首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Five microsatellite DNA loci (Ots-101 *,Ots-107 *,Oki-10 *, Ogo-3 *, and FGT-3 *) were screened to evaluate the genetic characteristics and population structure for cutthroat trout from eight tributaries of the Pend Oreille River in northeastern Washington and to compare these collections with two hatchery stocks of westslope cutthroat trout, Oncorhynchus clarki lewisi, Yellowstone cutthroat trout, Oncorhynchus clarki bouvieri and a hatchery rainbow trout, Oncorhynchus mykiss, strain that have been stocked in northeastern Washington. Relatively high levels of variation (numbers of alleles and heterozygosity) were observed in all collections and allele frequencies were quite variable among collections. Evidence of limited introgression by rainbow and/or Yellowstone cutthroat was found at several locations. Both FST values and tests of genetic differentiation indicated the existence of numerous, reproductively isolated populations. The population in Slate Creek was very similar to the Kings Lake Hatchery strain, and we conclude that this similarity is the result of historical introductions of this hatchery strain into what was presumably a stream without a native cutthroat population. In one stream, differences in introgression and allele frequencies were found above and below a barrier falls. Because of the substantial level of population differentiation observed among the various collections, we recommend that management and conservation actions be focused at the level of individual streams in order to maintain the productivity and genetic character of the existing populations of cutthroat trout.  相似文献   

2.
Electrophoretic analysis of trout liver extracts indicates that an autosomal gene coding for hexose 6-phosphate dehydrogenase (H6P D) in lake trout, Hpd-L, is monomorphic. In brook trout, the gene is polymorphic, having at least three genetic variants termed Hpd-B 1, Hpd-B2, and Hpd-B3. F 1 hybrid splake exhibit the three expected phenotypes resulting from Hpd-L/Hpd-B 1, Hpd-L/Hpd-B2, and Hpd-L/Hpd-B 3 genotypes. Trout H6P D is ostensibly a dimer of mol wt 230,000. The characteristics of trout H6P D, including substrate specificity, genetic polymorphism, electrophoretic characteristics, subcellular localization, and tissue distribution are in close agreement with results obtained for mammalian H6P D. We suggest that trout and mammalian H6PDs, X-linked mammalian G6P D, and autosomal avian G6P D arose from a common ancestral type G6P D.The research was supported in part by National Science Foundation grant GB-7271 and by United States Public Health Service Predoctoral Fellowship 4 FO1 GM41704-03.  相似文献   

3.
Juvenile bull trout Salvelinus confluentus from two geographically and ecologically distinct populations were compared with regard to their ability to compete with non-native brook trout Salvelinus fontinalis in an artificial stream, and with respect to their rates of oxygen consumption. Bull trout collected from a migratory population foraged more successfully against brook trout competitors than those from a resident population, capturing more of a limited amount of food items presented. The migratory population was also more aggressive (measured by the number of nips, chases and lateral threat displays) against brook trout competitors than the resident population. Bull trout from the migratory population had a higher oxygen consumption rate (203 mg O2 kg · hr-1) in the field than similar sized fish from the resident population (183 mg O2 kg · hr-1). These results suggest native bull trout have population-level variation in competitive ability against a non-native species and such competitive ability is positively associated with metabolism and migratory life history.  相似文献   

4.
There are five G6P-specific G6PD isozymes in both brook and lake trout. The most anodal isozyme in each species has the same electrophoretic mobility; however, the five lake trout isozymes are more widely spaced on polyacrylamide gels than are those from brook trout. In hybrids, i.e., splake trout, nine forms of G6PD can be resolved. These results can be explained by a model in which we assume that each isozyme is a tetramer and that two different subunit types are produced. In splake trout, three electrophoretically distinct subunits yield 15 tetramers. That only nine are detected is a consequence of coincident electrophoretic mobility of some of the possible subunit combinations. Our results indicate that the G6PD isozymes in these trout are the products of two codominant autosomal gene loci. The hypothesis that G6PD and H6PD arose from a common ancestral type G6PD is supported by microcomplement fixation data which show an immunochemical relatedness between these enzymes. The relationship of G6PD and H6PD in trout is discussed from an evolutionary standpoint.This research was supported in part by National Science Foundation Grant GB-7271 and by United States Public Health Predoctoral Fellowship 4 FO1 GM 43657-03.  相似文献   

5.
The release of hatchery-origin fish into streams with endemics can degrade the genetics of wild populations if interbreeding occurs. Starting in the 1800s, brook trout descendent from wild populations in the northeastern United States were stocked from hatcheries into streams across broad areas of North America to create and enhance fishery resources. Across the southeastern United States, many millions of hatchery-origin brook trout have been released into hundreds of streams, but the extent of introgression with native populations is not well resolved despite large phylogeographic distances between these groups. We used three assessment approaches based on 12 microsatellite loci to examine the extent of hatchery introgression in 406 wild brook trout populations in North Carolina. We found high levels of differentiation among most collections (mean FST = 0.718), and among most wild collections and hatchery strains (mean FST = 0.732). Our assessment of hatchery introgression was consistent across the three metrics, and indicated that most wild populations have not been strongly influenced by supplemental stocking. However, a small proportion of wild populations in North Carolina appear to have been strongly influenced by stocked conspecifics, or in some cases, may have been founded entirely by hatchery lineages. In addition, we found significant differences in the apparent extent of hatchery introgression among major watersheds, with the Savannah River being the most strongly impacted. Conversely, populations in the Pee Dee River watershed showed little to no evidence of hatchery introgression. Our study represents the first large-scale effort to quantify the extent of hatchery introgression across brook trout populations in the southern Appalachians using highly polymorphic microsatellite markers.  相似文献   

6.
SHAW and Barto1 have demonstrated the presence of an autosomally inherited glucose-6-P dehydrogenase (G6PD) in the deer mouse. Subsequently, Ohno et al.2 found a similar enzyme in trout and showed that this enzyme and the autosomally inherited mouse enzyme differed from the sex-linked G6PD in possessing marked catalytic activity with galactose-6-P. This autosomally inherited G6PD was therefore named hexose-6-P dehydrogenase (H6PD)2,3. It was shown to oxidize glucose-6-P, galactose-6-P, mannose-6-P and 2-deoxy glucose-6-P with a Km of the order of 10?5 M. It also oxidizes glucose with a Km of 0.7 M3. It appears to be identical to the so-called “glucose dehydrogenase”. The enzyme utilizes both NAD and NADP and is microsome-bound. G6PD is localized in the soluble fraction of the cells of various tissues. Although it has been shown that two dehydrogenases from liver have different substrate specificity, molecular weight and elec-trophoretic mobility3,4, it has been suggested that the two enzymes are merely isozymes and they might be interconvertible5–7. We have now partially purified the two enzymes from human liver and show that they have different immunological properties.  相似文献   

7.
Merritt TJ  Duvernell D  Eanes WF 《Genetics》2005,171(4):1707-1718
Two malic enzyme alleles, Men113A and Men113G, occur at approximately equal frequency in North American populations of Drosophila melanogaster, while only Men113A occurs in African populations. We investigated the population genetics, biochemical characteristics, and selective potential of these alleles. Comparable levels of nucleotide polymorphism in both alleles suggest that the Men113G allele is not recently derived, but we find no evidence in the DNA sequence data for selection maintaining the polymorphism. Interestingly, the alleles differ in both Vmax and Km for the substrate malate. Triglyceride concentration and isocitrate dehydrogenase (IDH) and glucose-6-phosphate dehydrogenase (G6PD) activities are negatively correlated with the in vivo activities of the Men alleles. We examined the causality of the observed correlations using P-element excision-derived knockout alleles of the Men gene and found significant changes in the maximum activities of both IDH and G6PD, but not in triglyceride concentration, suggesting compensatory interactions between MEN, IDH, and G6PD. Additionally, we found significantly higher than expected levels of MEN activity in knockout heterozygotes, which we attribute to transvection effects. The distinct differences in biochemistry and physiology between the naturally occurring alleles and between the engineered alleles suggest the potential for selection on the Men locus.  相似文献   

8.
Captive breeding of animals is often cited as an important tool in conservation, especially for fishes, but there are few reports of long-term (<50 years) success of captive breeding programs, even in salmonid fishes. Here we describe the captive breeding program for Eagle Lake rainbow trout, Oncorhynchus mykiss aquilarum, which is endemic to the Eagle Lake watershed of northeastern California. The population in Eagle Lake has been dependent on captive breeding for more than 60 years and supports a trophy fishery in the lake. Nevertheless, the basic life history, ecological, and genetic traits of the subspecies still seem to be mostly intact. Although management has apparently minimized negative effects of hatchery rearing, reestablishing a wild population would ensure maintenance of its distinctive life history and its value for future use as a hatchery fish. An important factor that makes reestablishment possible is that the habitat in Eagle Lake is still intact and that Pine Creek, its major spawning stream, is recovering as habitat. With the exception of an abundant alien brook trout (Salvelinus fontinalis) population in Pine Creek, the habitat factors that led to the presumed near-extinction of Eagle Lake rainbow trout in the early twentieth century have been ameliorated, although the final stages of reestablishment (eradication of brook trout, unequivocal demonstration of successful spawning migration) have still not been completed. The Eagle Lake rainbow trout story shows that long-term captive breeding of migratory salmonid fishes does not necessarily prevent reestablishment of wild populations, provided effort is made to counter the effects of hatchery selection and that natural habitats are restored for reintroduction. Long-term success, however, ultimately depends upon eliminating hatchery influences on wild-spawning populations. Extinction of Eagle Lake rainbow trout as a wild species becomes increasingly likely if we fail to act boldly to protect it and the Eagle Lake watershed.  相似文献   

9.
We assessed the effect of a severe drought in 1999 upon stream morphology and brook trout (Salvelinus fontinalis) populations in seven headwater streams in the Greenbrier and Potomac River watersheds, West Virginia. During the drought, stream discharge was 96% lower than in years of normal precipitation. As a result, habitat availability and quality over all study streams was significantly lower. Riffle area was greatly reduced (?54%) relative to available pool area (?2%). Fine sediment levels (<0.063 mm) significantly increased within spawning substrate (p=0.01). Water temperature and dissolved oxygen were adequate (mean 15.8?°C, >6.0 mg l?1, respectively) for brook trout survival in all streams during the drought. Brook trout populations were significantly reduced (adult 60%, Young-of-the-year 67%), and individual fish had significantly lower body condition during the drought relative to the post-drought period. Reductions in brook trout density and population condition during, and in the-post drought period, were related to spatially-limited food resources and/or increased fine sediment levels, but not to degraded water quality. Fisheries managers should consider the effect of periodic drought on brook trout populations and consider short-term harvest restrictions to abet recovery after such stochastic events.  相似文献   

10.
The phylogenetic status of brown trout Salmo trutta L 1758 in Sicily is uncertain as some reports describe these trout as S. macrostigma or S. cettii on one hand while other, contradictory reports imply a hatchery origin on the other. In order to clarify this situation, we performed sequence analysis of the mtDNA control region and restriction fragment analysis of the nuclear lactate dehydrogenase (LDH-C1*) gene. A single mitochondrial haplotype (At-s6) found previously in brown trout in Morocco, and two alleles at LDH-C1* (the ancestral*100, at a high frequency, and *90) were revealed. Our results suggest that Sicilian brown trout are native and that they probably colonized Sicily from west to east in an expansion, from the Atlantic Ocean basin, along the North-West African coast. Handling editor: C. Sturmbauer  相似文献   

11.
Unusual phenotypic distributions at the muscle-specific, duplicate aspartate aminotransferase (AAT) loci were found in wild populations of brook trout (Salvelinus fontinalis), a species of the tetraploid-derivative Salmonidae. Analysis of these phenotypic distributions ruled out disparate gene frequencies, nonrandom association between the two loci, and inbreeding as possible explanations; however, models incorporating a null allele fit the data. Inheritance data from hatchery populations of brook trout also indicated a null allele polymorphism. This proposed AAT null allele, along with other null allele polymorphisms in salmonids, is evidence that loss of duplicate gene expression is still occurring. In contrast, there is no such evidence of ongoing loss of duplicate gene expression in the Catostomidae, another tetraploid-derivative lineage. We interpret this and other differences between salmonids and catostomids as reflecting an autotetraploid origin for salmonids and an allotetraploid origin for catostomids. The significance of these findings is also considered with respect to current models of the rate of loss of duplicate gene expression in tetraploid-derivative organisms.  相似文献   

12.
Electrophoretic variation is described for malic enzyme (ME) for the first time in brook trout (Salvelinus fontinalis). Since the quaternary structure of ME was not clear from examination of banding patterns in brook trout alone, ME phenotypes in rainbow trout (Salmo gairdneri) × brook trout hybrids as well as in esocid species demonstrated that ME is tetrameric. A model of two duplicated loci is proposed to account for the observed variation. One locus (ME-2) is fixed and one locus (ME-1) is variable with three electrophoretically distinct alleles; the protein products of ME-1 are reduced in activity relative to the protein products of ME-2. Joint segregation was examined between ME-1 and ten other biochemical loci in brook trout, and between ME-1, ME-2, and nine other biochemical loci in a splake—lake trout (Salvelinus namaycush) × brook trout hybrid—backcross. All pairwise examinations showed random assortment except ME-2 with an isocitrate dehydrogenase locus (IDH-3), which showed complete linkage in the splake backcross. This may be due to a chromosomal aberration.Authorized for publication as Paper No. 5599 in the Journal Series of The Pennsylvania Agricultural Experiment Station, University Park, Pennsylvania, in cooperation with the Benner Spring Fish Research Station, The Pennsylvania Fish Commission, Bellefonte, Pennsylvania. M.S. was supported by an NSF Graduate Fellowship.  相似文献   

13.
Studies on hybridization, inheritance, and population genetics of brown planthoppers that infest rice and weeds were undertaken using starch gel electrophoresis to determine whether the weed-infesting population represents a biological race or a species. F1 and F2 generations were produced by crosses between parental insects from the two populations with little indication of hybrid sterility. Gpi, Mdh, and Idh loci were inherited in a simple Mendelian fashion in families of two sympatric populations. Sixteen populations of Nilaparvata spp. from eight locations were collected. The Mdh, Idh, Pgm, Gpi, 6Pgd, and Acp loci were polymorphic. The N. lugens of rice with high esterase activity were clustered into a group and characterized by the presence of alleles Gpi 110 and Gpi 120 , whereas N. lugens from weeds with low esterase activity were clustered into another group and characterized by Gpi 100 and Gpi 90 . There was a lack of heterozygotes between the common alleles of the two populations. This means that the two groups of individuals belong to different gene pools.  相似文献   

14.
Vertebrate populations at the periphery of their range can show pronounced genetic drift and isolation, and therefore offer unique challenges for conservation and management. These populations are often candidates for management actions such as translocations that are designed to improve demographic and genetic integrity. This is particularly true of coldwater species like brook trout (Salvelinus fontinalis), whose numbers have declined greatly across its historic range. At the southern margin, remnant wild populations persist in isolated headwater streams, and many have a history of receiving translocated individuals through either stocking of hatchery reared fish, relocation of wild fish, or both during restoration attempts. To determine current genetic integrity and resolve the genetic effects of past management actions for brook trout populations in SC, USA, we genetically assessed all 18 documented remaining brook trout populations along with individuals acquired from six hatcheries with recorded stocking events in SC. Our results indicated that six of the 18 streams showed signs of hatchery admixture (range 57–97%) and restored patches retained genetic signatures from multiple source populations. Populations had among the lowest genetic diversity (min average HE?=?0.147) and effective number of breeders (mean Nb?=?31.2) estimates observed throughout the native brook trout range. Populations were highly differentiated (mean pair-wise FST?=?0.396), and substantial genetic divergence was evident across major river drainages (max pair-wise FST?=?0.773). The lowest local genetic diversity and highest genetic differentiation ever reported for this species make its conservation a challenging task, particularly when combined with other threats such as climate change and non-native species. We offer recommendations on managing peripheral populations with depleted genetic characteristics and provide a reference for determining which existing populations will best serve as sources for future translocation efforts aimed at enhancing or restoring wild brook trout genetic integrity.  相似文献   

15.
Cytological and genetic analyses provide evidence that spontaneous centric fusion and fission can account for curious patterns of pseudolinkage of two LDH loci in males of brook trout (Salvelinus fontinalis) and in the F1, F2 and backcross generations of lake trout (S. namaycush) x brook trout hybrids. Intraindividual polymorphisms for acrocentric and metacentric chromosomes in somatic and gonadal tissue of these fish have been related to the proposed polyploid evolution in Salmonidae.  相似文献   

16.
Studies of interactions between farmed and wild salmonid fishes have suggested reduced fitness of farmed strains in the wild, but evidence for selection at the genic level is lacking. We studied three brown trout populations in Denmark which have been significantly admixed with stocked hatchery trout (19–64%), along with two hatchery strains used for stocking. The wild populations were represented by contemporary samples (2000–2006) and two of them by historical samples (1943–1956). We analysed 61 microsatellite loci, nine of which showed putative functional relationships [expressed sequence tag (EST)‐linked or quantitative trait loci]. FST‐based outlier tests provided support for diversifying selection at chromosome regions marked by three loci, two anonymous and one EST‐linked. Patterns of differentiation suggested that the loci were candidates for being under diversifying hitch‐hiking selection in hatchery vs. wild environments. Analysis of hatchery strain admixture proportions showed that in one wild population, two of the loci showed significantly lower admixture proportions than the putatively neutral loci, implying contemporary selection against alleles introduced by hatchery strain trout. In the most strongly admixed population, however, there was no evidence for selection, possibly because of immigration by stocked trout overcoming selection against hatchery‐derived alleles or supportive breeding practices allowing hatchery strain trout to escape natural selection. To our knowledge, this is the first study demonstrating footprints of selection in wild salmonid populations subject to spawning intrusion by farmed fish.  相似文献   

17.
This study evaluates the applicability and sensitivity of fish population dynamics modeling in assessing the potential effects of individual chemicals on population sustainability and recovery. Fish reproductive health is an increasingly important issue for ecological risk assessment following international concern over endocrine disruption. Life-history data from natural brook trout and fathead minnow populations were combined with effects data from laboratory-based studies, mainly concerning species other than brook trout and fathead minnows, to assess the likely impact of nonylphenol (NP) and methoxychlor (MXC) on brook trout (Salvelinus fontinalis) and fathead minnow (Pimephales promelas) population size. A delay differential equation (DDE) model with a 1-day timestep was used to predict the population dynamics of the brook trout and fathead minnows. The model predicts that NP, could enhance populations by up to 17% at a concentration of 30?µg l?1 based on the results of reduction in survival and increased fecundity from life-cycle toxicity tests, however attempting to allow for growth reduction and its effect on fecundity results in a prediction of a 28% reduction in population numbers. For fathead minnows the DDE model predicts that the same concentration of NP could cause a population reduction of 21%. The differences in these predictions are related to these two species having different life history strategies, which are considered in the parameterization of the model. Post-application concentrations of MXC may peak around 300?µg l?1 and then decline rapidly with time. Predictions show that such applications could cause a reduction of up to 30% in brook trout populations if the application occurs at the peak of the spawning season on successive years but that the effect would be less than 1% if the spawning season is avoided. Effects on the fathead minnow population size are predicted to be smaller (<4%) even if application occurs during the spawning period. Risk based statistics generated by the population dynamics models, such as interval decline risk or quasiextinction risk and predicted time to recovery complement traditional effects parameters such as LC50 and LOEC and may ultimately prove to be more useful in risk assessment.  相似文献   

18.
Coldwater fishes in streams, such as brook trout (Salvelinus fontinalis), typically are headwater specialists that occasionally expand distributions downstream to larger water bodies. It is unclear, however, whether larger streams function simply as dispersal corridors connecting headwater subpopulations, or as critical foraging habitat needed to sustain large mobile brook trout. Stable isotopes (δ13C and δ15N) and a hierarchical Bayesian mixing model analysis was used to identify brook trout that foraged in main stem versus headwater streams of the Shavers Fork watershed, West Virginia. Headwater subpopulations were composed of headwater and to a lesser extent main stem foraging individuals. However, there was a strong relationship between brook trout size and main stem prey contributions. The average brook trout foraging on headwater prey were limited to 126 mm standard length. This size was identified by mixing models as a point where productivity support switched from headwater to main stem dependency. These results, similar to other studies conducted in this watershed, support the hypothesis that productive main stem habitat maintain large brook trout and potentially facilitates dispersal among headwater subpopulations. Consequently, loss of supplementary main stem foraging habitats may explain loss of large, mobile fish and subsequent isolation of headwater subpopulations in other central Appalachian watersheds.  相似文献   

19.
Summary Southern African Bantu-speaking negroid and San populations were examined with regard to the glucose-6-phosphate dehydrogenase (G6PD) PvuII restriction fragment length polymorphism (RFLP) showing alleles of 4kb and 1.6 kb, called Type 1 and Type 2, respectively. The standardized disequilibrium coefficient for the electrophoretic G6PD types and PvuII alleles in the Southern African population was 0.28. The molecular lesion causing the GdA mutation is the same in the San and Southern African negroid populations. GdA chromosomes are found in association with both the Type 1 and Type 2 alleles, whereas none of the 62 GdB chromosomes from the Southern African populations had the Type 2 allele. Five of the 44 GdB chromosomes studied in the American Black population had the Type 2 allele, indicating that the GdB allele in the two populations may have different origins. The presence of all 3 A deficiency mutations in the G6PD A gene, in a region where the ancestral population was thought to have predominantly G6PD B, may be explained by their origin in Africa after the divergence of the races.  相似文献   

20.
Nine percent of the rainbow trout (Salmo gairdneri) from a hatchery source have a greater than 100-fold increase in expression of a phosphoglucomutase (PGM) locus, Pgm1, in the liver but have normal expression of this locus in other tissues. The results of genetic crosses are consistent with a single regulatory gene with additive inheritance being responsible for the differences in the amount of PGM activity in the liver.—The allele responsible for the expression of Pgm1 in the liver is apparently a recent mutation. This is supported by its restricted distribution in rainbow trout and the absence of liver Pgm1 expression in closely related species. This genetic system is valuable for future analysis of the control of gene expression and in determining the relative evolutionary importance of genetic variation at structural and regulatory genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号