首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neurons projecting to the ampullae of anterior, lateral, and posterior semicircular canals were identified in the guinea pig brainstem using horseradish peroxidase labeling techniques. Two groups of neurons forming bilateral connections were found, one located dorsally and the other ventrally to facial nerve trajectories. The dorsal group of vestibular efferent neurons projecting to all three canals was detected in the subependymal granular layer of the floor of the 4th ventricle lateral to the facial nerve genu and in the abducent nerve nucleus. Efferent neurons belonging to the ventral group were unevenly distributed through different areas of the parvocellularis nucleus and the rostral portion of the pontine caudal reticular nucleus. The morphological characteristics and distribution pattern of these cells are taken as confirmation of their heterogeneity of neuronal and functional organization in the vestibular efferent system of semicircular canal ampullae.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 20, No. 4, 1988, pp. 526–532.  相似文献   

2.
1. Pontogeniculooccipital (PGO) waves are recorded during rapid eye movement (REM) sleep from the pontine reticular formation.2. PGO wave-like field potentials can also be recorded in many other parts of the brain in addition to the pontine reticular formation, but their distribution is different in different species. Species differences are due to variation in species-specific postsynaptic target sites of the pontine PGO generator.3. The triggering neurons of the pontine PGO wave generator are located within the caudolateral peribrachial and the locus subceruleus areas.4. The transferring neurons of the pontine PGO generator are located within the cholinergic neurons of the laterodorsal tegmentum and the pedunculopontine tegmentum.5. The triggering and transferring neurons of the pontine PGO wave generator are modulated by aminergic, cholinergic, nitroxergic, GABA-ergic, and glycinergic cells of the brainstem. The PGO system is also modulated by suprachiasmatic, amygdaloid, vestibular, and brainstem auditory cell groups.  相似文献   

3.
The afferent connections to the abducent nucleus in the cat were studied by means of retrograde transport of WGA-HRP after implantations of the tracer in crystalline form. Retrogradely labelled cells were found bilaterally in the medial and descending vestibular nuclei, mainly in their ventral and medial portions, in the rostral part of the ipsilateral gigantocellular reticular nucleus, in the medial part of the contralateral caudal pontine reticular nucleus and bilaterally in the oculomotor nucleus, mainly in its dorsolateral division. Some labelled cells were also found bilaterally in the mesencephalic reticular formation, the periaqueductal grey and the nucleus of the trapezoid body.  相似文献   

4.
I. Episodes of postural atonia associated with bursts of REM similar to those which occur spontaneously either in the intact preparation during desynchronized sleep, or in the chronic decorticate or decerebrate preparations, can be elicited in acute decerebrate cats following intravenous injection of small doses of an anticholinesterase. The present experiments were performed in precollicular decerebrate animals in order to identify the pontine neurons which show increases in their firing rate related in time with the appearance of the cataplectic episodes. In particular long-term recordings of single units were obtained before, during and after the episodes of postural atonia produced by i.v. injection of 0.03-0.1 mg/kg of eserine sulphate. Spontaneous discharge rates were used to measure the selectivity of each individual unit, i.e., the tendency of the unit to discharge more during the cataplectic episode than during the postural rigidity. The physiological data obtained from neurons histologically localized in different nuclear groups were then averaged. 2. Neurons localized in the pontine reticular formation as well as in the region of the locus coeruleus and the raphe system showed low rates of discharge when rigidity was present. The same units, however, showed a remarkable increase in firing rate which preceded by several tenths of seconds the onset of postural atonia and lasted throughout the cataplectic episodes. 3. The neurons of the pontine reticular formation had a selectivity which was higher than that of the neurons located in the locus coeruleus-raphe system; moreover the cells of the gigantocellular tegmental field (FTG) had the highest selectivity of all pontine reticular structures studied. 4. The relation of the discharge rate curves to the occurrence of the cataplectic episodes suggests that these neurons constitute output elements of a generator system for postural atonia. It is postulated that these pontine reticular neurons are directly involved in the activation of the bulbospinal inhibitory system, which is finally responsible for the abolition of the decerebrate rigidity. 5. During cataplectic episodes these pontine neurons showed some clustered discharges which appeared in association with bursts of eye movements. In most instances, however, there was no constant relationship of the unit activity to individual eye movements. Moreover large phasic increases in firing rate appeared also during the intervals between successive bursts of REM. 6. The striking increase in firing rate of the FTG neurons observed during the cataplectic episodes cannot be attributed to an increased excitatory input to these neurons. In fact excitatory influences following intense somatic stimulation are unlikely to occur during the cataplectic episodes; moreover the response of these neurons to intense somatosensory stimulations did not reach rates comparable with those occurring spontaneously during the induced cataplectic episodes...  相似文献   

5.
The oculomotor pattern which appears in intact preparations during desynchronized sleep is characterized by the irregular occurrence of isolated ocular movements and bursts of rapid eye movements (REM). This complex oculomotor pattern results from the activity of two premotor structures which influence the extraocular motoneurons during this phase of sleep: one is located in the pontine reticular formation, the other in the vestibular nuclei. In the decerebrate preparation the intravenous injection of an anticholinesterase leads to the appearance of a typical pattern of oculomotor activity, which differs from that occurring during physiological sleep in so far as it consists quite exclusively of bursts of REM which appear at very regular intervals. Lesion experiments as well as unit recordings have shown that these bursts of REM depend in particular upon rhythmic discharges of the vestibular nuclear neurons. The underlying anatomical structures responsible for these bursts of REM are therefore the vestibular nuclei, the oculomotor nuclei and the oculo-orbital system. This mechanism is under the influence of cholinergic reticular neurons which generate the oculomotor rhythm. We have postulated the existence of a self-excitatory cholinergic system, located in the pontine reticular formation, whose steady discharge impinges upon an oscillatory neuronal system located in the dorso-lateral pontine tegmentum, which transforms the tonic input into a sinusoidal final output. We have assumed also that the periodic increases in the discharge frequency of this oscillatory system trigger a fast phase generator acting on the different components of the REM system, and that the behavior of each component follows a first-order differential equation. The state of excitation of the components of the system is defined as proportional to frequency of nerve impulses. Assuming ipsilateral and crossed connections, a pattern of oculomotor activity is obtained that simulates the experimental oculomotor output fairly well. The repetition of the eye jerks is described by a Fourier series. The model proposed in this paper may be taken as a first approach in describing the generation mechanism of REM, and as a theoretical guide to new experimental researches and the development of other more realistic models.  相似文献   

6.
ACh regulates arousal, and the present study was designed to provide insight into the neurochemical mechanisms modulating ACh release in the pontine reticular formation. Nitric oxide (NO)-releasing beads microinjected into the pontine reticular formation of C57BL/6J (B6) mice significantly (P < 0.0001) increased ACh release. Microdialysis delivery of the NO donor N-ethyl-2-(1-ethyl-2-hydroxy-2-nitrosohydrazino)-ethanamine (NOC-12) to the mouse pontine reticular formation also caused a concentration-dependent increase in ACh release (P < 0.001). These are the first neurochemical data showing that ACh release in the pontine reticular formation of the B6 mouse is modulated by NO. The signal transduction cascade through which NO modulates ACh release in the pontine reticular formation has not previously been characterized. Therefore, an additional series of studies quantified the effects of a soluble guanylate cyclase (sGC) inhibitor, 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ), on ACh release in the cat medial pontine reticular formation. During naturally occurring states of sleep and wakefulness, but not anesthesia, ODQ caused a significant (P < 0.001) decrease in ACh release. These results show for the first time that NO modulates ACh in the medial pontine reticular formation of the cat via an NO-sensitive sGC signal transduction cascade. Isoflurane and halothane anesthesia have been shown to decrease ACh release in the medial pontine reticular formation. The finding that ODQ did not alter ACh release during isoflurane or halothane anesthesia demonstrates that these anesthetics disrupt the NO-sensitive sGC-cGMP pathway. Considered together, results from the mouse and cat indicate that NO modulates ACh release in arousal-promoting regions of the pontine reticular formation via an NO-sensitive sGC-cGMP pathway.  相似文献   

7.
Cells of origin of the spinal projections from the brainstem of the cat have been studied by means of retrograde axonal transport of horseradish peroxidase (HRP). Following injections of HRP into various levels of the spinal cord, many labeled cells were found in several structures in the brainstem. The labeled cells occurred in the raphe nuclei, reticular formation, vestibular complex, and nuclei of the dorsolateral pontine tegmentum. In the dorsolateral pontine tegmentum, many labeled cells were found in the nuclei of locus coeruleus, subcoeruleus and K?lliker-Fuse. In the coeruleus and subcoeruleus, the greatest number of labeled cells were found, when HRP was injected into the sacral cord. No difference emerged, however, in the number of labeled cells appearing in the K?lliker-Fuse nucleus after injection of the enzyme into different levels of the spinal cord. It appears that neurons in the lateral vestibular nucleus which project to different levels of the spinal cord are located in different parts of this nucleus.  相似文献   

8.
Location within the brain of retrogradely labeled neurons putting out projections from the dorsal magnocellularis area of the red nucleus was investigated by means of microiontophoretic injection of horseradish peroxidase into the dorsal magnocellularis area of the cat red nucleus. Projections were found from a number of hypothalamic nuclei, the centrum medianum, parafascicular and subthalamic nuclei, zone incerta, Forel's field, nucleus medialis habenulae, pontine and bulbar reticular formation, and the following midbrain structures: the central gray matter, superior colliculus, Cajal's interstitial nucleus, reticular formation, and the contralateral red nucleus. Projections were also identified proceeding from more caudally located structures: the cerebellar fastigial nucleus, facial nucleus, medial vestibular and dorsal lateral vestibular nuclei, and ventral horns of the spinal cord cervical segments. Connections between the substantia nigra and the red nucleus were clarified. Projections to the red nucleus from the cerebral cortex, interstitial and dentate (lateral) cerebellar nuclei, the nucleus gracilis and cuneate nucleus were found, confirming data presented in the literature. Bilateral trajectories of retrogradely labeled fiber systems are described.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 19, No. 6, pp. 810–816, November–December, 1987.  相似文献   

9.
Activity of 44 mesencephalic locomotor area's (MLR) units and 38 pontine inhibitory area's (PIA) units was recorded during stimulation of the giganto-cellular reticular nucleus and oral pontine reticular nucleus inducing the hindlimb muscle tone inhibition in decerebrated rats. The muscle tone suppression was always accompanied by a decrease in the MLR and an increase in the PIA unit discharges. Stimulation of the brainstem inhibitory area seems to activate reticulospinal inhibitory system and suppress some MLR units relating to locomotion and muscle tone.  相似文献   

10.
A comparative analysis was made of the distribution of vestibular efferent neurons projecting to the saccule and efferent cells sending out axons to the auditory nerve ("cochlear efferent neurons") in the guinea pig, using retrograde horseradish peroxidase axonal transport techniques. Saccular efferent neurons were discovered bilaterally in the subependymal granular layer at the base of the fourth cerebral ventricle and laterally to the facial nerve genu ispsilaterally in the parvocellular reticular nucleus, as well as nuclei of the superior olivary complex: the lateral olivary nucleus and lateral nucleus of the trapezoid body. Cochlear efferent neurons are located ipsilaterally in the pontine reticular caudal nucleus, in the anteroventral cochlear nucleus, and in the lateral and medial olivary nuclei. Neurons were found contralaterally in the medial nucleus of the trapezoid body. It thus emerged that location zones of vestibular saccular efferent neurons and those of cochlear efferent units partially overlapped. The possible involvement of saccular vestibular efferent neurons in the mechanisms of auditory perception is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 22, No. 5, pp. 657–665, September–October, 1990.  相似文献   

11.
Elazar Z  Paz M 《Life sciences》1999,64(13):1117-1125
It was reported that systemic administration of nicotine in rats potentiated the cataleptogenic effect of haloperidol. Moreover, addition of nicotine to the treatment with haloperidol in patients suffering from the Gilles de la Tourette's syndrome resulted in reduction in frequency and severity of tics. In the present article we report results of experiments aimed at investigating the role of striatum and pontine reticular formation in the synergistic relations between the two drugs. Nicotine was microinjected directly into the striatum or pontine reticular formation of rats and its cataleptogenic effects were studied when given alone or in combination with systemical injections of haloperidol. It was found that nicotine has cataleptogenic effects when microinjected both into the striatum and pontine reticular formation. The synergism between the two drugs occurred both after microinjections into the striatum and pontine reticular formation.  相似文献   

12.
1. Experiments performed in precollicular decerebrate cats indicate that neurons located in the caudal part of the locus coeruleus and locus subcoeruleus as well as in the surrounding reticular formation were greatly depressed during the cataplectic episodes induced by i.v. injection of 0.1 mg/kg of eserine sulphate. 2. These units actually showed a slow regular firing rate when the rigidity was present. Moreover their firing rate greatly decreased during the episodes of postural atonia produced by the anticholinesterase. In some instances a complete abolition of firing occurred during these episodes. The depression of unit discharge anticipated the onset of postural atonia and lasted throughout the episodes. 3. Some of the neurons described above responded with steady changes in their discharge rate to natural stimulation of macular labyrinthine receptors during postural rigidity. However, the response of these neurons to lateral tilts was suppressed during the episodes of postural atonia induced by the anticholinesterase, This and other arguments suggested that these units were tonically inhibited during the induced cataplectic episodes. 4. The time course of the rate deceleration shown by these neurons during transition from postural rigidity to muscular atonia represents a mirror image of the rate acceleration which affects most of the pontine reticular neurons located in the gigantocellular tegmental field (FTG) during the induced cataplectic episodes. These reciprocal rate relations suggest that a functional interaction exists between the two cell groups. In particular it is postulated that the pontine FTG neurons are self-excitatory and excitatory to the locus coeruleus neurons, while the last neurons may be self-inhibitory and inhibitory to FTG neurons. These findings can be related to previous observations showing that neurons located in the region of locus coeruleus undergo a rate deceleration during desynchronized sleep which mimics the time course of firing to the pontine reticular neurons. 5. In conclusion it appears that the decerebrate rigidity is present in so far as the cholinergic reticular neurons, which trigger the bulbospinal inhibitory system, are tonically inhibited by neurons located in the monoaminergic structures of the dorsolateral pontine tegmentum. On the other hand the suppression of the decerebrate rigidity ,which occurs during the cholinergically induced cataplectic episodes results from activation of the cholinergic reticular neurons, which escape tonic inhibition from monoaminergic structures.  相似文献   

13.
The cellular origin of the brainstem projections to the oculomotor nucleus in the rabbit has been investigated by using free (HRP) and lectin-conjugated horseradish peroxidase (WGA-HRP). Following injections of these tracers into the somatic oculomotor nucleus (OMC), retrogradely labeled cells have been observed in numerous brainstem structures. In particular, bilateral labeling has been found in the four main subdivisions of the vestibular complex, predominantly in the superior and medial vestibular nuclei and the interstitial nucleus of Cajal, while ipsilateral labeling was found in the rostral interstitial nucleus of the medial longitudinal fascicle (Ri-MLF), the Darkschewitsch and the praepositus nuclei. Neurons labeled only contralaterally have been identified in the following structures: mesencephalic reticular formation dorsolateral to the red nucleus, abducens internuclear neurons, group Y, several areas of the lateral and medial regions of the pontine and medullary reticular formation, ventral region of the lateral cerebellar nucleus and caudal anterior interpositus nucleus. This study provides also information regarding differential projections of some centers to rostral and caudal portions of the OMC. Thus, the rostral one-third appears to receive predominant afferents from the superior and medial vestibular nuclei, while the caudal two-thirds receive afferents from all the four vestibular nuclei. Finally, the group Y sends afferents to the middle and caudal, but not to the rostral OMC.  相似文献   

14.
The effects of intraoral mechanoreceptor stimulation on the firing rate of single neurones of the brain stem reticular formation (RF) were investigated in rabbits. 30% of RF neurones responded to periodontal mechanoreceptor stimulation; 16% to mucosal mechanoreceptor stimulation and 6% to both types of stimuli. Periodontal stimulation induced mainly inhibitory effects localized within the mesencephalic and rostral pontine RF. Among periodontal afferents incisors were the most widely represented. The effects of mucosal mechanoreceptor stimulation were predominant in the medullary and pontine RF and they were mainly excitatory. The present results support the hypothesis that brain stem RF neurones can be recruited into regulating mastication and biting also by stimulation of intraoral mechanoreceptors.  相似文献   

15.
d-amino acid oxidase (d-AAO) is a peroxisomal flavoenzyme, the physiological substrate and the precise function of which are still unclear. We have investigated D-AAO distribution in rat brain, by immunocytochemistry, with an affinity-purified polyclonal antibody. Immunoreactivity occurred in both neuronal and glial cells, albeit at different densities. Glial immunostaning was strongest in the caudal brainstem and cerebellar cortex, particularly in astrocytes, Golgi-Bergmann glia, and tanycytes. Hindbrain neurons were generally more immunoreactive than those in the forebrain. Immunopositive forebrain cell populations included mitral cells in the olfactory bulb, cortical and hippocampal neurons, ventral pallidum, and septal, reticular thalamic, and paraventricular hypothalamic nuclei. Within the positive regions, not all the neuronal populations were equally immunoreactive; for example, in the thalamus, only the reticular and anterodorsal nuclei showed intense labelling. In the hindbrain, immunopositivity was virtually ubiquitous, and was especially strong in the reticular formation, pontine, ventral and dorsal cochlear, vestibular, cranial motor nuclei, deep cerebellar nuclei, and the cerebellar cortex, especially in Golgi and Purkinje cells.  相似文献   

16.
Expression of the immediate-early gene c-fos, a marker of neuronal activation was employed in adult anesthetized non-decerebrate cats, in order to localize the brainstem neuronal populations functionally related to sniff-like (gasp-like) aspiration reflex (AR). Tissues were immunoprocessed using an antibody raised against amino acids of Fos and the avidin-biotin peroxidase complex method. The level of Fos-like immunoreactivity (FLI) was identified and counted in particular brainstem sections under light microscopy using PC software evaluations in control, unstimulated cats and in cats where the AR was elicited by repeated mechanical stimulation of the nasopharyngeal region. Fourteen brainstem regions with FLI labeling, including thirty-seven nuclei were compared for the number of labeled cells. Compared to the control, a significantly enhanced FLI was determined bilaterally in animals with the AR, at various medullary levels. The areas included the nuclei of the solitary tract (especially the dorsal, interstitial and ventrolateral subnuclei), the ventromedial part of the parvocellular tegmental field (FTL -- lateral nuclei of reticular formation), the lateral reticular nucleus, the ambigual and para-ambigual regions, and the retrofacial nucleus. FLI was also observed in the gigantocellular tegmental field (FTG -- medial nuclei of reticular formation), the spinal trigeminal nucleus, in the medullar raphe nuclei (ncl. raphealis magnus and parvus), and in the medial and lateral vestibular nuclei. Within the pons, a significant FLI was observed bilaterally in the parabrachial nucleus (especially in its lateral subnucleus), the Kolliker-Fuse nucleus, the nucleus coeruleus, within the medial region of brachium conjunctivum, in the ventrolateral part of the pontine FTG and the FTL. Within the mesencephalon a significantly enhanced FLI was found at the central tegmental field (area ventralis tegmenti Tsai), bilaterally. Positive FLI found in columns extending from the caudal medulla oblongata, through the pons up to the mid-mesencephalon suggests that the aspiration reflex is thus co-ordinated by a long loop of medullary-pontine-mesencephalic control circuit rather than by a unique "center".  相似文献   

17.
1. In precollicular decerebrate cats the electrical activity of single pontine neurons was recorded before, during and after the episodes of postural atonia produced by i.v. injection of 0.03-0.1 mg/kg of eserine sulphate. These episodes were characterized by the regular occurrence of horizontal conjugate eye movements, which were mainly grouped in bursts of REM; moreover, a burst of REM in one direction was generally followed by a burst of REM in the opposite direction. 2. Among the recorded units, 32 showed an increase in their discharge rate during these cataplectic episodes. However, while these units fired at regular frequency when postural rigidity was present, they showed periodic changes in their discharge rate as soon as the bursts of REM appeared in the electrooculogram. In particular a nearly sinusoidal increase in the discharge rate was related to the appearance of an ocular burst in one direction, while a decrease in the unit discharge occurred during an ocular burst in the opposite direction. In some instances neighbouring pontine units located within each side of the brain stem showed reciprocal rate profiles during REM bursts oriented in a given direction, making it likely that the cyclic alternation of their activity depended upon their reciprocal interaction. 3. The alternative hypothesis, i.e., that these periodic changes in unit discharge depend upon the proprioceptive feedback due to the eye movements was excluded by the fact that these changes started before the occurrence of the bursts of REM and began to decline before the end of the burst. Moreover no variation in their firing rate was observed during the positional nystagmus induced by tilting the animal in the control period, i.e., when postural rigidity had reappeared following the end of the cataplectic episode. 4. Most of the neurons showing periodic changes in their discharge frequency during the bursts of REM were located in the pontine reticular formation. Scattered units were also found within the region of the locus coeruleus and the raphe system, close to the surrounding reticular structures. 5. In addition to these neurons, 60 pontine units were recorded, which did not show any changes in their discharge rate during transition from the control period to the cataplectic episode. However, phsiic increases or phasic decreases in their discharge rate appeared synchronously with the individual eye movements. Since in most instances these phasic changes in unit activity coincided with the appearance of the individual monophasic potentials recorded from the ascending MLB, which immediately preceded the rapid eye movements, these units could be attributed either to the premotor neurons responsible for these REM or to the closely related structures which generate their rhythmic discharge. In only a few instances did the discharge of these units not precede but follow the individual eye movements, indicating that they resulted from a proprioceptive feedback originating during the eye movements. 6...  相似文献   

18.
1. Previous experiments had shown that the medullary inhibitory reticulospinal (mRS) neurons act 180 degrees out-of-phase with respect to the excitatory vestibulospinal (VS) neurons during the vestibular and the neck reflexes involving the limb extensor motoneurons. This finding suggested that the higher the firing rate of the medullary inhibitory RS neurons in the animal at rest, the greater the disinhibition which affects the limb extensor motoneurons during side-down roll tilt of the animal or side-up neck rotation, thus leading to an increased gain of response of limb extensors to sinusoidal stimulation of labyrinth and neck receptors. The gain of these postural reflexes would then represent a sensitive test to evaluate the background discharge of the inhibitory reticulospinal system of the medulla. 2. The discharge of the inhibitory mRS neurons is under the tonic excitatory control of cholinergic pontine reticular formation (pRF) neurons which are also self-excitatory, while these cholinergic pontine neurons are in turn inhibited by the norepinephrine (NE)-containing locus coeruleus (LC) neurons, which are also self-inhibitory due to mechanisms of recurrent and/or lateral inhibition. The present experiments were performed to find out whether cholinergic and cholinoceptive pontine reticular neurons, which are under the inhibitory control of the LC neurons, also send axons to the LC on which they may exert an excitatory influence. This excitatory effect would then counteract the self-inhibitory influence mediated by the NE, which acts on the alpha 2-adrenoceptors distributed on the somatodendritic membrane of the LC neurons. 3. In precollicular decerebrate cats, local injection into the dorsal aspect of the pontine tegmentum of 0.25 microliter of a solution of the muscarinic blocker atropine sulphate at the concentration of 6 micrograms/microliter of sterile saline did neither modify the postural activity in the ipsilateral limbs nor the response gain of the ipsilateral forelimb extensor triceps brachii to sinusoidal stimulation of labyrinth receptors (roll tilt of the animal at 0.15 Hz, +/- 10 degrees). These negative results were attributed to the fact that in these preparations the activity of the cholinergic and cholinoceptive pRF neurons and the related inhibitory mRS neurons is very low, due to the tonic discharge of the NE-containing LC neurons, which exert a prominent inhibitory influence on the underlying reticular structures.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Experiments were performed to find out whether changes in resting discharge of the inhibitory reticulospinal (RS) neurons of the medulla, produced either by selective destruction or by cholinergic activation of a pontine tegmental reticular system, may modify the response gain of limb extensor muscles to given parameters of roll tilt of the animal or neck rotation. In precollicular decerebrate cats, an electrolytic lesion of the dorsal aspect of the pontine tegmentum, which slightly increased the tonic contraction of limb extensors, greatly decreased the amplitude of the multiunit EMG response of forelimb extensor muscles, i.e. of the medial head of the triceps brachii, to roll tilt of the animal and neck rotation (at 0.15 Hz, +/- 10 degrees), leading to selective stimulation of labyrinth or neck receptors. Correspondingly, the response gain of the forelimb extensors to labyrinth and neck stimulation decreased, but no change in the phase angle of the responses was observed. These findings did not depend on the increased postural activity, since they were still observed in the absence of any change in spontaneous EMG activity of the triceps brachii following the lesion. The changes in posture as well as in response gain of the forelimb extensors to labyrinth and neck stimulation produced by the pontine lesion appeared suddenly, and persisted for several hours throughout the survival period. Moreover, these changes involved mainly, but not exclusively, the limbs ipsilateral to the side of the lesion. Histological controls indicated that the structure responsible for the postural and reflex changes described above corresponded to the dorsal aspect of the pontine tegmentum located immediately ventral to the locus coeruleus (LC); this area corresponded to the peri-LC region as well as the surrounding pontine reticular formation (RF), including the dorsal aspect of the central tegmental field. This region closely corresponds to the area from which a tegmentoreticular tract, ending on the medullary inhibitory area, originates. It was previously shown that unilateral or bilateral lesion of the LC, which decreased the extensor tonus in the ipsilateral limbs, greatly enhanced the response gain of the triceps brachii to sinusoidal stimulation of labyrinth and neck receptors. These findings were attributed to suppression of an inhibitory influence that the LC exerts on the dorsal pontine reticular structures described above.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Z Elazar  M Paz 《Life sciences》1992,51(17):1373-1380
We reported previously that microinjections of carbachol directly into the pontine reticular formation of rats induced intense akinesia. In the present article we report results of tests for rigidity, righting, bracing and clinging which were conducted with the purpose to characterize behaviorally this type of akinesia. After injections of 5-15 micrograms/0.5 microliter of carbachol into the pontine reticular formation the rats were cataleptic, were not rigid when equilibrium was not challenged, had strong righting reflexes and strong bracing and clinging responses. This type of akinesia is different from the catatonia induced by systemic morphine (20 mg/kg IP), but similar to the catalepsy induced by systemic injections of haloperidol (5 mg/kg IP). It is thus suggested that the cataleptic state produced by topical carbachol in the pons is related to the dopaminergic mechanisms important for the cataleptic effect of the neuroleptic drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号