首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A number of mutant forms of the antirestriction protein ArdA encoded by theardA gene located in a transmissive IncN plasmid pKM101 have been constructed. Proteins belonging to the Ard family are specific inhibitors of type I restriction–modification enzymes. Single mutational substitutions of negatively charged amino acid residues located in the antirestriction motif with hydrophobic alanine, E134A, E137A, D144A, or a double substitution E134A, E137A do not affect the antirestriction activity (Ard) of ArdA but almost completely abolish the antimodification activity (Amd). Mutational substitutions F107D and A110D in the assumed interface ArdA, which determines contact between monomers in the active dimer (Ard)2, cause an approximately 100-fold decrease in the antirestriction protein activity. It is hypothesized that the ArdA protein forms two complexes with the type I restriction–modification enzyme (R2M2S): (1) with a specific region in the S subunit involved in contact with the sK site in DNA; and (2) with a nonspecific region in the R subunit involved in DNA translocation and degradation by restriction endonucleases. The association of ArdA with the specific region inhibits restriction endonuclease and methyltransferase activities simultaneously, whereas the association of ArdA with a nonspecific region inhibits only restriction endonuclease activity of the R2M2S enzyme.  相似文献   

2.
The transmissive plasmid IncI1 R64 contains the ardA gene encoding the ArdA antirestriction protein. The R64 ardA gene locating in the leading region of plasmid R64 has been cloned and their sequence has been determined. Antirestriction proteins belonging to the Ard family are specific inhibitors of type I restriction-modification enzymes. The IncI1 ColIb-P9 and R64 are closely related plasmids, and the latter specifies an ArdA homologue that is predicted to be 97.6% (162 residues from 166) identical at the amino acid sequence level with the ColIb = P9 equivalent. However, the R64 ArdA selectively inhibits the restriction activity of EcoKi enzyme leaving significant levels of modification activity under conditions in which restriction was almost completely prevented. The ColIb-P9 ArdA inhibits restriction endonuclease and methyltransferase activities simultaneously. It is hypothesized that the ArdA protein forms two complexes with the type I restriction-modification enzyme (R2M2S): (1) with a specific region in the S subunit involved in contact with the sK site in DNA; and (2) with nonspecific region in the R subunit involved in DNA translocation and degradation by restriction endonuclease. The association of the ColIb-P9 ArdA with the specific region inhibits restriction endonuclease and methyltransferase activities simultaneously, whereas the association of the R64 ArdA with a nonspecific region inhibits only restriction endonuclease activity of the R2M2S enzyme.  相似文献   

3.
A study was made of the functional role of the ArdA antirestriction motif (130-LLADVPETVALYFD-143) conserved among all known Ard (alleviation of restriction of DNA) proteins, which are encoded by self-transmissible plasmids and specifically inhibit type I restriction-modification systems. Conserved residues of the motif were individually changed, and the resulting mutants tested for in vivo activity. Hydrophobic L130, L131, and V138 were substituted with negatively charged E; negatively charged D133, E136, and D143 substituted with hydrophobic V; and D127, D150, and D154 neighboring the antirestriction motif substituted with V. Four substitutions (L130E, L131E, V138E, and D143V) substantially (25-1000 times) reduced the ArdA activity. The other substitutions within or beyond the motif had no appreciable effect. Substitutions L130A and L131A each reduced the ArdA activity 10- to 20-fold, indicating that high hydrophobicity of L130 and L131 is important for the ArdA function. Thus, the antirestriction role of ArdA is indeed due to its conserved motif.  相似文献   

4.
A study was made of the functional role of the ArdA antirestriction motif (130-LLADVPETVALYFD-143) conserved among all known Ard (alleviation of restriction of DNA) proteins, which are encoded by self-transmissible plasmids and specifically inhibit type I restriction–modification systems. Conserved residues of the motif were individually changed, and the resulting mutants tested for in vivo activity. Hydrophobic L130, L131, and V138 were substituted with negatively charged E; negatively charged D133, E136, and D143 substituted with hydrophobic V; and D127, D150, and D154 neighboring the antirestriction motif substituted with V. Four substitutions (L130E, L131E, V138E, and D143V) substantially (25–1000 times) reduced the ArdA activity. The other substitutions within or beyond the motif had no appreciable effect. Substitutions L130A and L131A each reduced the ArdA activity 10- to 20-fold, indicating that high hydrophobicity of L130 and L131 is important for the ArdA function. Thus, the antirestriction role of ArdA is indeed due to its conserved motif.  相似文献   

5.
Proteins of the Ard family are specific inhibitors of type I restriction-modification enzymes. The ArdA of R64 is highly homologous to ColIb-P9 ArdA, differing only by four amino acid residues of the overall 166. However, unlike ColIb-P9 ArdA, which inhibits both the endonuclease and the methylase activities of EcoKI, the R64 ArdA protein inhibits only the endonuclease activity of this enzyme. The mutant forms of R64 ArdA--A29T, S43A, and Y75W, capable of partially reversing the protein to ColIb-P9 ArdA form--were produced by directed mutagenesis. It was demonstrated that only Y75W mutation of these three variants essentially influenced the functional activity of ArdA: the antimodification activity was restored to approximately 90-99%. It is assumed that R64 ArdA inhibits formation of the complex between unmodified DNA and the R subunit of the type I restriction-modification enzyme EcoKI (R2M2S), which translocates and cleaves DNA. ColIb-P9 ArdA protein is capable of forming the DNA complex not only with the R subunit, but also with the S subunit, which contacts sK site (containing modified adenine residues) in DNA. ArdA bound to the specific sK site inhibits concurrently the endonuclease and methylase activities of EcoKI (R2M2S), while ArdA bound to the nonspecific site in the R subunit blocks only its endonuclease activity.  相似文献   

6.
The IncN plasmid pKM101 (a derivative of R46), like the IncI1 plasmid ColIb-P9, carries a gene (ardA, for alleviation of restriction of DNA) encoding an antirestriction function. ardA was located about 4 kb from the origin of transfer, in the region transferred early during bacterial conjugation. The nucleotide sequence of ardA was determined, and an appropriate polypeptide with the predicted molecular weight of about 19,500 was identified in maxicells of Escherichia coli. Comparison of the deduced amino acid sequences of the antirestriction proteins of the unrelated plasmids pKM101 and ColIb (ArdA and Ard, respectively) revealed that these proteins have about 60% identity. Like ColIb Ard, pKM101 ArdA specifically inhibits both the restriction and modification activities of five type I systems of E. coli tested and does not influence type III (EcoP1) restriction or the 5-methylcytosine-specific restriction systems McrA and McrB. However, in contrast to ColIb Ard, pKM101 ArdA is effective against the type II enzyme EcoRI. The Ard proteins are believed to overcome the host restriction barrier during bacterial conjugation. We have also identified two other genes of pKM101, ardR and ardK, which seem to control ardA activity and ardA-mediated lethality, respectively. Our findings suggest that ardR may serve as a genetic switch that determines whether the ardA-encoded antirestriction function is induced during mating.  相似文献   

7.
The transmissive plasmid R64 (IncI1) performs an antirestriction function, reducing the efficiency of EcoKI-dependent restriction in Escherichia coli K12 cells approximately fivefold. The R64 ardA gene has been cloned and sequenced. The ArdA proteins specifically inhibit type I restriction–modification enzymes. R64 ArdA is highly homologous to ColIb-P9 ArdA: only 4 out of 166 amino acid residues differ. While ColIb-P9 inhibits both endonuclease and methylase activities of the type I restriction–modification enzyme EcoKI (R2M2S), R64 ArdA inhibits only its endonuclease activity. It has been assumed that R64 ArdA suppresses the binding of unmodified DNA with the R subunit, which is responsible for DNA translocation and cleavage. ColIb-P9 ArdA suppresses DNA binding not only with the R, but also with the S subunit, which contacts the sK site containing target adenines. The binding of ArdA with the specific site inhibits both endonuclease and methylase activities; the binding of ArdA with the nonspecific site of the R subunit inhibits only the endonuclease activity ofEcoKI (R2M2S).  相似文献   

8.
Proteins of the Ard family are specific inhibitors of type I restriction-modification enzymes. The ArdA of R64 is highly homologous to ColIb-P9 ArdA, differing only by four amino acid residues of the overall 166. However, unlike ColIb-P9 ArdA, which inhibits both the endonuclease and the methylase activities of EcoKI, the R64 ArdA protein inhibits only the endonuclease activity of this enzyme. The mutant forms of R64 ArdA—A29T, S43A, and Y75W, capable of partially reversing the protein to ColIb-P9 ArdA form—were produced by directed mutagenesis. It was demonstrated that only Y75W mutation of these three variants essentially influenced the functional activity of ArdA: the antimodification activity was restored to approximately 90%. It is assumed that R64 ArdA inhibits formation of the complex between unmodified DNA and the R subunit of the type I restriction-modification enzyme EcoKI (R2M2S), which translocates and cleaves DNA. ColIb-P9 ArdA protein is capable of forming the DNA complex not only with the R subunit, but also with the S subunit, which contacts sK site (containing modified adenine residues) in DNA. ArdA bound to the specific sK site inhibits concurrently the endonuclease and methylase activities of EcoKI (R2M2S), while ArdA bound to the nonspecific site in the R subunit blocks only its endonuclease activity.  相似文献   

9.
The IncW plasmid pSa contains the gene ard encoding an antirestriction function that is specific for type I restriction and modification systems. The nucleotide sequence of ard was determined and an appropriate polypeptide of about 33 kDa was identified in Escherichia coli T7 expression system. Analysis of deduced amino acid sequence of Ard encoded by pSa revealed that this protein has no significant similarities with the known Ard proteins (ArdA and ArdB types) except the "antirestriction" motif (14 amino acid residues in length) conserved for all known Ard proteins. This finding suggests that pSa Ard may be classified as a new type of Ard proteins which we designated ArdC. The remarkable feature of ArdC is that it has a high degree of similarity (about 38 % identity) to the N-terminal region of RP4 TraC1 primase which includes about 300 amino acid residues and seems to be essential for binding to the single-stranded DNA and TraC1 protein transport to the recipient cells during the conjugal transfer of plasmid DNA. ArdC also binds to single-stranded DNA. In addition, this protein is able in vitro to protect the single-stranded but not double-stranded plasmid DNA against the activity of type II restriction endonuclease HhaI that cleaves both single and double-stranded DNA. We suggest that like TraC1, ArdC would be transported as a result of their interaction with the single-stranded DNA of transferred plasmid strand during conjugative passage through the cell envelope to the recipient bacterium. Such properties of ArdC protein might be useful to protect immediately the incoming single-stranded DNA from the host endonucleases.  相似文献   

10.
Genes encoding antirestriction proteins are found in transmissble plasmids (ardABC) and bacteriophage genomes (ocr, darA). Antirestriction proteins inhibit type I restriction-modification enzymes and thus protect the unmodified plasmid or phage DNA from degradation. Antirestriction proteins belong to the family of DNA-mimicry proteins, whose spatial structure mimics the B-form of DNA. Based on an analysis of the mutant forms of ArdA and Ocr obtained by site-directed mutagenesis and the native form of ArdA that specifically inhibit type I restriction enzymes but do not affect their methylase activity, a model is proposed to describe the complex formation between an antirestriction protein and a type I restriction-modification enzyme (R2M2S): antirestriction proteins can displace a DNA strand from its binding sites in the S subunit (which contacts a specific site on DNA) and in the R subunit (which translocates the DNA strand and cleaves it). Antirestriction and antimodification activities of ArdA and Ocr as a function of ardA and ocr expression levels were studied by cloning the genes under a strictly regulated promoter.  相似文献   

11.
Many promiscuous plasmids encode the antirestriction proteins ArdA (alleviation of restriction of DNA) that specifically affect the restriction activity of heterooligomeric type I restriction-modification (R-M) systems in Escherichia coli cells. In addition, a lot of the putative ardA genes encoded by plasmids and bacterial chromosomes are found as a result of sequencing of complete genomic sequences, suggesting that ArdA proteins and type I R-M systems that seem to be widespread among bacteria may be involved in the regulation of gene transfer among bacterial genomes. Here, the mechanism of antirestriction action of ArdA encoded by IncI plasmid ColIb-P9 has been investigated in comparison with that of well-studied T7 phage-encoded antirestriction protein Ocr using the mutational analysis, retardation assay and His-tag affinity chromatography. Like Ocr, ArdA protein was shown to be able to efficiently interact with EcoKI R-M complex and affect its in vivo and in vitro restriction activity by preventing its interaction with specific DNA. However, unlike Ocr, ArdA protein has a low binding affinity to EcoKI Mtase and the additional C-terminal tail region (VF-motif) is needed for ArdA to efficiently interact with the type I R-M enzymes. It seems likely that this ArdA feature is a basis for its ability to discriminate between activities of EcoKI Mtase (modification) and complete R-M system (restriction) which may interact with unmodified DNA in the cells independently. These findings suggest that ArdA may provide a very effective and delicate control for the restriction and modification activities of type I systems and its ability to discriminate against DNA restriction in favour of the specific modification of DNA may give some advantage for efficient transmission of the ardA-encoding promiscuous plasmids among different bacterial populations.  相似文献   

12.
Antirestriction proteins of the ArdB/KlcA family are specific inhibitors of restriction (endonuclease) activity of type-I restriction/modification enzymes. The effect of conserved amino acid residues on the antirestriction activity of the ArdB protein encoded by the transmissible R64 (IncI1) plasmid has been investigated. An analysis of the amino acid sequences of ArdB homologues demonstrated the presence of four groups of conserved residues ((1) R16, E32, and W51; (2) Y46 and G48; (3) S81, D83 and E132, and (4) N77, L(I)140, and D141) on the surface of the protein globule. Amino acid residues of the fourth group showed a unique localization pattern with the terminal residue protruding beyond the globule surface. The replacement of two conserved amino acids (D141 and N77) located in the close vicinity of each other on the globule surface showed that the C-terminal D141 is essential for the antirestriction activity of ArdB. The deletion of this residue, as well as replacement by a hydrophobic threonine residue (D141T), completely abolished the antirestriction activity of ArdB. The synonymous replacement of D141 by a glutamic acid residue (D141E) caused an approximately 30-fold decrease of the antirestriction activity of ArdB, and the point mutation N77A caused an approximately 20-fold decrease in activity. The residues D141 and N77 located on the surface of the protein globule are presumably essential for the formation of a contact between ArdB and a currently unknown factor that modulates the activity of type-I restriction/modification enzymes.  相似文献   

13.
Antirestriction proteins Ard encoded by some self-transmissible plasmids specifically inhibit restriction by members of all three families of type I restriction-modification (R-M) systems in E.coli. Recently, we have identified the amino acid region, 'antirestriction' domain, that is conserved within different plasmid and phage T7-encoded antirestriction proteins and may be involved in interaction with the type I R-M systems. In this paper we demonstrate that this amino acid sequence shares considerable similarity with a well-known conserved sequence (the Argos repeat) found in the DNA sequence specificity (S) polypeptides of type I systems. We suggest that the presence of these similar motifs in restriction and antirestriction proteins may give a structural basis for their interaction and that the antirestriction action of Ard proteins may be a result of the competition between the 'antirestriction' domains of Ard proteins and the similar conserved domains of the S subunits that are believed to play a role in the subunit assembly of type I R-M systems.  相似文献   

14.
15.
The ArdA antirestriction protein of the IncB plasmid R16 selectively inhibited the restriction activity of EcoKI, leaving significant levels of modification activity under conditions in which restriction was almost completely prevented. The results are consistent with the hypothesis that ArdA functions in bacterial conjugation to allow an unmodified plasmid to evade restriction in the recipient bacterium and yet acquire cognate modification.  相似文献   

16.
A study was made of the antirestriction activity of Acidiphilium multivorum AIU 301 ArsR, a repressor of the ars operon which confers resistance to arsenite and arsenate and is on pKW301. In Escherichia coli, arsR cloned under the control of Plac in a multi-copy vector alleviated restriction of nonmodified lambda DNA by a factor of 120, six times more efficiently than its analogs of conjugal plasmids R64 (incI1) and R773 (incFI). Amino acid sequence analysis showed that the three ArsR proteins have a homologous region of 38 residues, including the antirestriction motif, in their N domains, whereas the motif is in the C domain in the Ard proteins. The other regions are nonhomologous, and pKW301 ArsR is 33 residues shorter than R64 and R773 ArsRs. The total charge is -4 in pKW301 ArsR and +2 in R64 and R733 ArsRs. A total negative charge was assumed to contribute to the antirestriction activity.  相似文献   

17.
The ArdA and Ocr antirestriction proteins, whose genes are in transmissible plasmids (ardA) and bacteriophage genomes (0.3 (ocr)), specifically inhibit type I restriction-modification enzymes. The Ocr protein (T7 bacteriophage) was shown to inhibit both restriction (endonuclease) and modification (methylase) activities of the EcoKI enzyme in a broad range of intracellular concentrations (starting from 10–20 molecules per cell). In contrast to Ocr, the ArdA protein (ColIb-P9 transmissible plasmid) inhibited both of the EcoKI activities only at high intracellular concentrations (30000–40000 molecules per cell). When the ArdA concentration was several fold lower, only endonuclease activity of EcoKI was inhibited. It was assumed that a poorer ArdA ability to inhibit EcoKI modification activity is related to the substantial difference in life cycle between transmissible plasmids (symbiosis with the bacterial cell) and bacteriophages (infection and lysis of bacteria). The Ocr and ArdA mutants that inhibited exclusively endonuclease activity of EcoKI were obtained. Antirestriction proteins incapable of homodimerization were assumed to inhibit only endonuclease activity of type I restriction-modification enzymes.  相似文献   

18.
The amino acid residues essential for the enzymatic activity of bacteriophage T5 deoxyribonucleoside monophosphate kinase were determined using a computer model of the enzyme active site. By site-directed mutagenesis, cloning, and gene expression in E. coli, a series of proteins were obtained with single substitutions of the conserved active site amino acid residues—S13A, D16N, T17N, T17S, R130K, K131E, Q134A, G137A, T138A, W150F, W150A, D170N, R172I, and E176Q. After purification by ion exchange and affine chromatography electrophoretically homogeneous preparations were obtained. The study of the enzymatic activity with natural acceptors of the phosphoryl group (dAMP, dCMP, dGMP, and dTMP) demonstrated that the substitutions of charged amino acid residues of the NMP binding domain (R130, R172, D170, and E176) caused nearly complete loss of enzymatic properties. It was found that the presence of the OH-group at position 17 was also important for the catalytic activity. On the basis of the analysis of specific activity variations we assumed that arginine residues at positions 130 and 172 were involved in the binding to the donor γ-phosphoryl and acceptor α-phosphoryl groups, as well as the aspartic acid residue at position 16 of the ATP-binding site (P-loop), in the binding to some acceptors, first of all dTMP. Disproportional changes in enzymatic activities of partially active mutants, G137A, T138A, T17N, Q134A, S13A, and D16N, toward different substrates may indicate that different amino acid residues participate in the binding to various substrates.  相似文献   

19.
Rastorguev  S. M.  Zavilgelsky  G. B.  Suzuki  K.  Sakka  K. 《Molecular Biology》2001,35(1):69-72
A study was made of the antirestriction activity of Acidiphilium multivorum AIU 301 ArsR, a repressor of the ars operon which confers resistance to arsenite and arsenate and is contained in pKW301. In Escherichia coli, arsR cloned under the control of P lac in a multicopy vector alleviated restriction of nonmodified DNA by a factor of 120, six times more efficiently than its analogs of conjugal plasmids R64 (incI1) and R773 (incFI). Amino acid sequence analysis showed that the three ArsR proteins have a homologous region of 38 residues, including the antirestriction motif, in their N domains, whereas in the Ard proteins the motif is in the C domain. The other regions are nonhomologous, and pKW301 ArsR is 33 residues shorter than R64 and R773 ArsRs. The total charge is –4 in pKW301 ArsR and +2 in R64 and R733 ArsRs. A total negative charge was assumed to contribute to the antirestriction activity.  相似文献   

20.
The genes from Moraxella bovis encoding the MboI restriction--modification system were cloned and expressed in Escherichia coli. Three open reading frames were found in the sequence containing the genes. These genes, which we named mboA, mboB, and mboC, had the same orientation in the genome. Genes mboA and mboC encoded MboI methyltransferases (named M.MboA and M.MboC) with 294 and 273 amino acid residues, respectively. The mboB gene coded for MboI restriction endonuclease (R.MboI) with 280 amino acid residues. Recombinant E.coli-MBOI, which contained the whole MboI system, overproduced R.MboI. R.MboI activity from E.coli-MBOI was 480-fold that of M.bovis. The amino acid sequences deduced from these genes were compared with those of other restriction--modification systems. The protein sequences of the MboI system had 38-49% homology with those of the DpnII system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号