首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The metabolism of testosterone (TEST), androstenedione (AD) and progesterone (PROG) was assessed in hepatic microsomal fractions from male sheep. Rates of total hydroxylation of each steroid were lower in sheep liver than in microsomes isolated from untreated male rat, guinea pig or human liver, 6 beta-Hydroxylation was the most important pathway of biotransformation of each of the three steroids (0.80, 0.89 and 0.43 nmol/min/mg protein for TEST, AD and PROG, respectively). Significant minor metabolites from TEST were the 2 beta-, 15 beta- and 15 alpha-alcohols (0.19, 0.22 and 0.17 nmol/min/mg microsomal protein, respectively). Apart from the 6 beta-hydroxysteroid, only the 21-hydroxy derivative was formed from PROG at a significant rate (0.27 nmol/min/mg protein). The 6 beta-alcohol was the only metabolite formed from AD at a rate greater than 0.1 nmol/min/mg protein. Antisera raised in rabbits to several rat hepatic microsomal P450s were assessed for their capacity to modulate sheep microsomal TEST hydroxylation. Anti-P450 IIIA isolated from phenobarbital-induced rat liver effectively inhibited TEST hydroxylation at the 2 beta-, 6 beta-, 15 alpha- and 15 beta-positions (by 31-56% when incubated with microsomes at a ratio of 5 mg IgG/mg protein). IgG raised against rat P450 IIC11 and IIB1 inhibited the formation of some of the minor hydroxysteroid metabolites but did not decrease the rate of TEST 6 beta-hydroxylation. Western immunoblot analysis confirmed the cross-reactivity of anti-rat P450 IIIA with an antigen in sheep hepatic microsomes; anti-IIC11 and anti-IIB1 exhibited only weak immunoreactivity with proteins in these fractions. Considered together, the present findings indicate that, as is the case in many mammalian species, 6 beta-hydroxylation is the principal steroid biotransformation pathway of male sheep liver. Evidence from immunoinhibition and Western immunoblot experiments strongly implicate the involvement of a P450 from the IIIA subfamily in ovine steroid 6 beta-hydroxylation.  相似文献   

2.
In order to determine whether the gonadal and hypophyseal modes of regulation recently reported for the microsomal enzymes of hepatic steroid metabolism are also valid for cytoplasmic enzymes, three enzymes whose activities exhibit sex differences (male:female activity ratio shown in brackets), 5beta-reductase(1.7:1), 20alpha-hydroxysteroid dehydrogenase(5 : 1) and 17beta-hydroxysteroid dehydrogenase (4:1), as well as one enzyme whose activity shows no sex difference, 3beta-hydroxy-delta5-steroid dehydrogenase, were investigated after various interferences with the endocrine balance (gonadectomy, hypophysectomy, combination of both operations, administration of testosterone or oestradiol). From the results of this and a previous study the following statements can be made about the endocrine control of hepatic enzyme activities. Those enzymes whose activities show sex differences are either androgen or oestrogen dependent; the sex hormone acts in either an inductive or repressive manner. 1) Criteria for androgen dependency are the feminization of enzyme activity after testectomy or inhibition of testicular function by administration of oestradiol; masculinization of the enzyme activity after administration of testosterone to male or female castrates. Using these criteria the following enzymes investigated in this laboratory fall into this category: all microsomal enzymes which show sex differences in their activity (3alpha-, 3beta-, delta4-3beta, 20-hydroxysteroid dehydrogenase; cortisone alpha-reductase; steroid hydroxylases and 16alpha-hydroxylase) as well as the cytoplasmic 20alpha-hydroxysteroid dehydrogenase. Apart from the single exception of 20alpha-hydroxy-steroid dehydrogenase the presence of the hypophysis is obligatory for the androgen to be effective. The hypophysis does not only work in a permissive manner, but participates in establishing the sex specific activity levels in a manner which is antagonistic to the androgen action. 2) Criteria for oestrogen dependency are that the female animal reacts to gonadectomy, as well as to the inhibition of ovarian function after testosterone administration, by a masculinization of the enzyme activities. After administration of oestradiol, but not gonadectomy, the male animal exhibits typical female activity. Using these criteria the cytoplasmic 5beta-reductase and 17beta-hydroxysteroid dehydrogenase are oestrogen dependent. The repressive oestrogen effect observed on 17beta-hydroxysteroid dehydrogenase is antagonistic to hypophyseal action, whereas in the case of 5beta-reductase it is synergistic. 3) The activities of cytoplasmic 3beta-hydroxy-delta5-steroid dehydrogenase and microsomal 7alpha-hydroxylase show no sex differences and are not influenced by any interference with the endocrine balance.  相似文献   

3.
This investigation was undertaken to elucidate the amount of oestradiol and duration of its administration necessary to cause complete feminization of the activities of cytoplasmic 3 alpha- and 17 beta-hydroxysteroid dehydrogenase, microsomal 3 alpha- and 3 beta-hydroxysteroid dehydrogenase and microsomal 5 alpha-reductase in male rat liver. With the exception of cytoplasmic 3 alpha-hydroxysteroid dehydrogenase, 5 microgram oestradiol/d for 8 days and less was sufficient to cause complete feminization. The order of oestrogen sensitivity was cytoplasmic 3 alpha-hydroxysteroid dehydrogenase greater than microsomal 3 beta-hydroxysteroid dehydrogenase greater than microsomal 3 alpha-hydroxysteroid dehydrogenase greater than microsomal 5 alpha-reductase greater than cytoplasmic 17 beta-hydroxysteroid dehydrogenase. Although the changes occurring after oestradiol administration are qualitatively the same as after testectomy, they occur more rapidly. This rules out the possibility that oestradiol exerts its effect via androgen deprivation. Diethylstilboestrol administration causes the same changes in cytoplasmic 17 beta- and microsomal 3 beta-hydroxysteroid dehydrogenase activity as oestradiol, although the dosage must be increased 100 fold. The effect of diethylstilboestrol on 5 alpha-reductase activity changes with the dose applied. Doses up to 100 microgram/d partially feminize the activity, but at higher doses the enzyme activity is repressed.  相似文献   

4.
We have investigated the effects of two 4-ene-steroid 5 alpha-reductase inhibitors, diethyl-4-methyl-3-oxo-4-aza-5 alpha-androstane-17 beta-carboxamide (4-MA) and (4R)-5,10-seco-19-norpregna-4, 5-diene-3,10,20-trione (SECO), on testicular and epididymal androgen biosynthesis. Kinetic analyses revealed that both compounds inhibited epididymal DHT biosynthesis. 4-MA was a competitive inhibitor of epididymal nuclear and microsomal 4-ene-steroid 5 alpha-reductases (3-oxo-5 alpha-steroid: NADP 4-ene-oxidoreductase EC 1.3.1.22) with Kiapp values of 12.8 and 15.1 nmol/l compared to the respective Kmapp values of 185 and 240 nmol/l. Values for the Vmaxapp were always within 70-130% of the control. SECO at 1.0 mumol/l, also inhibited epididymal nuclear and microsomal 4-ene-steroid-5 alpha-reductases, causing respectively 2.9 and 5.2-fold increases in Kmapp. The Vmaxapp values were unchanged. However, SECO concentrations of 5 and 25 mumol/l abolished 4-ene-steroid 5 alpha-reductase activity at all testosterone concentrations. To examine the specificity of these compounds, we investigated their effects on the enzymes that convert pregnenolone to testosterone. Rat testis microsomes converted pregnenolone to testosterone via the 4-ene-3-oxo pathway, with the major metabolites being progesterone, 17-hydroxyprogesterone, 4-androstenedione and testosterone; some 17-hydroxypregnenolone was also formed. Very small amounts of dehydroepiandrosterone (DHA) and 5-androstenediol were detected. SECO, at a concentration that completely inhibited epididymal 4-ene-steroid 5 alpha-reductase activity, did not alter the metabolic profile of pregnenolone metabolism. However, 4-MA prevented the appearance of 4-ene steroids, and large quantities of 17-hydroxypregnenolone and DHA accumulated, suggesting that inhibition of the 3 beta-hydroxysteroid: NAD(P)+ oxidoreductase (EC 1.1.1.51) and 3-oxosteroid 5-ene-4-ene-isomerase (EC 5.3.3.1) [3 beta-hydroxysteroid dehydrogenase-isomerase] was occurring. Optimal conditions for the microsomal conversion of DHA to 4-androstenedione were determined; kinetic analyses of the 3 beta-hydroxysteroid dehydrogenase-isomerase activity revealed that 4-MA inhibited this reaction non-competitively, reducing Vmaxapp values to 25% of the control. The Kiapp determined from the intercept replot, was 121 nmol/l, and the Kmapp was always between 90 and 130% of the control value. It is concluded that SECO is more specific than 4-MA in its effects on androgen biosynthesis in the testis and epididymis and that both these drugs should provide useful tools in assessments of the relative contributions of 5 alpha-reduced androgens to androgen dependent processes.  相似文献   

5.
Further evidence that there is more than one adrenal 21-hydroxylase system   总被引:1,自引:0,他引:1  
The 21-hydroxylase activity of microsomes isolated from bovine adrenal cortex have been assayed using [21-3H]17-hydroxypregnenolone and [1,2-3H]17-hydroxyprogesterone as substrates. When the assays are performed in the presence of an NADH regenerating system, to inhibit steroid 3 beta-hydroxy isomerase-dehydrogenase activity, the microsomes oxidize the 3 beta-hydroxy-5-ene steroid at a rate of 0.37 nmol/min.nmol cytochrome P-450 and the 3-keto-4-ene steroid at a rate of 6.4 nmol/min.nmol. When the microsomes are solubilized with Triton CF-54 they lose the ability to oxidize the 3-hydroxy-5-ene steroid, while the specific activity of the microsomes for the 3-keto-4-ene steroid is enhanced 3-fold. In contrast, when the microsomes are solubilized with sodium cholate, their specific activity towards the 4-ene steroid is decreased by 50% while the specific activity for a low concentration of the 5-ene steroid, 1 microM, is unchanged. In addition, when the oxidations of the labeled steroids (at 1 microM) by the microsomes, are examined in the presence of unlabeled 17-hydroxyprogesterone (at 20 microM) the oxidation of the 3-keto-4-ene steroid is inhibited by 92% while the oxidation of the 3 beta-hydroxy-5-ene steroid is only inhibited by 20%. These results all suggest that there are at least two 21-hydroxylases in bovine adrenal tissue, one of which can utilize the 3-keto-4-ene steroids only, the other of which, in addition, can utilize the 3 beta-hydroxy-5-ene steroids as substrates.  相似文献   

6.
Five sexually differentiated enzyme activities of hepatic steroid metabolism (cytoplasmic 17 beta-hydroxysteroid dehydrogenase, 5 beta-reductase; microsomal 3 alpha- and 3 beta-hydroxysteroid dehydrogenase and 5 alpha-reductase) were investigated in intact, gonadectomized and hypophysectomized rats after administration of a single dose of oestradiol valerate. Oestradiol administration caused a partial or complete feminization of these activities in intact male rats. The influence of oestradiol on these activities in gonadectomized rats was determined by the mode of sex hormone-dependent regulation of the individual activity: the most prominent effects were seen in the oestrogen-dependent activities (17 beta-hydroxysteroid dehydrogenase, 5 beta-reductase); no effect was seen in the completely androgen-dependent 3 alpha-hydroxysteroid dehydrogenase because gonadectomy alone was sufficient to cause complete feminization of the activity. Oestradiol administration had no effect on the activities of hypophysectomized rats. The fact that oestrogen administration to intact male rats caused greater changes than prepuberal gonadectomy demonstrates that oestrogen action is more than simple suppression of testicular function.  相似文献   

7.
Our studies demonstrate that direct stimulation of dihydrotestosterone metabolism by ethanol (2.2 - 65 mM) in rat Leydig cells primarily involves an increase in 5 alpha-androstan-3 beta, 17 beta-diol. Although the enzyme catalyzing this conversion, 5 alpha-androstane-3 beta-hydroxysteroid dehydrogenase, is localized in the microsomal fraction of Leydig cells, ethanol does not increase 5 alpha-androstan-3 beta, 17 beta-diol formation in isolated microsomes, presumably because of the removal of soluble alcohol dehydrogenase activity, which we propose mediates this action. Because 5 alpha-androstan-3 beta, 17 beta-diol is generally considered a weak or inactive androgen, this effect may function to decrease dihydrotestosterone secretion by Leydig cells and/or to reduce the availability of this androgen in responsive tissues.  相似文献   

8.
An NAD+-linked 17 beta-hydroxysteroid dehydrogenase was purified to homogeneity from a fungus, Cylindrocarpon radicicola ATCC 11011 by ion exchange, gel filtration, and hydrophobic chromatographies. The purified preparation of the dehydrogenase showed an apparent molecular weight of 58,600 by gel filtration and polyacrylamide gel electrophoresis. SDS-gel electrophoresis gave Mr = 26,000 for the identical subunits of the protein. The amino-terminal residue of the enzyme protein was determined to be glycine. The enzyme catalyzed the oxidation of 17 beta-hydroxysteroids to the ketosteroids with the reduction of NAD+, which was a specific hydrogen acceptor, and also catalyzed the reduction of 17-ketosteroids with the consumption of NADH. The optimum pH of the dehydrogenase reaction was 10 and that of the reductase reaction was 7.0. The enzyme had a high specific activity for the oxidation of testosterone (Vmax = 85 mumol/min/mg; Km for the steroid = 9.5 microM; Km for NAD+ = 198 microM at pH 10.0) and for the reduction of androstenedione (Vmax = 1.8 mumol/min/mg; Km for the steroid = 24 microM; Km for NADH = 6.8 microM at pH 7.0). In the purified enzyme preparation, no activity of 3 alpha-hydroxysteroid dehydrogenase, 3 beta-hydroxysteroid dehydrogenase, delta 5-3-ketosteroid-4,5-isomerase, or steroid ring A-delta-dehydrogenase was detected. Among several steroids tested, only 17 beta-hydroxysteroids such as testosterone, estradiol-17 beta, and 11 beta-hydroxytestosterone, were oxidized, indicating that the enzyme has a high specificity for the substrate steroid. The stereospecificity of hydrogen transfer by the enzyme in dehydrogenation was examined with [17 alpha-3H]testosterone.  相似文献   

9.
The effect of epostane [(2 alpha,4 alpha,5 alpha,17 beta)-4,5-epoxy-17-hydroxy-4,17-dimethyl-3-oxo- androstane-2-carbonitrile] on the conversion of pregnenolone to progesterone and of dehydroepiandrosterone (DHA) to androstenedione was studied in human term placental microsomes and in comparison with human ovarian and adrenal microsomes. Using pregnenolone as substrate, 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD) activity in the three tissues had a similar Km (3-6 microM) but Vmax ranged from 1.3 nmol/mg protein per min in ovary to 10 nmol/mg protein per min in placenta. Epostane inhibited 3 beta-HSD activity in all three tissues with the characteristics of a pure competitive inhibitor: mean Ki values were 1.7 microM for placenta, 0.5 microM for adrenal and 0.1 microM for ovary. Moreover, in placental microsomes epostane inhibited the conversion of DHA to androstenedione with a Ki of 0.6 microM. The mechanism of action of epostane explains its effectiveness in blocking progesterone synthesis during the luteal phase and in pregnancy in women, and its strong anti-steroidogenic effect in other endocrine tissues in vitro.  相似文献   

10.
Seven multiforms of indanol dehydrogenase were isolated in a highly purified state from male rabbit liver cytosol. The enzymes were monomeric proteins with similar molecular weights of 30,000-37,000 but with distinct electrophoretic mobilities. All the enzymes oxidized alicyclic alcohols including benzene dihydrodiol and hydroxysteroids at different optimal pH, but showed clear differences in cofactor specificity, steroid specificity, and reversibility of the reaction. Two NADP+-dependent enzymes exhibited both 17 beta-hydroxysteroid dehydrogenase activity for 5 alpha-androstanes and 3 alpha-hydroxysteroid dehydrogenase activity for 5 beta-androstan-3 alpha-ol-17-one. Three of the other enzymes with dual cofactor specificity catalyzed predominantly 5 beta-androstane-3 alpha,17 beta-diol dehydrogenation. The reverse reaction rates of these five enzymes were low, whereas the other two enzymes, which had 3 alpha-hydroxysteroid dehydrogenase activity for 5 alpha-androstanes or 3(17)beta-hydroxysteroid dehydrogenase activity for 5 alpha-androstanes, highly reduced 3-ketosteroids and nonsteroidal aromatic carbonyl compounds with NADPH as a cofactor. All the enzymes exhibited Km values lower for the hydroxysteroids than for the alicyclic alcohols. The results of kinetic analyses with a mixture of 1-indanol and hydroxysteroids, pH and heat stability, and inhibitor sensitivity suggested strongly that, in the seven enzymes, both alicyclic alcohol dehydrogenase and hydroxysteroid dehydrogenase activities reside on a single enzyme protein. On the basis of these data, we suggest that indanol dehydrogenase exists in multiple forms in rabbit liver cytosol and may function in in vivo androgen metabolism.  相似文献   

11.
A 3 beta-hydroxysteroid oxidoreductase which acts on 5 alpha (beta)-reduced C19 and C21 steroids (5-ane-3 beta-hydroxysteroid oxidoreductase; 5-ane-3 beta-HSO) has been solubilized from pubertal rat Leydig cell microsomes and purified 300-fold by ion exchange and gel filtration chromatography. The partially purified enzyme is stable only in the presence of 0.4 M NaCl and appears to exist as a molecule having a molecular weight of 35,000 or as aggregates with a molecular weight in excess of 150,000. NAD+ and NADH+ are used exclusively as cofactors. The velocity of the steroid oxidation reaction was unaffected by either Ca2+ or Mg2+. The steroid oxidation reaction has a pH optimum between 8.0 and 8.5, a temperature optimum at 35 degrees C and an activation energy of 12,850 cal/mol. The pH optimum of the steroid reduction reaction is 6.6. A variety of 5 alpha-reduced C19 and C21 steroids can be utilized as substrates. Treatment of microsomes with phospholipase A2 resulted in a 26 to 90% loss of enzyme activity, paralleling decreased microsomal phospholipid content, and suggesting a role for phospholipids in 5-ane-3 beta-HSO activity. Assays with combined substrates indicate that one enzyme is responsible for activities observed with 5 alpha- and 5 beta-reduced C19- and 5 alpha-reduced C21-3 beta-hydroxysteroids. Purification data indicate that the 5-ane-3 beta-HSO and the 5-ene-3 beta-hydroxysteroid oxidoreductase:isomerase are distinct enzymes.  相似文献   

12.
During storage at 4 degrees C, the 17 beta-hydroxysteroid dehydrogenase activity of human placental microsomes with estradiol-17 beta was more stable than that with testosterone. In order to evaluate the basis for this difference, kinetics with C18-, C19-, and C21- steroids as substrates and/or inhibitors was studied in conjunction with an analysis of the effects of detergents. Both 17 beta-hydroxysteroid dehydrogenase (17 beta-HSD) and 20 alpha-hydroxysteroid dehydrogenase (20 alpha-HSD) activities were detected. At pH 9.0, apparent Michaelis constants were 0.8, 1.3, and 2.3 microM for estradiol-17 beta, testosterone, and 20 alpha-dihydroprogesterone, respectively, 17 beta-HSD activity with testosterone was inhibited by estradiol-17 beta, 5 alpha-dihydrotestosterone, 5 beta-dihydrotestosterone, 20 alpha-dihydroprogesterone, and progesterone. In each case 90 to 100% inhibition was observed at 50 to 200 microM steroid. Activity with 20 alpha-dihydroprogesterone was similarly sensitive to inhibition by C19-steroids. By contrast, 25 to 45% of the activity with estradiol-17 beta was not inhibited by high concentrations of C19- or C21-steroids and differed from the 17 beta-HSD activity with testosterone and the major fraction of that with estradiol-17 beta by being insensitive to solubilization by detergent. These results are consistent with an association of two dehydrogenase activities with human placental microsomes. One recognizes C18-, C19-, and C21-steroids as substrates with comparable affinities. The second appears to be highly specific for estradiol-17 beta. The former activity may account for most if not all of the oxidation-reduction at C-17 of C19-steroids and at C-20 of C21-compounds at physiological concentrations by term placental tissue.  相似文献   

13.
Phenolic steroid sulphotransferase activity for both oestradiol and oestrone was identified in male rat liver cytosol in the 30 000-40 000 Mr fractions on gel filtration when activity was assayed at pH 5.5 (pH optimum 5.5-6.0). Activity for oestradiol but not oestrone was found in the 60 000-70 000-Mr range when assayed at pH 8.0 (pH optimum biphasic, 5.5-6.0 and 7.0-8.0). Km for oestradiol (1.3 microM) was lower than published values for hydroxysteroid sulphotransferases (15-35 microM) and previously reported oestradiol sulphotransferases (71-85 microM). At above 2 microM-oestradiol phenolic sulphotransferase activity exhibited substrate inhibition. The phenolic steroid sulphotransferase activity was found to be distinct in chromatofocusing from organic-anion-binding and bile acid-binding proteins previously identified in this Mr range. Further purification on hydroxyapatite yielded a 44-fold enriched fraction that contained two monomeric bands, Mr 32 500 and 29 500.  相似文献   

14.
The role of membrane phospholipids in testicular androgen biosynthesis was investigated by monitoring the effects of phospholipase treatments on the activities of the steroid transforming enzymes. Androgen biosynthesis in untreated rat testicular microsomes was examined by monitoring the temporal appearance of pregnenolone metabolites and was found to proceed through the 4-ene route. When phospholipase A2 was included, the 5-ene steroids 17-hydroxypregnenolone and dehydroepiandrosterone (DHEA) were formed in greater quantities, and the production of 4-ene steroids was reduced indicating that the conversion of 5-ene steroids to the 4-ene configuration was inhibited by phospholipase A2 treatment. Phospholipase C, in addition to inhibiting this step, also inhibited the conversion of C21 steroids to C19 steroids. When the enzymatic steps were measured individually, phospholipase A2 inhibited 3 beta-hydroxysteroid dehydrogenase-isomerase (3 beta-HSD-Isomerase) with an ED50 of 73 mU/ml but had no effect on the activities of 17-hydroxylase, C-17, 20 lyase, or 17 beta-hydroxysteroid dehydrogenase (17 beta-HSD). However, though phospholipase C treatment inhibited 3 beta-HSD-Isomerase, it caused less inhibition (the ED50 value was 149 mU/ml). Furthermore, 17-hydroxylase and C-17, 20 lyase activities were also inhibited by phospholipase C treatment (ED50 values were 410 and 343 mU/ml, respectively), but no effect on 17 beta-HSD was observed. The differences in the apparent phospholipid requirements of the steroidogenic enzymes provides the possibility that the metabolic fate of pregnenolone may be regulated by changes in the phospholipid composition of the microenvironment.  相似文献   

15.
Ligand specificity of the type I steroid receptor is apparently conferred by the activity of 11 beta-hydroxysteroid dehydrogenase. To determine the kinetic properties of this enzyme, rat liver cDNA was expressed in cultured cells using recombinant vaccinia virus. Although this enzyme catalyzes only dehydrogenation when purified from rat liver, the recombinant enzyme obtained from cell lysates catalyzed both 11 beta-dehydrogenation of corticosterone to 11-dehydrocorticosterone and the reverse 11-oxoreduction reaction. At pH 8.5, the first order rate constant Kcat/Km for dehydrogenase activity exceeded that for reductase (63 vs. 38 min-1 x 10(-4], whereas the rate constants for the two reactions were nearly equal (48 vs. 47 min-1 x 10(-4] at pH 7.0. These results are consistent with the previously determined pH optima for these activities in liver microsomes. Removal (with glucose-6-phosphate dehydrogenase) of NADP+ produced by the reductase reaction significantly increased reductase activity. Glycyrrhetinic acid, a known inhibitor of the dehydrogenase reaction, also inhibited the reductase reaction at slightly higher concentrations (50% inhibitory concentration, less than 5 nM for dehydrogenase, 10-20 nM for reductase). Partial inhibition of glycosylation with A1-tunicamycin decreased dehydrogenase activity 50% without affecting reductase activity. The data demonstrate that a single polypeptide catalyzes both dehydrogenation and reduction, although the presence of additional enzyme forms catalyzing one or the other activity has not been ruled out.  相似文献   

16.
Adult male rats were injected daily for 8 days with an LHRH agonist. Twenty-four hours after the last injection testes-homogenates were incubated in the presence of a 4-14C-labeled steroid, either progesterone, 17 alpha-hydroxyprogesterone, dehydroepiandrosterone, androstenedione or testosterone. The activity of several enzymes involved in the androgen biosynthetic pathway was inferred from the amount of metabolites produced under these conditions. After LHRH-treatment a significant increase in the 17,20-lyase activity was observed without any significant change in the activity of 17 alpha-hydroxylase, 3 beta-hydroxysteroid dehydrogenase/delta 5-delta 4-isomerase and 17 beta-hydroxysteroid dehydrogenase. The results of the experiments indicate that the decreased testosterone secretion observed in rats after chronic LHRH-administration is not due to an inhibition of the enzyme-systems studied.  相似文献   

17.
Serum sulphates of 5-androstene-3 beta,17 beta-diol (5-ADIOL-S), 5 alpha-androstane-3 alpha,17 beta-diol (3 alpha-DIOL-S) and dehydroepiandrosterone (DHEA-S), unconjugated androstene-dione (AD) and testosterone (T), sex hormone binding globulin (SHBG), free androgen index (FAI), 17 alpha-hydroxyprogesterone (17OHP), luteinising hormone (LH) and follicle stimulating hormone (FSH) were measured by specific radioimmunoassay in 28 hirsute women with polycystic ovarian disease (PCO) and in normal women (n = 73). Mean levels of steroids measured were significantly elevated, and SHBG significantly depressed, in the women with PCO with values (mean +/- SE) for 5-ADIOL-S (516 +/- 51 vs 267 +/- 10 nmol/l), 3 alpha-DIOL-S (130 +/- 9 vs 52 +/- 2 nmol/l), DHEA-S (7.3 +/- 0.5 vs 4.4 +/- 0.2 mumol/l), AD (11.3 +/- 1.1 vs 3.4 +/- 0.2 nmol/l), T (3.3 +/- 0.2 vs 1.5 +/- 0.1 nmol/l) and 17OHP (5.1 +/- 0.8 vs 2.8 +/- 0.2 nmol/l). SHBG levels were 31 +/- 2.9 vs 65 +/- 2.5 nmol/l, and the free androgen index [100 x T (nmol/l) divided by (SHBG nmol/l)] was 12.5 +/- 1.4 vs 2.4 +/- 0.1. The mean LH to FSH ratio was also elevated at 2.8 +/- 0.3. These studies suggest that the measurement of 5-ADIOL-S and DHEA-S may indicate adrenal gland involvement in PCO while 3 alpha-DIOL-S appears to be a reflection of peripheral androgen metabolism. A comprehensive biochemical profile of PCO should thus include the analysis of these sulphoconjugates as well as unconjugated steroids.  相似文献   

18.
As an extension of our studies on androgen metabolism in epithelium and stroma of human benign prostatic hyperplasia (BPH) tissue our attempts to demonstrate the presence of aromatase are described. Additionally, the question is raised whether the aromatase inhibitor 17 alpha-oxa-D-homoandrosta-1.4-diene-3.17-dione (testolactone) might also act by inhibition of 17 beta-hydroxysteroid dehydrogenase (17 beta-HSDH). In vitro metabolism and inhibition were analyzed by TLC. The main results were: (1) Two aromatase assays (estrone formation and tritium release) were tested with placenta microsomes. Identical results were obtained (Km = 43 +/- 7 nmol/l n = 5; Vmax = 100 resulted in recovery of the aromatase activity added. (3) In BPH tissue alone, formation of estrone from androstenedione could not be detected (less than 7 x 10(-17) mol/min per mg protein, n = 8). (4) 4-Hydroxyandrostenedione inhibited placental aromatase (Ki = 37 nmol/l) distinctly better than 17 beta-HSDH from human BPH (Ki = 18 mumol/l), whereas the Ki values for testolactone (3.7 and 29 mumol/l, respectively) were more similar. It is concluded that aromatization of androgens is not an important pathway in BPH tissue. An alternative mode of action of testolactone by inhibition of 17 beta-HSDH is discussed.  相似文献   

19.
In order to characterize the main enzymatic systems involved in androgen and estrogen formation as well as metabolism in ZR-75-1 human breast cancer cells, incubation of intact cells was performed for 12 or 24 h at 37 degrees C with tritiated estradiol (E2), estrone (E1), androst-5-ene-3 beta, 17 beta-diol (5-ene-diol), dehydroepiandrosterone (DHEA), testosterone (T), androstenedione (4-ene-dione), dihydrotestosterone (DHT) or androsterone (ADT). The extra- and intracellular steroids were extracted, separated into free steroids, sulfates and non-polar derivatives (FAE) and identified by HPLC coupled to a Berthold radioactivity monitor. Following incubation with E2, 5-ene-diol or T, E1, DHEA and 4-ene-dione were the main products, respectively, thus indicating high levels of 17 beta-hydroxysteroid dehydrogenase (17 beta-HSD). When 4-ene-dione was used, on the other hand, a high level of transformation into 5 alpha-androstane-3,17-dione (A-dione), Epi-ADT and ADT was found, thus indicating the presence of high levels of 5 alpha-reductase as well as 3 alpha- and 3 beta-hydroxysteroid dehydrogenase. Moreover, some T was formed, due to oxidation by 17 beta-HSD. No estrogen was detected with the androgen precursors T or 4-ene-dione, thus indicating the absence of significant aromatase activity. Moreover, significant amounts of sulfates and non-polar derivatives were found with all the above-mentioned substrates. The present study shows that ZR-75-1 human breast cancer cells possess most of the enzymatic systems involved in androgen and estrogen formation and metabolism, thus offering an excellent model for studies of the control of sex steroid formation and action in breast cancer tissue.  相似文献   

20.
Serum sulphates of 5-androstene-3 beta,17 beta-diol (5-ADIOL-S), 5 alpha-androstane-3 alpha,17 beta-diol (3 alpha-DIOL-S) and dehydroepiandrosterone (DHEA-S), as well as 5 alpha-androstane-3 alpha,17 beta-diol glucuronide (3 alpha-DIOL-G) and unconjugated androstenedione (AD) and testosterone (T), sex hormone binding globulin (SHBG), free androgen index (FAI) and 17 alpha-hydroxyprogester-one (17OHP) were measured by specific radioimmunoassays (RIA) in 14 women with late-onset 21-hydroxylase deficiency (LOCAH), and in normal women (n = 73). The diagnosis of LOCAH was made on the finding of a (17OHP) response level greater than 30 nmol/l following ACTH stimulation, and/or an elevation of urinary metabolites of 17OHP. Mean values for serum concentrations of all steroids measured and the free androgen index (100 X T nmol/l divided by SHBG nmol/l) were significantly elevated, and SHBG levels depressed in patients with LOCAH. These studies show that in LOCAH, in addition to the unconjugated steroids AD and T, the sulphoconjugated steroids DHEA-S, 5-ADIOL-S and 3 alpha-DIOL-S are increased, as is the glucuronide conjugate 3 alpha-DIOL-G and the index of bioavailable testosterone (FAI), and that mean SHBG levels are depressed. These data suggest that as well as AD, 5-ADIOL-S and DHEA-S may act as pro-hormones for more potent steroids (T and 5 alpha-dihydrotestosterone) in peripheral tissues, while 3 alpha-DIOL-S and 3 alpha-DIOL-G may both reflect peripheral androgen metabolism in patients with LOCAH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号