as they enter torpor are not fully understood. In order to examine whether rates of substrate oxidation vary as a function of hibernation, liver mitochondria were isolated from telemetered ground squirrels (Spermophilus lateralis) in five phases of their annual hibernation cycle: summer active, and torpid, interbout aroused, entrance, and arousing hibernators. Rates of state 3 and state 4 respiration were measured in vitro at 25 degrees C. Relative to mitochondria from summer-active animals, rates of state 3 respiration were significantly depressed in mitochondria from torpid animals yet fully restored during interbout arousals. These findings indicate that a depression of ADP-dependent respiration in liver mitochondria occurs during torpor and is reversed during the interbout arousals to euthermia. Because this inhibition was determined to be temporally independent of entrance and arousal, it is unlikely that active suppression of state 3 respiration causes entrance into torpor by facilitating metabolic depression. In contrast to the observed depression of state 3 respiration in torpid animals, state 4 respiration did not differ significantly among any of the five groups, suggesting that alterations in proton leak are not contributing appreciably to downregulation of respiration in hibernation.  相似文献   

2.
1. The rates of oxidation of various substrates (beta-hydroxybutyrate, succinate, ascorbate + TMPD) and the rate of ATP synthesis in liver mitochondria from active and hibernating ground squirrels were measured. 2. It was shown that the rate of mitochondrial respiration is significantly lower in hibernating animals than in active animals. 3. The degree of inhibition of mitochondrial respiration in hibernating ground squirrels was found to correlate with the length of the respiratory chain fragment involved in the oxidation of a given substrate. 4. The inhibition of mitochondrial respiration in hibernating animals was accompanied by a decrease in the rate of ATP synthesis. 5. The activity of phospholipase A2 in liver mitochondria from hibernating ground squirrels was found to be decreased. The activation of phospholipase A2 by Ca2+ ions eliminated the inhibition of respiration almost completely. 6. It was assumed that the inhibition of mitochondrial respiration during hibernation is (a) related to the suppression of phospholipase A2 activity and (b) caused by the reduced rates of electron transport through the respiratory chain and/or of substrate transport across the mitochondrial membrane.  相似文献   

3.
A significant proportion of standard metabolic rate is devoted to driving mitochondrial proton leak, and this futile cycle may be a site of metabolic control during hibernation. To determine if the proton leak pathway is decreased during metabolic depression related to hibernation, mitochondria were isolated from liver and skeletal muscle of nonhibernating (active) and hibernating arctic ground squirrels (Spermophilus parryii). At an assay temperature of 37 degrees C, state 3 and state 4 respiration rates and state 4 membrane potential were significantly depressed in liver mitochondria isolated from hibernators. In contrast, state 3 and state 4 respiration rates and membrane potentials were unchanged during hibernation in skeletal muscle mitochondria. The decrease in oxygen consumption of liver mitochondria was achieved by reduced activity of the set of reactions generating the proton gradient but not by a lowered proton permeability. These results suggest that mitochondrial proton conductance is unchanged during hibernation and that the reduced metabolism in hibernators is a partial consequence of tissue-specific depression of substrate oxidation.  相似文献   

4.
Studies have been made on the ultrastructure of cardiomyocytes during hibernation and arousal of the ground squirrel C. undulatus. It was found that the number of elements of the rough endoplasmic reticulum, Golgi complex, vesicles and ribosomes increases in the perinuclear areas of cardiomyocytes during arousal of animals. These areas are saturated with lipid inclusions and mitochondria. Numerous vesicles and fringed bubbles were found near the plasma membrane which has many caveolae. These findings may indicate the intense metabolism of the membrane material between plasmalemma and cytoplasmic vesicles. Possible mode of rapid reorganization of the sarcolemma and changes in its functional properties during hibernation-arousal stages are suggested. It is concluded that apart from structural and functional properties which are acquired by cells during preparation of animals to hibernation and which exhibit only small changes during the whole period of hibernation, cyclic changes in plasmalemma structure and function occur during arousal of the ground squirrels.  相似文献   

5.
The functional (synthetic) activity of blood lymphocytes and bone marrow haemopoietic cells in ground squirrels during the annual cycle as well as in hibernating and awaken animals in winter have been studied by fluorescent microspectrometry. The effect of ionizing radiation on animals in different functional states of the hibernation-arousal bout was investigated too. It was shown that the synthetic activity (parameter alpha) in blood lymphocytes was minimal in hibernating state in winter and maximal in active euthermic spring animals, then slightly decreased in June and more considerably decreased in the prehibernating autumn period. In awake animals in winter, the values of parameter alpha reached the same values as in summer. The changes of parameter alpha in bone marrow haemopoietic cells were essentially the same: the minimal values were observed in the prehibernation autumn period and in awake animals in winter the alpha values were slightly higher than in active euthermic animals in summer. The maximal synthetic activity in bone marrow haemopoietic cells in active euthermic spring animals is due mainly to cells in G1-G2 phases of the cell cycle. The decrease of the synthetic activity in summer is a result of the cell transition from G2 to mitosis and transition of a part of cells to G0 When investigating the hibernation-arousal bout in ground squirrels in winter, during arousal, we found two stages considerably differing in both the values of parameter alpha in bone marrow haemopoietic cells and the number of blood cells. The synthetic activity and the total number of blood and bone marrow cells in ground squirrels irradiated in the state of deep hibernation did not differ significantly from the state of non-irradiated hibernating animals. The negative effect of radiation appeared upon the arousal of these animals but it was expressed to a lesser degree in comparison with the animals irradiated in the active state. It was found that the acute irradiation of animals during arousal from hibernation in the second stage caused the most pronounced functional inactivation and cell death. The physiological state of ground squirrels subjected to ionizing irradiation at different phases of the hibernation-arousal bout plays a determining role in the changes of the qualitative and quantitative characteristics of blood system cells. Thus, the hypometabolic state of ground squirrels in hibernation is a factor of protection from the action of ionizing radiation on the organism and the immune system.  相似文献   

6.
During arousal from hibernation, body temperature (T(b)) increases by ~30°C and liver mitochondrial respiration increases threefold in as little as 2 h. We analyzed liver mitochondria purified from ground squirrels (Ictidomys tridecemlineatus) to see whether membrane phospholipids were remodeled during spontaneous arousal. Cardiolipin content did not change among animals in torpor (T ~ 5°C), the early phase of arousal (T ~ 15°C), late arousal (T ~ 30°C), interbout euthermia (T ~ 37°C), and summer-active animals (T ~ 37°C) that do not hibernate. Phosphatidylcholine content increased in late arousal relative to interbout euthermia, while phosphatidylethanolamine decreased. Phospholipid monounsaturated fatty acids (MUFAs) did not change throughout arousal, but polyunsaturated fatty acids (PUFAs) and MUFA/PUFA decreased and increased, respectively. In the fatty acid conjugates of phospholipids, neither unsaturation index nor n-3/n-6 differed. Few changes in individual fatty acids were noted, but palmitoleic acid (16:1, n-7) was higher in interbout euthermia and summer. Although 16:1 accounted for less than 1.5% of phospholipid fatty acids, it correlated strongly and positively with succinate-fueled state 3 mitochondrial respiration. No other phospholipid characteristic measured here correlated with mitochondrial respiration. These data show that mitochondrial membranes are remodeled rapidly during arousal, but the contribution to reversible suppression of mitochondrial respiration remains unclear.  相似文献   

7.
During hibernation, animals cycle between periods of torpor, during which body temperature (T(b)) and metabolic rate (MR) are suppressed for days, and interbout euthermia (IBE), during which T(b) and MR return to resting levels for several hours. In this study, we measured respiration rates, membrane potentials, and reactive oxygen species (ROS) production of liver and skeletal muscle mitochondria isolated from ground squirrels (Ictidomys tridecemlineatus) during torpor and IBE to determine how mitochondrial metabolism is suppressed during torpor and how this suppression affects oxidative stress. In liver and skeletal muscle, state 3 respiration measured at 37°C with succinate was 70% and 30% lower, respectively, during torpor. In liver, this suppression was achieved largely via inhibition of substrate oxidation, likely at succinate dehydrogenase. In both tissues, respiration by torpid mitochondria further declined up to 88% when mitochondria were cooled to 10°C, close to torpid T(b). In liver, this passive thermal effect on respiration rate reflected reduced activity of all components of oxidative phosphorylation (substrate oxidation, phosphorylation, and proton leak). With glutamate + malate and succinate, mitochondrial free radical leak (FRL; proportion of electrons leading to ROS production) was higher in torpor than IBE, but only in liver. With succinate, higher FRL likely resulted from increased reduction state of complex III during torpor. With glutamate + malate, higher FRL resulted from active suppression of complex I ROS production during IBE, which may limit ROS production during arousal. In both tissues, ROS production and FRL declined with temperature, suggesting ROS production is also reduced during torpor by passive thermal effects.  相似文献   

8.
The phospholipid composition of ground squirrel heart muscle changes during hibernation: more lysoglycerophosphatides are found in the hibernating state than in the active state. Phase transitions inferred from spin label motion occur in the usual manner typical of mammalian mitochondria for the mitochondria and mitochondrial lipids from active squirrels. However, a conspicuous absence of a spin label-detectable phase transition is observed in equivalent preparations from hibernating animals. The addition of lysolecithin to preparations from active squirrels removes the break and induces a straight line in the Arrhenius plot. The lack of a spin label-detectable phase transition in hibernating animals, therefore, is attributed to an increased content of lysoglycerophosphatides present in the phospholipids during hibernation.  相似文献   

9.
Hepatic gluconeogenesis and mitochondrial function during hibernation   总被引:1,自引:0,他引:1  
1. The aim of these studies was to investigate a mitochondrial basis for changes in gluconeogenesis during hibernation. 2. State 3 respiration rates in liver mitochondria from hibernating ground squirrels were reduced by 62-66%. The limiting reaction appeared to be electron transport, particularly in respiratory complex III. 3. The mitochondrial ATP + ADP + AMP content was reduced by 29% during hibernation; cellular adenine nucleotide content was unchanged. 4. Pyruvate carboxylation in intact mitochondria was decreased 75% during hibernation, although total pyruvate carboxylase activity was not lower. 5. Rates of gluconeogenesis in intact hepatocytes isolated from hibernators were lower than in cells from non-hibernators.  相似文献   

10.
Hibernation elicits a major reduction in whole-animal O2 consumption that corresponds with active suppression of liver mitochondrial electron transport capacity at, or downstream of, succinate dehydrogenase (SDH). During arousal from the torpor phase of hibernation this suppression is reversed and metabolic rates rise dramatically. In this study, we used the 13-lined ground squirrel (Ictidomys tridecemlineatus) to assess isolated liver mitochondrial respiration during the torpor phase of hibernation and various stages of arousal to elucidate a potential role of SDH in metabolic suppression. State 3 and state 4 respiration rates were seven- and threefold lower in torpor compared with the summer-active and interbout euthermic states. Respiration rates increased during arousal so that when body temperature reached 30°C in late arousal, state 3 and state 4 respiration were 3.3- and 1.8-fold greater than during torpor, respectively. SDH activity was 72% higher in interbout euthermia than in torpor. Pre-incubating with isocitrate [to alleviate oxaloacetate (OAA) inhibition] increased state 3 respiration rate during torpor by 91%, but this rate was still fourfold lower than that measured in interbout euthermia. Isocitrate pre-incubation also eliminated differences in SDH activity among hibernation bout stages. OAA concentration correlated negatively with both respiration rates and SDH activity. These data suggest that OAA reversibly inhibits SDH in torpor, but cannot fully account for the drastic metabolic suppression observed during this hibernation phase.  相似文献   

11.
Mammalian hibernation is characterized by prolonged torpor bouts interspersed by brief arousal periods. Adequate antioxidant defenses are needed both to sustain cell viability over weeks of deep torpor and to defend against high rates of oxyradical formation associated with massive oxygen-based thermogenesis during arousal. The present study shows that up-regulation of peroxiredoxins contributes to antioxidant defense during torpor in thirteen-lined ground squirrels, Spermophilus tridecemlineatus. Expression levels of three isozymes of the 2-Cys peroxiredoxin (Prdx) family were quantified by Western blotting, the results showing 4.0- and 12.9-fold increases in Prdx1 protein in brown adipose tissue (BAT) and heart, respectively, during hibernation compared with euthermia. Comparable increases in Prdx2 were 2.4- and 3.7-fold whereas Prdx3 rose by 3.1-fold in heart of torpid animals. Total 2-Cys peroxiredoxin enzymatic activity also rose during hibernation by 1.5-fold in heart and 3.5-fold in BAT. Furthermore, RT-PCR showed that prdx2 mRNA levels increased by 1.7- and 3.7-fold in BAT and heart, respectively, during hibernation. A partial nucleotide sequence of prdx2 from ground squirrels was obtained by PCR amplification, the deduced amino acid sequence showing 96-97% identity with Prdx2 from other mammals. Some unique amino acid substitutions were identified that might contribute to stabilizing Prdx2 conformation at the near 0 degrees C body temperatures during torpor.  相似文献   

12.
G F Zhegunov 《Tsitologiia》1988,30(2):157-162
A significant increase in protein synthesis correlating with ultrastructural dynamics of cardiomyocyte organelle convertions has been demonstrated in cardiomyocytes of ground squirrel during arousal from hibernation. In hibernating ground squirrels, the ultrastructure of protein-synthesizing organelles and of the cardiomyocyte nucleus points out to the readiness of cells to active synthesis of proteins. In the perinuclear area of cardiomyocytes abundant ribosomes, elements of endoplasmic reticulum and Golgi complex, mitochondria and high-energy substrates--glycogen and lipid inclusions--are seen. The cardiomyocyte nuclei are large, with highly convoluted borders and abundant pores, their nucleolar structure is granular, the chromatin is mainly diffuse. The potency of cardiomyocyte protein-synthesizing system of hibernating ground squirrels is realized every time at periodical arousals during hibernation. The role of cyclic changes of protein synthesis rate in adaptation of cells of hibernating mammals to functioning at various temperatures is discussed.  相似文献   

13.
The Na,K-ATPase activity in microsomal fraction isolated from kidneys of winter hibernating ground squirrels was found to be 1.8–2.0-fold lower than that in active animals in summer. This is partially connected with a decrease in Na,K-ATPase protein content in these preparations (by 25%). Using antibodies to different isoforms of Na,K-ATPase α-subunit and analysis of enzyme inhibition by ouabain, it was found that the decrease in Na,K-ATPase activity during hibernation is not connected with change in isoenzyme composition. Seasonal changes of Na,K-ATPase a-subunit phosphory- lation level by endogenous protein kinases were not found. Proteins which could be potential regulators of Na,K-ATPase activity were not found among phosphorylated proteins of the microsomes. Analysis of the composition and properties of the lipid phase of microsomes showed that the total level of unsaturation of fatty acids and the lipid/protein ratio are not changed significantly during hibernation, whereas the cholesterol content in preparations from kidneys of hibernating ground squirrels is approximately twice higher than that in preparations from kidneys of active animals. However, using spin and fluorescent probes it was shown that this difference in cholesterol content does not affect the integral membrane micro-viscosity of microsomes. Using the cross-linking agent cupric phenanthroline, it was shown that Na,K-ATPase in mem- branes of microsomes from kidneys of hibernating ground squirrels is present in more aggregated state in comparison with membranes of microsomes from kidneys of active animals. We suggest that the decrease in Na,K-ATPase activity in kidneys of ground squirrels during hibernation is mainly connected with the aggregation of proteins in plasma membrane.  相似文献   

14.
Changes in the isoform composition of the elastic protein titin from skeletal and cardiac muscles of hibernating ground squirrels were revealed for the first time. It was shown that, upon hibernation, the molecular mass of titin decreases and its functional properties change as compared with the active state of the animal. The physiological significance of the changes in titin isoform composition for the inhibition of muscle contractile activity upon hibernation is discussed in connection with similar changes during some cardiomyopathies.  相似文献   

15.
16.
Although hypoxia tolerance in heterothermic mammals is well established, it is unclear whether the adaptive significance stems from hypoxia or other cellular challenge associated with euthermy, hibernation, or arousal. In the present study, blood gases, hemoglobin O2 saturation (S(O2), and indexes of cellular and physiological stress were measured during hibernation and euthermy and after arousal thermogenesis. Results show that arterial O2 tension (Pa(O2)) and S(O2) are severely diminished during arousal and that hypoxia-inducible factor (HIF)-1alpha accumulates in brain. Despite evidence of hypoxia, neither cellular nor oxidative stress, as indicated by inducible nitric oxide synthase (iNOS) levels and oxidative modification of biomolecules, was observed during late arousal from hibernation. Compared with rats, hibernating Arctic ground squirrels (Spermophilus parryii) are well oxygenated with no evidence of cellular stress, inflammatory response, neuronal pathology, or oxidative modification following the period of high metabolic demand necessary for arousal. In contrast, euthermic Arctic ground squirrels experience mild, chronic hypoxia with low S(O2) and accumulation of HIF-1alpha and iNOS and demonstrate the greatest degree of cellular stress in brain. These results suggest that Arctic ground squirrels experience and tolerate endogenous hypoxia during euthermy and arousal.  相似文献   

17.
Mammalian hibernation is associated with several events that can affect programmed cell death (apoptosis) in nonhibernators, including marked changes in blood flow, extended fasting, and oxidative stress. However, the effect of hibernation on apoptosis is poorly understood. Here, we investigated apoptosis and expression of proteins involved in apoptotic pathways in intestinal mucosa of summer and hibernating ground squirrels. We used terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) to identify possible apoptotic enterocytes in small intestine of summer squirrels and hibernating squirrels throughout the winter. Nuclear TUNEL staining increased as hibernation progressed, but the staining pattern was diffuse and not accompanied by chromatin condensation or apoptotic bodies. Electrophoresis of mucosal DNA revealed no ladders typical of apoptosis. Nuclear levels of proapoptotic p53 protein were fourfold less in hibernators compared with summer squirrels. A 12-fold increase in anti-apoptotic Bcl-x(L) compared with a 2-fold increase in proapoptotic Bax suggested a balance in favor of antiapoptotic signaling in hibernators. There was no change in Bcl-2 protein expression but phospho-Bcl-2 increased in mucosa of hibernators. Hibernation had minimal effects on expression of active caspase-8 or -9, whereas caspase-3-specific activity was lower in hibernators during an interbout arousal compared with summer squirrels. Expression of the prosurvival protein Akt increased 20-fold during hibernation, but phospho-Akt was not altered. These data provide evidence for enhanced expression of antiapoptotic proteins during hibernation that may promote enterocyte survival in a pro-oxidative, proapoptotic environment.  相似文献   

18.
19.
The isoform composition of myosin light chains and the extent of their phosphorylation in skeletal and cardiac muscles of ground squirrel Citellus undulatus in different periods of hibernation were studied. Regulatory myosin light chains of skeletal muscles of hibernating ground squirrels were completely dephosphorylated, while 25% of these light chains in active animals were phosphorylated. During hibernation, a shift of isoform composition of essential and regulatory skeletal muscle myosin light chains toward slower isoforms was observed, which is evidenced by the data obtained on m. psoas and on the totality of all skeletal muscles. In the atrial myocardium of hibernating ground squirrels, ventricular myosin light chains 1 (up to 60%) were registered. In contrast, during arousal of ground squirrels, in ventricular myocardium the appearance of atrial myosin light chains 1 (up to 30%) was revealed. A possible role of posttranslation changes in myosin light chains and their isoform shifts in the hibernation scenario is discussed.  相似文献   

20.
The mechanisms for regulating the rate of respiration and oxidative phosphorylation in liver mitochondria from hibernating ground squirrels were studied. The microviscosity of the mitochondrial membrane in hibernating squirrels was found to be higher than that in active animals. Probably, a high microviscosity of the membrane causes a decreases in the rate of the transport of oxidation substrates into the mitochondrial matrix, which in turn may be one of the main reasons for the inhibition of mitochondrial respiration in hibernating squirrels. The activation of phospholipase A2 in a hypotonic medium results in the acceleration of the respiration and phosphorylation in the mitochondria from hibernating squirrels and is accompanied by the increase of the transport of substrates across the mitochondrial membrane. The inhibition of phospholipase A2 decreases Ca2+--induced acceleration of the transport of substrates and prevents the activation of the respiration and phosphorylation in a hypotonic medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号