首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conway KA  Harper JD  Lansbury PT 《Biochemistry》2000,39(10):2552-2563
Two missense mutations in the gene encoding alpha-synuclein have been linked to rare, early-onset forms of Parkinson's disease (PD). These forms of PD, as well as the common idiopathic form, are characterized by the presence of cytoplasmic neuronal deposits, called Lewy bodies, in the affected region of the brain. Lewy bodies contain alpha-synuclein in a form that resembles fibrillar Abeta derived from Alzheimer's disease (AD) amyloid plaques. One of the mutant forms of alpha-synuclein (A53T) fibrillizes more rapidly in vitro than does the wild-type protein, suggesting that a correlation may exist between the rate of in vitro fibrillization and/or oligomerization and the progression of PD, analogous to the relationship between Abeta fibrillization in vitro and familial AD. In this paper, fibrils generated in vitro from alpha-synuclein, wild-type and both mutant forms, are shown to possess very similar features that are characteristic of amyloid fibrils, including a wound and predominantly unbranched morphology (demonstrated by atomic force and electron microscopies), distinctive dye-binding properties (Congo red and thioflavin T), and antiparallel beta-sheet structure (Fourier transform infrared spectroscopy and circular dichroism spectroscopy). alpha-Synuclein fibrils are relatively resistant to proteolysis, a property shared by fibrillar Abeta and the disease-associated fibrillar form of the prion protein. These data suggest that PD, like AD, is a brain amyloid disease that, unlike AD, is characterized by cytoplasmic amyloid (Lewy bodies). In addition to amyloid fibrils, a small oligomeric form of alpha-synuclein, which may be analogous to the Abeta protofibril, was observed prior to the appearance of fibrils. This species or a related one, rather than the fibril itself, may be responsible for neuronal death.  相似文献   

2.
Parkinson's disease (PD) is a neurodegenerative disorder that is pathologically characterized by the presence of intracytoplasmic Lewy bodies, the major components of which are filaments consisting of alpha-synuclein. Two recently identified point mutations in alpha-synuclein are the only known genetic causes of PD. alpha-Synuclein fibrils similar to the Lewy body filaments can be formed in vitro, and we have shown recently that both PD-linked mutations accelerate their formation. This study addresses the mechanism of alpha-synuclein aggregation: we show that (i) it is a nucleation-dependent process that can be seeded by aggregated alpha-synuclein functioning as nuclei, (ii) this fibril growth follows first-order kinetics with respect to alpha-synuclein concentration, and (iii) mutant alpha-synuclein can seed the aggregation of wild type alpha-synuclein, which leads us to predict that the Lewy bodies of familial PD patients with alpha-synuclein mutations will contain both, the mutant and the wild type protein. Finally (iv), we show that wild type and mutant forms of alpha-synuclein do not differ in their critical concentrations. These results suggest that differences in aggregation kinetics of alpha-synucleins cannot be explained by differences in solubility but are due to different nucleation rates. Consequently, alpha-synuclein nucleation may be the rate-limiting step for the formation of Lewy body alpha-synuclein fibrils in Parkinson's disease.  相似文献   

3.
Cohlberg JA  Li J  Uversky VN  Fink AL 《Biochemistry》2002,41(5):1502-1511
Parkinson's disease is the second most common neurodegenerative disease and results from loss of dopaminergic neurons in the substantia nigra. The aggregation and fibrillation of alpha-synuclein have been implicated as a causative factor in the disease. Glycosaminoglycans (GAGs) are routinely found associated with amyloid deposits in most amyloidosis diseases, and there is evidence to support an active role of GAGs in amyloid fibril formation in some cases. In contrast to the extracellular amyloid deposits, the alpha-synuclein deposits in Lewy body diseases are intracellular, and thus it is less clear whether GAGs may be involved. To determine whether the presence of GAGs does affect the fibrillation of alpha-synuclein, the kinetics of fibril formation were investigated in the presence of a number of GAGs and other charged polymers. Certain GAGs (heparin, heparan sulfate) and other highly sulfated polymers (dextran sulfate) were found to significantly stimulate the formation of alpha-synuclein fibrils. Interestingly, the interaction of GAGs with alpha-synuclein is quite specific, since some GAGs, e.g., keratan sulfate, had negligible effect. Heparin not only increased the rate of fibrillation but also apparently increased the yield of fibrils. The molar ratio of heparin to alpha-synuclein and the incorporation of fluorescein-labeled heparin into the fibrils demonstrate that the heparin is integrated into the fibrils and is not just a catalyst for fibrillation. The apparent dissociation constant for heparin in stimulating alpha-synuclein fibrillation was 0.19 microM, indicating a strong affinity. Similar effects of heparin were observed with the A53T and A30P mutants of alpha-synuclein. Since there is some evidence that Lewy bodies may contain GAGs, these observations may be very relevant in the context of the etiology of Parkinson's disease.  相似文献   

4.
Intracellular proteinaceous aggregates (Lewy bodies and Lewy neurites) of alpha-synuclein are hallmarks of neurodegenerative diseases such as Parkinson's disease, dementia with Lewy bodies, and multiple systemic atrophy. However, the molecular mechanisms underlying alpha-synuclein aggregation into such filamentous inclusions remain unknown. An intriguing aspect of this problem is that alpha-synuclein is a natively unfolded protein, with little or no ordered structure under physiological conditions. This raises the question of how an essentially disordered protein is transformed into highly organized fibrils. In the search for an answer to this question, we have investigated the effects of pH and temperature on the structural properties and fibrillation kinetics of human recombinant alpha-synuclein. Either a decrease in pH or an increase in temperature transformed alpha-synuclein into a partially folded conformation. The presence of this intermediate is strongly correlated with the enhanced formation of alpha-synuclein fibrils. We propose a model for the fibrillation of alpha-synuclein in which the first step is the conformational transformation of the natively unfolded protein into the aggregation-competent partially folded intermediate.  相似文献   

5.
Rochet JC  Conway KA  Lansbury PT 《Biochemistry》2000,39(35):10619-10626
Parkinson's disease (PD) is a neurodegenerative disorder attributed to the loss of dopaminergic neurons from the substantia nigra. Some surviving neurons are characterized by cytoplasmic Lewy bodies, which contain fibrillar alpha-synuclein. Two mutants of human alpha-synuclein (A53T and A30P) have been linked to early-onset, familial PD. Oligomeric forms of these mutants accumulate more rapidly and/or persist for longer periods of time than oligomeric, human wild-type alpha-synuclein (WT), suggesting a link between oligomerization and cell death. The amino acid sequences of the mouse protein and WT differ at seven positions. Mouse alpha-synuclein, like A53T, contains a threonine residue at position 53. We have assessed the conformational properties and fibrillogenicity of the murine protein. Like WT and the two PD mutants, mouse alpha-synuclein adopts a "natively unfolded" or disordered structure. However, at elevated concentrations, the mouse protein forms amyloid fibrils more rapidly than WT, A53T, or A30P. The fibrillization of mouse alpha-synuclein is slowed by WT and A53T. Inhibition of fibrillization leads to the accumulation of nonfibrillar, potentially toxic oligomers. The results are relevant to the interpretation of the phenotypes of transgenic animal models of PD and suggest a novel approach for testing the cause and effect relationship between fibrillization and neurodegeneration.  相似文献   

6.
Parkinson's disease (PD) is a neurodegenerative disorder that is pathologically characterized by the presence of intracytoplasmic Lewy bodies. Recently, two point mutations in alpha-synuclein were found to be associated with familial PD, but as of yet no mutations have been described in the homologous genes beta- and gamma-synuclein. alpha-Synuclein forms the major fibrillar component of Lewy bodies, but these do not stain for beta- or gamma-synuclein. This result is very surprising, given the extent of sequence conservation and the high similarity in expression and subcellular localization, in particular between alpha- and beta-synuclein. Here we compare in vitro fibrillogenesis of all three purified synucleins. We show that fresh solutions of alpha-, beta-, and gamma- synuclein show the same natively unfolded structure. While over time alpha-synuclein forms the previously described fibrils, no fibrils could be detected for beta- and gamma-synuclein under the same conditions. Most importantly, beta- and gamma-synuclein could not be cross-seeded with alpha-synuclein fibrils. However, under conditions that drastically accelerate aggregation, gamma-synuclein can form fibrils with a lag phase roughly three times longer than alpha-synuclein. These results indicate that beta- and gamma-synuclein are intrinsically less fibrillogenic than alpha-synuclein and cannot form mixed fibrils with alpha-synuclein, which may explain why they do not appear in the pathological hallmarks of PD, although they are closely related to alpha-synuclein and are also abundant in brain.  相似文献   

7.
Park JY  Lansbury PT 《Biochemistry》2003,42(13):3696-3700
Parkinson's disease (PD) is an age-associated and progressive movement disorder that is characterized by dopaminergic neuronal loss in the substantia nigra and, at autopsy, by fibrillar alpha-synuclein inclusions, or Lewy bodies. Despite the qualitative correlation between alpha-synuclein fibrils and disease, in vitro biophysical studies strongly suggest that prefibrillar alpha-synuclein oligomers, or protofibrils, are pathogenic. Consistent with this proposal, transgenic mice that express human alpha-synuclein develop a Parkinsonian movement disorder concurrent with nonfibrillar alpha-synuclein inclusions and the loss of dopaminergic terminii. Double-transgenic progeny of these mice that also express human beta-synuclein, a homologue of alpha-synuclein, show significant amelioration of all three phenotypes. We demonstrate here that beta- and gamma-synuclein (a third homologue that is expressed primarily in peripheral neurons) are natively unfolded in monomeric form, but structured in protofibrillar form. Beta-synuclein protofibrils do not bind to or permeabilize synthetic vesicles, unlike protofibrils comprising alpha-synuclein or gamma-synuclein. Significantly, beta-synuclein inhibits the generation of A53T alpha-synuclein protofibrils and fibrils. This finding provides a rationale for the phenotype of the double-transgenic mice and suggests a therapeutic strategy for PD.  相似文献   

8.
Dusa A  Kaylor J  Edridge S  Bodner N  Hong DP  Fink AL 《Biochemistry》2006,45(8):2752-2760
The aggregation of the presynaptic protein alpha-synuclein is associated with Parkinson's disease (PD). The details of the mechanism of aggregation, as well as the cytotoxic species, are currently not well understood. alpha-Synuclein has four tyrosine and no tryptophan residues. We introduced a tyrosine to tryptophan mutation at position 39 to create an intrinsic fluorescence probe and allow additional characterization of the aggregation process. Y39W alpha-synuclein had similar fibrillation kinetics (2-fold slower), pH-induced conformational changes, and fibril morphology to wild-type alpha-synuclein. In addition to intrinsic Trp fluorescence, acrylamide quenching, fluorescence anisotropy, ANS binding, dynamic light scattering, and FTIR were employed to monitor the kinetics of aggregation. These biophysical probes revealed the significant population of two classes of oligomeric intermediates, one formed during the lag period of fibrillation and the other present at the completion of fibrillation. As expected for a natively unfolded protein, Trp 39 was highly solvent-exposed in the monomer and is solvent-exposed in the two oligomeric intermediates; however, it is partially, but not fully, buried in the fibrils. These observations demonstrate the utility of Trp fluorescence labeled alpha-synuclein and demonstrate the existence of an oligomeric intermediate that exists as a transient reservoir of alpha-synuclein for fibrillation.  相似文献   

9.
The alpha-synuclein protein has been strongly correlated with Parkinson's disease (PD) and is a major component of the hallmark Lewy body aggregates associated with PD. Two different mutations in the alpha-synuclein gene as well as increased gene dosage of wild-type alpha-synuclein all associate with early onset cases of PD; and transgenic animal models overexpressing alpha-synuclein develop PD symptoms. Alpha-synuclein, a natively unfolded protein, can adopt a number of different folded conformations including a beta-sheet form that facilitates formation of numerous aggregated morphologies, including long fibrils, spherical and linear protofibrils, and smaller aggregates or oligomers. The roles of the various morphologies of alpha-synuclein in the progression of PD are not known, and different species have been shown to be toxic. Here we show that single chain antibody fragments (scFv's) isolated from na?ve phage display antibody libraries can be used to control the aggregation of alpha-synuclein. We isolated an scFv with nanomolar affinity for monomeric alpha-synuclein (K(D) = 2.5 x 10(-8) M). When co-incubated with monomeric alpha-synuclein, the scFv decreased not only the rate of aggregation of alpha-synuclein, but also inhibited the formation of oligomeric and protofibrillar structures. The scFv binds the carboxyl terminal region of alpha-synuclein, suggesting that perturbation of this region can influence folding and aggregation of alpha-synuclein in vitro along with the previously identified hydrophobic core region of alpha-synuclein (residues 61-95, particularly residues 71-82). Since the scFv has been isolated from an antibody library based on human gene sequences, such scFv's can have potential therapeutic value in controlling aggregation of alpha-synuclein in vivo when expressed intracellularly as intrabodies in dopaminergic neurons.  相似文献   

10.
Parkinson's disease (PD) is one of many neurodegenerative diseases that are characterized by amyloid fibril formation. Alpha-synuclein is a primary component of the fibrillar neuronal inclusions, known as Lewy bodies, that are diagnostic of PD. In addition, the alpha-synuclein gene is linked to familial PD. Fibril formation by alpha-synuclein proceeds via discrete beta-sheet-rich oligomers, or protofibrils, that are consumed as fibrils grow. Both FPD mutations accelerate formation of protofibrils, suggesting that these intermediates, rather than the fibril product, trigger neuronal loss. In idiopathic PD, other factors may be responsible for accelerating protofibril formation by wild-type alpha-synuclein. One possible factor could be molecular crowding in the neuronal cytoplasm. We demonstrate here that crowding using inert polymers significantly reduced the lag time for protofibril formation and the conversion of the protofibril to the fibril, but did not affect the morphology of either species. Physiologically realistic changes in the degree of in vitro crowding have significant kinetic consequences. Thus, nonspecific changes in the total cytoplasmic protein concentration, induced by cell volume changes and/or altered protein degradation, could promote formation of and stabilize the alpha-synuclein protofibril.  相似文献   

11.
Alpha-Synuclein is degraded by both autophagy and the proteasome   总被引:19,自引:0,他引:19  
Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons in the substantia nigra and the formation of aggregates (Lewy bodies) in neurons. alpha-Synuclein is the major protein in Lewy bodies and rare mutations in alpha-synuclein cause early-onset PD. Consequently, alpha-synuclein is implicated in the pathogenesis of PD. Here, we have investigated the degradation pathways of alpha-synuclein, using a stable inducible PC12 cell model, where the expression of exogenous human wild-type, A30P, or A53T alpha-synuclein can be switched on and off. We have used a panel of inhibitors/stimulators of autophagy and proteasome function and followed alpha-synuclein degradation in these cells. We found that not only is alpha-synuclein degraded by the proteasome, but it is also degraded by autophagy. A role for autophagy was further supported by the presence of alpha-synuclein in organelles with the ultrastructural features of autophagic vesicles. Since rapamycin, a stimulator of autophagy, increased clearance of alpha-synuclein, it merits consideration as a potential therapeutic for Parkinsons disease, as it is designed for chronic use in humans.  相似文献   

12.
Filamentous aggregates formed by alpha-synuclein are a prominent and presumably key etiological factor in Parkinson's and other neurodegenerative diseases characterized by motor disorders. Numerous studies have demonstrated that various environmental and intracellular factors affect the fibrillation properties of alpha-synuclein, e.g. by accelerating the process of assembly. Histones, the major component and constituent of chromatin, interact specifically with alpha-synuclein and enhance its fibrillation significantly. Here, we report that another component of chromatin, double-stranded DNA (dsDNA), either linear or supercoiled, also interacts with wild-type alpha-synuclein, leading to a significant stimulation of alpha-synuclein assembly into mature fibrils characterized by a reduced lag phase. In general, the morphology of the fibrils remains unchanged in the presence of linear dsDNA. Electron microscopy reveals that DNA forms various types of complexes upon association with the fibrils at their surface without distortion of the double-helical structure. The existence of these complexes was confirmed by the electrophoresis, which also demonstrated that a fraction of the associated DNA was resistant to digestion by restriction endonucleases. Fibrils assembled from the alpha-synuclein mutants A30P and A53T and the C-terminally truncated variants (encoding amino acid residues 1-108 or 1-124) also form complexes with linear dsDNA. Possible mechanisms and implications of dsDNA-alpha-synuclein interactions are discussed.  相似文献   

13.
Ghee M  Melki R  Michot N  Mallet J 《The FEBS journal》2005,272(16):4023-4033
Parkinson's disease is characterized by the loss of dopaminergic neurons in the nigrostriatal pathway accompanied by the presence of intracellular cytoplasmic inclusions, termed Lewy bodies. Fibrillized alpha-synuclein forms the major component of Lewy bodies. We reported a specific interaction between rat alpha-synuclein and tat binding protein 1, a subunit of PA700, the regulatory complex of the 26S proteasome. It has been demonstrated that PA700 prevents the aggregation of misfolded, nonubiquinated substrates. In this study, we examine the effect of PA700 on the aggregation of wild-type and A53T mutant alpha-synuclein. PA700 inhibits both wild-type and A53T alpha-synuclein fibril formation as measured by Thioflavin T fluorescence. Using size exclusion chromatography, we present evidence for a stable PA700-alpha-synuclein complex. Sedimentation analyses reveal that PA700 sequesters alpha-synuclein in an assembly incompetent form. Analysis of the morphology of wild-type and A53T alpha-synuclein aggregates during the course of fibrillization by electron microscopy demonstrate the formation of amyloid-like fibrils. Secondary structure analyses of wild-type and A53T alpha-synuclein assembled in the presence of PA700 revealed a decrease in the overall amount of assembled alpha-synuclein with no significant change in protein conformation. Thus, PA700 acts on alpha-synuclein assembly and not on the structure of fibrils. We hypothesize that PA700 sequesters alpha-synuclein oligomeric species that are the precursors of the fibrillar form of the protein, thus preventing its assembly into fibrils.  相似文献   

14.
Protein misfolding and aggregation are pathological aspects of numerous neurodegenerative diseases. Aggregates of alpha-synuclein are major components of the Lewy bodies and Lewy neurites associated with Parkinson's Disease (PD). A natively unfolded protein, alpha-synuclein can adopt different aggregated morphologies, including oligomers, protofibrils and fibrils. The small oligomeric aggregates have been shown to be particularly toxic. Antibodies that neutralize the neurotoxic aggregates without interfering with beneficial functions of monomeric alpha-synuclein can be useful therapeutics. We were able to isolate single chain antibody fragments (scFvs) from a phage displayed antibody library against the target antigen morphology using a novel biopanning technique that utilizes atomic force microscopy (AFM) to image and immobilize specific morphologies of alpha-synuclein. The scFv described here binds only to an oligomeric form of alpha-synuclein and inhibits both aggregation and toxicity of alpha-synuclein in vitro. This scFv can have potential therapeutic value in controlling misfolding and aggregation of alpha-synuclein in vivo when expressed intracellularly in dopaminergic neurons as an intrabody.  相似文献   

15.
Recent studies have begun to investigate the role of agrin in brain and suggest that agrin's function likely extends beyond that of a synaptogenic protein. Particularly, it has been shown that agrin is associated with the pathological lesions of Alzheimer's disease (AD) and may contribute to the formation of beta-amyloid (Abeta) plaques in AD. We have extended the analysis of agrin's function in neurodegenerative diseases to investigate its role in Parkinson's disease (PD). Alpha-synuclein is a critical molecular determinant in familial and sporadic PD, with the formation of alpha-synuclein fibrils being enhanced by sulfated macromolecules. In the studies reported here, we show that agrin binds to alpha-synuclein in a heparan sulfate-dependent (HS-dependent) manner, induces conformational changes in this protein characterized by beta-sheet structure, and enhances insolubility of alpha-synuclein. We also show that agrin accelerates the formation of protofibrils by alpha-synuclein and decreases the half-time of fibril formation. The association of agrin with PD lesions was also explored in PD human brain, and these studies shown that agrin colocalizes with alpha-synuclein in neuronal Lewy bodies in the substantia nigra of PD brain. These studies indicate that agrin is capable of accelerating the formation of insoluble protein fibrils in a second common neurodegenerative disease. These findings may indicate shared molecular mechanisms leading to the pathophysiology in these two neurodegenerative disorders.  相似文献   

16.
V N Uversky  J Li  A L Fink 《FEBS letters》2001,500(3):105-108
Parkinson's disease involves intracellular deposits of alpha-synuclein in the form of Lewy bodies and Lewy neurites. The etiology of the disease is unknown, however, several epidemiological studies have implicated environmental factors, especially pesticides. Here we show that several pesticides, including rotenone, dieldrin and paraquat, induce a conformational change in alpha-synuclein and significantly accelerate the rate of formation of alpha-synuclein fibrils in vitro. We propose that the relatively hydrophobic pesticides preferentially bind to a partially folded intermediate conformation of alpha-synuclein, accounting for the observed conformational changes, and leading to association and subsequent fibrillation. These observations suggest one possible underlying molecular basis for Parkinson's disease.  相似文献   

17.
Lewy bodies, neuropathological hallmarks of Parkinson's disease and dementia with Lewy bodies, comprise alpha-synuclein filaments and other less defined proteins. Characterization of Lewy body proteins that interact with alpha-synuclein may provide insight into the mechanism of Lewy body formation. Double immunofluorescence labeling and confocal microscopy revealed approximately 80% of cortical Lewy bodies contained microtubule-associated protein 1B (MAP-1B) that overlapped with alpha-synuclein. Lewy bodies were isolated using an immunomagnetic technique from brain tissue of patients dying with dementia with Lewy bodies. Lewy body proteins were resolved by polyacrylamide gel electrophoresis. Immunoblotting confirmed the presence of MAP-1B and alpha-synuclein in purified Lewy bodies. Direct binding studies revealed a high affinity interaction (IC(50) approximately 20 nm) between MAP-1B and alpha-synuclein. The MAP-1B-binding sites were mapped to the last 45 amino acids of the alpha-synuclein C terminus. MAP-1B also bound in vitro assembled alpha-synuclein fibrils. Thus, MAP-1B may be involved in the pathogenesis of Lewy bodies via its interaction with monomeric and fibrillar alpha-synuclein.  相似文献   

18.
Li J  Uversky VN  Fink AL 《Biochemistry》2001,40(38):11604-11613
Parkinson's disease involves the loss of dopaminergic neurons in the substantia nigra, leading to movement disorders. The pathological hallmark of Parkinson's disease is the presence of Lewy bodies and Lewy neurites, which are intracellular inclusions consisting primarily of alpha-synuclein. Although essentially all cases of sporadic and early-onset Parkinson's disease are of unknown etiology, two point mutations (A53T and A30P) in the alpha-synuclein gene have been identified in familial early-onset Parkinson's disease. Previous reports have shown that mutant alpha-synuclein may form fibrils more rapidly than wild-type protein. To determine the underlying molecular basis for the enhanced fibrillation of the mutants, the structural properties, responses to changes in the environment, and propensity to aggregate of wild-type, A30P, and A53T alpha-synucleins were systematically investigated. A variety of biophysical methods, including far-UV circular dichroism, FTIR, small-angle X-ray scattering, and light scattering, were employed. Neither the natively unfolded nor the partially folded intermediate conformations are affected by the familial Parkinson's disease point mutations. However, both mutants underwent self-association more readily than the wild type (i.e., at much lower protein concentration and more rapidly). We attribute this effect to the increased propensity of their partially folded intermediates to aggregate, rather than to any changes in the monomeric natively unfolded species. This increased propensity of these mutants to aggregate, relative to wild-type alpha-synuclein, would account for the correlation of these mutations with Parkinson's disease.  相似文献   

19.
Intracellular accumulation of insoluble alpha-synuclein in Lewy bodies is a key neuropathological trait of Parkinson disease (PD). Neither the normal function of alpha-synuclein nor the biochemical mechanisms that cause its deposition are understood, although both are likely influenced by the interaction of alpha-synuclein with vesicular membranes, either for a physiological role in vesicular trafficking or as a pathological seeding mechanism that exacerbates the propensity of alpha-synuclein to self-assemble into fibrils. In addition to the alpha-helical form that is peripherally-attached to vesicles, a substantial portion of alpha-synuclein is freely diffusible in the cytoplasm. The mechanisms controlling alpha-synuclein exchange between these compartments are unknown and the possibility that chronic dysregulation of membrane-bound and soluble alpha-synuclein pools may contribute to Lewy body pathology led us to search for cellular factors that can regulate alpha-synuclein membrane interactions. Here we reveal that dissociation of membrane-bound alpha-synuclein is dependent on brain-specific cytosolic proteins and insensitive to calcium or metabolic energy. Two PD-linked mutations (A30P and A53T) significantly increase the cytosol-dependent alpha-synuclein off-rate but have no effect on cytosol-independent dissociation. These results reveal a novel mechanism by which cytosolic brain proteins modulate alpha-synuclein interactions with intracellular membranes. Importantly, our finding that alpha-synuclein dissociation is up-regulated by both familial PD mutations implicates cytosolic cofactors in disease pathogenesis and as molecular targets to influence alpha-synuclein aggregation.  相似文献   

20.
Substantial evidence suggests that the fibrillation of alpha-synuclein is a critical step in the development of Parkinson's disease. In vitro, alpha-synuclein forms fibrils with morphologies and a staining characteristic similar to those extracted from disease-affected brain. Monomeric alpha-synuclein is an intrinsically disordered protein, with three Tyr residues in the C-terminal region, one in the N-terminus, and lacking Trp. It is thought that interactions between the C-terminus and the central portion of the molecule may prevent or minimize aggregation/fibrillation. To test this hypothesis we examined the importance of the Tyr residues on the propensity for alpha-synuclein to fibrillate in vitro. Fibril formation of alpha-synuclein was completely inhibited, in the timescale over which measurements were made, by replacing the three C-terminal Tyr residues with Ala. In addition, substitution of Tyr133 by Ala also resulted in the absence of fibrillation, whereas the individual Y125A and Y136A mutants showed limited inhibition. Replacement of Tyr39 by Ala also resulted in substantial inhibition of fibrillation. Structural analysis showed that the Y133A mutant had a substantially different conformation, rich in alpha-helical secondary structure, as compared with the wild-type and other mutants, although the formation of any tertiary structure has not been observed as can be judged from near-UV-CD spectra. These observations suggest that the long-range intramolecular interactions between the N- and C-termini of alpha-synuclein are likely to be crucial to the fibrillation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号