首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 382 毫秒
1.
The pathway of autotrophic CO2 fixation in Methanobacterium thermoautotrophicum has been investigated by long term labelling of the organism with isotopic acetate and pyruvate while exponentially growing on H2 plus CO2. Maximally 2% of the cell carbon were derived from exogeneous tracer, 98% were synthesized from CO2. Since growth was obviously autotrophic the labelled compounds functioned as tracers of the cellular acetyl CoA and pyruvate pool during cell carbon synthesis from CO2. M. thermoautotrophicum growing in presence of U-14C acetate incorporated 14C into cell compounds derived from acetyl CoA (N-acetyl groups) as well as into compounds derived from pyruvate (alanine), oxaloacetate (aspartate), -ketoglutarate (glutamate), hexosephosphates (galactosamine), and pentosephosphates (ribose). The specific radioactities of N-acetylgroups and of the three amino acids were identical. The hexosamine exhibited a two times higher specific radioactivity, and the pentose a 1.6 times higher specific radioactivity than e.g. alanine. M. thermoautotrophicum growing in presence of 3-14C pyruvate, however, did not incorporate 14C into cell compounds directly derived from acetyl CoA. Those compounds derived from pyruvate, dicarboxylic acids and hexosephosphates became labelled. The specific radioactivities of alanine, aspartate and glutamate were identical; the hexosamine had a specific radioactivity twice as high as e.g. alanine.The finding that pyruvate was not incorporated into compounds derived from acetyl CoA, whereas acetate was incorporated into derivatives of acetyl CoA and pyruvate in a 1:1 ratio demonstrates that pyruvate is synthesized by reductive carboxylation of acetyl CoA. The data further provide evidence that in this autotrophic CO2 fixation pathway hexosephosphates and pentosephosphates are synthesized from CO2 via acetyl CoA and pyruvate.  相似文献   

2.
Glycine-accumulating mutants of barley (Hordeum vulgare L.) and Amaranthus edulis (Speg.), which lack the ability to decarboxylate glycine by glycine decarboxylase (GDC; EC 2.1.2.10), were used to study the significance of an alternative photorespiratory pathway of serine formation. In the normal photorespiratory pathway, 5,10-methylenetetrahydrofolate is formed in the reaction catalysed by GDC and transferred to serine by serine hydroxymethyltransferase. In an alternative pathway, glyoxylate could be decarboxylated to formate and formate could be converted into 5,10-methylenetetrahydrofolate in the C1-tetrahydrofolate synthase pathway. In contrast to wild-type plants, the mutants showed a light-dependent accumulation of glyoxylate and formate, which was suppressed by elevated (0.7%) CO2 concentrations. After growth in air, the activity and amount of 10-formyltetrahydrofolate synthetase (FTHF synthetase; EC 6.3.4.4), the first enzyme of the conversion of formate into 5,10-methylenetetrahydrofolate, were increased in the mutants compared to the wild types. A similar increase in FTHF synthetase could be induced by incubating leaves of wild-type plants with glycine under illumination, but not in the dark. Experiments with 14C showed that the barley mutants incorporated [14C]formate and [2-14C]glycollate into serine. Together, the accumulation of glyoxylate and formate under photorespiratory conditions, the increase in FTHF synthetase and the ability to utilise formate and glycollate for the formation of serine indicate that the mutants are able partially to compensate for the lack of GDC activity by bypassing the normal photorespiratory pathway. Received: 14 August 1998 / Accepted: 30 September 1998  相似文献   

3.
—Data comparing tricarboxylic acid cycle dynamics in mitochondria from rabbit brain using [2- or 3-14C]pyruvate with and without cosubstrates (malate, α-ketoglutarate, glutamate) are reported. With a physiological concentration of an unlabelled cosubstrate, from 90-99% of the isotope remained in cycle intermediates. However, the liberation of 14CO2 and the presence of 14C in the C-1 position of α-ketoglutarate indicated that multiple turns of the cycle occurred. Entry of pyruvate into the cycle was greater with malate than with either α-ketoglutarate or glutamate as cosubstrate. With malate as cosubstrate for [14C]pyruvate the amount of [14C]citrate which accumulated averaged 30nmol/ml or 23% of the pyruvate utilized while α-ketoglutarate averaged 45 nmol/ml or 35% of the pyruvate utilized. With α-ketoglutarate as cosubstrate for [14C]pyruvate, the average amount of [14C]citrate which accumulated decreased to 8 nmol/ml or 10% of the pyruvate utilized while [14C]α-ketoglutarate increased slightly to 52 nmol/ml or an increase to 62%, largely due to a decrease in pyruvate utilization. The percentage of 14C found in α-ketoglutarate was always greater than that found in malate, irrespective of whether α-ketoglutarate or malate was the cosubstrate for either [2- or 3-14C]pyruvate. The fraction of 14CO2 produced was slightly greater with α-ketoglutarate as cosubstrate than with malate. This observation and the fact that malate had a higher specific activity than did α-ketoglutarate when α-ketoglutarate was the cosubstrate, indicated a preferential utilization of α-ketoglutarate formed within the mitochondria. When l -glutamate was a cosubstrate for [14C]pyruvate the principal radioactive product was glutamate, formed by isotopic exchange of glutamate with [14C] α-ketoglutarate. If malate was also added, [14C]citrate accumulated although pyruvate entry did not increase. Due to retention of isotope in glutamate, little [14C]succinate, malate or aspartate accumulated. When [U-14C]l -glutamate was used in conjunction with unlabelled pyruvate more 14C entered the cycle than when unlabelled glutamate was used with [14C]pyruvate and led to α-ketoglutarate, succinate and aspartate as the major isotopic products. When in addition, unlabelled malate was added, total and isotopic α-ketoglutarate increased while [14C]aspartate decreased. The increase in [14C]succinate when [14C] glutamate was used indicated an increase in the flux through α-ketoglutarate dehydrogenase and was accompanied by a decrease of pyruvate utilization as compared to experiments when either α-ketoglutarate or glutamate were present at low concentration. It is concluded that the tricarboxylic acid cycle in brain mitochondria operates in at least three open segments, (1) pyruvate plus malate (oxaloacetate) to citrate; (2) citrate to α-ketoglutarate and; (3) α-ketoglutarate to malate, and that at any given time, the relative rates of these segments depend upon the substrate composition of the environment of the mitochondria. These data suggest an approach to a steady state consistent with the kinetic properties of the tricarboxylic acid cycle within the mitochondria.  相似文献   

4.
Summary When Chlorella pyrenoidosa photoassimilates 3H–14C-acetate glycollic acid rapidly becomes labelled with both tritium and 14C. The 3H/14C ratio was 10 in glycollate, (compared with 4 in the acetate added) and the only other intermediates showing similar 3H/14C ratios to glycollate were glycerate and serine. This suggests a glycollate pathway for the formation of serine was operating in Chlorella pyrenoidosa during the photoassimilation of acetate. When Chlorella pyrenoidosa assimilated 3H–14C-acetate in the dark glycollate was not labelled with either 14C or tritium. Although glycerate and serine both became labelled with 14C and tritium in the dark they did not show the high 3H/14C ratios recorded in the light. When cells were aerated with unlabelled 5% CO2 during the photoassimilation of 3H–14C-acetate, the 3H/14C ratios of glycollate, glycerate and serine were slightly decreased. Similarly, under anaerobic conditions in the light the 3H/14C ratio was decreased compared with aerobic conditions.  相似文献   

5.
1. The effect of triperidol on the metabolism of glucose, pyruvate, glutamate, aspartate and glycine was studied with rat brain-cortex slices, U-14C-labelled substrates and a quantitative radiochromatographic technique. 2. Triperidol at a concentration of 0·2mm decreased the oxygen uptake and the 14CO2 production by about 30% when glucose, pyruvate and glutamate were used as substrates, whereas no effects were observed with aspartate and glycine. 3. The drug did not alter qualitatively the metabolic pattern of the substrates. 4. Quantitatively, triperidol decreased the incorporation of 14C from [U-14C]glucose and [U14-C]-pyruvate into glutamate, glutamine and γ-aminobutyrate but not into lactate, alanine and aspartate. The overall utilization rates of glucose and pyruvate were decreased. The relative specific radioactivities of glutamate and aspartate were also decreased. 5. Triperidol increased the rate of disappearance of U-14C-labelled glutamate, aspartate and glycine from the incubation medium, and altered the distribution of their metabolites between medium and tissue. 6. No appreciable effect of triperidol on [1-14C]galactose disappearance was found.  相似文献   

6.
This study used in vivo13C NMR spectroscopy to directly examine bidirectional reactions of the Wood–Werkman cycle involved in central carbon metabolic pathways of dairy propionibacteria during pyruvate catabolism. The flow of [2-13C]pyruvate label was monitored on living cell suspensions of Propionibacterium freudenreichii subsp. shermanii and Propionibacterium acidipropionici under acidic conditions. P. shermanii and P. acidipropionici cells consumed pyruvate at apparent initial rates of 161 and 39 μmol min−1 g−1 (cell dry weight), respectively. The bidirectionality of reactions in the first part of the Wood–Werkman cycle was evident from the formation of intermediates such as [3-13C]pyruvate and [3-13C]malate and of products like [2-13C]acetate from [2-13C]pyruvate. For the first time alanine labeled on C2 and C3 and aspartate labeled on C2 and C3 were observed during [2-13C]pyruvate metabolism by propionibacteria. The kinetics of aspartate isotopic enrichment was evidence for its production from oxaloacetate via aspartate aminotransferase. Activities of a partial tricarboxylic acid pathway, acetate synthesis, succinate synthesis, gluconeogenesis, aspartate synthesis, and alanine synthesis pathways were evident from the experimental results.  相似文献   

7.
Various solutions of labeled precursors were absorbed by the cotyledons of etiolated Euphorbia lathyris L. seedlings. Incorporation of 14C into triterpenes from [2-14C]mevalonic acid, [1-14C]acetate, [3-14C]pyruvate, [U-14C]glyoxylate, [U-14C]glycerol, [U-14C]serine, [U-14C]xylose, [U-14C]glucose, and [U-14C]sucrose was obtained. The [14] triterpenes synthesized from [14C] sugars were mainly of latex origin. [14C]mevalonic acid was only involved in terpenoid synthesis outside the laticifers. Exogenously supplied glyoxylate, serine, and glycerol were hardly involved in lipid synthesis at all. The 14C-distribution over the various triterpenols was consistent with the mass distribution of these constituents in gas liquid chromatography when [14C]sugars, [14C]acetate, and [14C]pyruvate were used. These precursors were supplied to the seedlings in the presence of increasing amounts of unlabeled substrates. The amount of substrate directly involved in lipid synthesis as well as the absolute triterpenol yield was calculated from the obtained [14C]triterpenols. The highest yield was obtained in the sucrose incorporated seedlings, being 25% of the daily increase of latex triterpenes in growing seedlings.  相似文献   

8.
In vivo tracer studies with 14C have been performed to help determine pathways of incorporation of newly assimilated nitrogen into N2-fixing cells of Anabaena cylindrica. After photosynthesis in Ar:O2:14CO2 for 30 min, the addition of N2 or NH 4 + resulted in increased rates of 14CO2-incorporation both in the light and dark, and in increased incorporation of 14C into amino acids at the expense of sucrose and sugar phosphates. Evidence of enhanced sucrose catabolism and increased pyruvate kinase activity was obtained on adding nitrogen, and, of the 14C-labelling entering the tricarboxylic acid cycle, more appeared in citrate and 2-oxoglutarate than in malate and oxaloacetate. The kinetics of 14C-incorporation into various amino acids suggest that in the light and dark the most important route of primary ammonia assimilation involves glutamine synthetase and that glutamate, aspartate, glycine and probably alanine are formed secondarily from glutamine.  相似文献   

9.
Gunter O. Kirst 《Planta》1981,151(3):281-288
The giant-celled alga Griffithsia monilis has a low light compensation point and saturates photosynthesis at 60–90 mol photons m-2s-1 (oxygen evolution and CO2 fixation). Under dark and low light intensities 14C is preferentially incorporated into amino acids (mainly aspartate and alanine). With increasing light a gradual change was observed and, under light saturation, compounds of the anionic fraction (digeneaside and hexosephosphates) were the most strongly labeled compounds, together with the amino acids glycine and serine. To a large extent (30–40% of the total) 14C was fixed into EtOH-insoluble products, the hydrolysates of which consisted mainly of glucose and mannose. In the steady state the rates of photosynthesis and respiration decreased with increasing salinity. Changes in the rates after hyperosmotic shocks were less severe in cells adapted to high salinities. Photorespiration exists in Griffithsia: Glycine and serine are the major labeled compounds in O2-saturated media.  相似文献   

10.
Products of the nodule cytosol in vivo dark [14C]CO2 fixation were detected in the plant cytosol as well as in the bacteroids of pea (Pisum sativum L. cv “Bodil”) nodules. The distribution of the metabolites of the dark CO2 fixation products was compared in effective (fix+) nodules infected by a wild-type Rhizobium leguminosarum (MNF 300), and ineffective (fix) nodules of the R. leguminosarum mutant MNF 3080. The latter has a defect in the dicarboxylic acid transport system of the bacterial membrane. The 14C incorporation from [14C]CO2 was about threefold greater in the wild-type nodules than in the mutant nodules. Similarly, in wild-type nodules the in vitro phosphoenolpyruvate carboxylase activity was substantially greater than that of the mutant. Almost 90% of the 14C label in the cytosol was found in organic acids in both symbioses. Malate comprised about half of the total cytosol organic acid content on a molar basis, and more than 70% of the cytosol radioactivity in the organic acid fraction was detected in malate in both symbioses. Most of the remaining 14C was contained in the amino acid fraction of the cytosol in both symbioses. More than 70% of the 14C label found in the amino acids of the cytosol was incorporated in aspartate, which on a molar basis comprised only about 1% of the total amino acid pool in the cytosol. The extensive 14C labeling of malate and aspartate from nodule dark [14C]CO2 fixation is consistent with the role of phosphoenolpyruvate carboxlase in nodule dark CO2 fixation. Bacteroids from the effective wild-type symbiosis accumulated sevenfold more 14C than did the dicarboxylic acid transport defective bacteroids. The bacteroids of the effective MNF 300 symbiosis contained the largest proportion of the incorporated 14C in the organic acids, whereas ineffective MNF 3080 bacteroids mainly contained 14C in the amino acid fraction. In both symbioses a larger proportion of the bacteroid 14C label was detected in malate and aspartate than their corresponding proportions of the organic acids and amino acids on a molar basis. The proportion of 14C label in succinate, 2-oxogultarate, citrate, and fumarate in the bacteroids of the wild type greatly exceeded that of the dicarboxylate uptake mutant. The results indicate a central role for nodule cytosol dark CO2 fixation in the supply of the bacteroids with dicarboxylic acids.  相似文献   

11.
A rather complete model of the gluconeogenic pathway was used, with the known separate pools of mitochondrial and cytosolic oxalacetate, malate and aspartate. The fumarase, malate dehydrogenase and glutamate oxalacetate transaminase reactions were assumed to be isotopically actively reversible, but none at isotopic equilibrium. Malate was assumed to exchange actively between the mitochondrial and cytosol, while aspartate exchange was more limited, in agreement with the known electrogenic nature of aspartate export from the mitochondria. This model was fit to14C data obtained in hepatocyte studies, and to the whole rat14C data obtained by Heath and Rose (Biochem J. 227, 851–876, 1985). The latter data were easily fit to our model, when a single mitochondrial oxalacetate pool was assumed. However, invoking two mitochondrial oxalacetate pools, as proposed by Heath and Rose, with the oxalacetate formed via pyruvate carboxylase preferentially channelled to gluconeogenesis, could not be fit with the known differences in scrambling in glucose and glutamate produced from L[3-14C]lactate.  相似文献   

12.
Abstract— Thiamine deficiency produced by administration of pyrithiamine to rats maintained on a thiamine-deficient diet resulted in a marked disturbance in amino acid and glucose levels of the brain. In the two pyrithiamine-treated groups of rats (Expt. A and Expt. B) there was a significant decrease in the levels of glutamate (23%, 9%) and aspartate (42%, 57%), and an increase in the levels of glycine (26%, 27%) in the brain, irrespective of whether the animals showed signs of paralysis (Expt. A) or not (Expt. B). as a result of thiamine deficiency. A significant decrease in the levels of γ-aminobutyrate (22%) and serine (28%) in the brain was also observed in those pyrithiamine-treated rats which showed signs of paralysis (Expt. A). Threonine content increased by 57% in Expt. A and 40% in Expt. B in the brain of pyrithiamine-treated rats, but these changes were not statistically significant. The utilization of [U-14C]glucose into amino acids decreased and accumulation of glucose and [U-14C]glucose increased significantly in the brain after injection of [U-14C]glucose to pyrithiamine-treated rats which showed abnormal neurological symptoms (Expt. A). The decrease in 14C-content of amino acids was due to decreased conversion of [U-14C]glucose into alanine, glutamate, glutamine, aspartate and γ-aminobutyrate. The flux of [14C]glutamate into glutamine and γ-aminobutyrate also decreased significantly only in the brain of animals paralysed on treatment with pyrithiamine. The decrease in the labelling of, amino acids was attributed to a decrease in the activities of pyruvate dehydrogenase and α-oxoglutarate dehydrogenase in the brain of pyrithiamine-treated rats. The measurement of specific radioactivity of glucose, glucose-6-phosphate and lactate also indicated a decrease in the activities of glycolytic enzymes in the brain of pyrithiamine-treated animals in Expt. A only. It was suggested that an alteration in the rate of oxidation in vivo of pyruvate in the brain of thiamine-deficient rats is controlled by the glycolytic enzymes, probably at the hexokinase level. The lack of neurotoxic effect and absence of significant decrease in the metabolism of [U-14C]glucose in the brain of pyrithiamine-treated animals in Expt. B were probably due to the fact that animals in Expt. B were older and weighed more than those in Expt. A, both at the start and the termination of the experiments.  相似文献   

13.
The aim of this work was to investigate the extent of glycolysis during gluconeogenesis in the germination of marrow (Cucurbita pepo L. var. medullosa Alef.). The activities of phosphofructokinase (E.C. 2.7.1.11) in extracts of cotyledons, of seeds, and seedlings grown in the dark for 2, 5, and 8 days were 3·5, 4·8, 9·4, and 11·8 nmol substrate consumed per cotyledon per min, respectively. The comparable figures for pyruvate kinase (E.C. 2.7.1.41) were 16·3, 72·3, 974, and 1485. The patterns of 14CO2 production from [1-14C], [2-14C], [3,4-14C], and [6-14C]glucose indicated that at all the above stages of germination glycolysis was appreciable and predominated over the pentose phosphate pathway. These patterns, and the distribution of label from [1-14C], and [3-14C]pyruvate supplied to 5-day-old cotyledons, indicated that the pyruvate formed in glycolysis was converted to acetyl units that were used primarily in biosyntheses. It is concluded that glycolysis occurred at all the stages of germination examined and was particularly active during gluconeogenesis. It is suggested that the significance of this glycolysis is the provision of intermediates for biosyntheses, a need that may not be met by corresponding gluconeogenic intermediates as these may be retained within organelles.  相似文献   

14.
Zusammenfassung Nach einer Dunkelperiode von 40 min und 40 sec wurden die CO2-Aufnahme und die 14C-markierten Produkte während der Photosynthese-Induktion bei Chlorella vulgaris (211-11f) bestimmt. Die mit Preßluft (0,03 Vol.-% CO2) begasten Algen sind bei +27°C kultiviert und bei +10° oder +25°C gemessen worden. Ein Induktionseffekt der photosynthetischen CO2-Aufnahme konnte nur nach einer längeren Dunkelperiode (>3 min) beobachtet werden. Unter diesen Bedingungen wurde 14CO2 am Anfang der Belichtung in Malat, Aspartat und 3-Phosphoglycerat eingebaut. Nach einer kurzen Dunkelperiode (40 sec) waren zu Beginn der Belichtung vor allem die Produkte des Calvin-Cyclus markiert. Die Wirkung von Intermediaten auf die Ausbildung der Induktionseffekte wird diskutiert.
Effect of short dark periods on CO2 uptake and carboxylation of phosphoenolpyruvate during the photosynthetic induction period in Chlorella vulgaris
Summary CO2 exchange, 14CO2 fixation and 14C labelled products of Chlorella vulgaris (strain 211-11f) were studied during the photosynthetic induction period at +10° and +25°C after a dark period of 40 min and 40 sec. The algae were grown under normal aerated conditions (0.03 vol.-% CO2) at +27°C. Transient changes in CO2 uptake, measured with an infrared gas analyzer, could be observed only after a dark period of >3 min; no such changes occurred after a dark period of 40 sec. The autoradiographic studies of the kinetics of the appearance of labelled products at +10° and +25°C showed that after a long dark period (40 min) at the beginning of illumination 14CO2 was incorporated into malate, aspartate and 3-phosphoglycerate. Under these conditions, the intermediates of the Calvin cycle were labelled after 30 sec (+25°C) or 2 min (+10°C) of photosynthesis. After a dark period of 40 sec (at +10° and +25°C), however, 14C incorporation into malate and aspartate was rather low at the beginning of illumination; moreover, the intermediates of the Calvin cycle appeared earlier and were more strongly labelled after this short dark period. The results are discussed with reference to the influence of intermediates on the formation of the transient changes of CO2 uptake in Chlorella.
  相似文献   

15.
R. C. Leegood  T. ap Rees 《Planta》1978,140(3):275-282
We did this work to discover the pathway of CO2 fixation into sugars in the dark during gluconeogenesis by the cotyledons of 5-day-old seedlings of Cucurbita pepo L. We paid particular attention to the possibility of a contribution from ribulosebisphosphate carboxylase. The detailed distribution of 14C after exposure of excised cotyledons to 14CO2 in the dark was determined in a series of pulse and chase experiments. After 4s in 14CO2, 89% of the 14C fixed was in malate and aspartate. In longer exposures, and in chases in 12CO2, label appeared in alanine, phosphoenolpyruvate, 3-phosphoglycerate and sugar phosphates, and accumulated in sugars. The transfer of label from C-4 acids to sugars was restricted by inhibition of phosphoenolpyruvate carboxykinase in vivo by 3-mercaptopicolinic acid. We conclude as follows. Initial fixation of CO2 in the dark is almost entirely into phosphoenolpyruvate, probably via phosphoenolpyruvate carboxylase (EC 4.1.1.31) which we showed to be present in appreciable amounts. Incorporation into sugars occurs chiefly, if not completely, as a result of randomization of the carboxyl groups of the C-4 acids and subsequent conversion of the oxaloacetate to sugars via the accepted sequence for gluconeogenesis. Ribulosebisphosphate carboxylase appears to make very little contribution to sugar synthesis from fat.  相似文献   

16.
The rates of uptake of exogenous L[U-14C] aspartate and glutamate into tissues of vegetative growing tips ofFucus serratus and their metabolism were studied in the dark. In these non-photosynthetic conditions, aspartate was fixed and metabolically converted more rapidly than glutamate. Radioactivity from14C-aspartate was principally transferred into glutamate. On the other hand, metabolism of absorbed14C-glutamate was very slow and its rate did not increase during incubation time, but produced more diversified soluble radioactive compounds. Thus inF. serratus, glutamate principally seems to be in the dark more a temporary14CO2 storage product coming from β-carboxylation than a rapidly turned over intermediate.  相似文献   

17.
Long term feeding of acetate-2-14C, 14CO2, citrate-1,5-14C, fumarate-2,3-14C, and succinate-2,3-14C to mung bean (Phaseolus aureus L. var. Mungo) leaves in the dark gave labeling predominantly in tricarboxylic acid cycle intermediates. Kinetics of the intermediates during dark/light/dark transitions showed a light-induced interchange of 14C between malate and aspartate, usually resulting in an accumulation of 14C in malate and a decrease of it in aspartate. 14C-Phosphoenolpyruvate also showed a marked decrease during illumination. Changes in other intermediates of the tricarboxylic acid cycle were relatively minor. The kinetic data have been analyzed using the Chance crossover theorem to locate control points during the dark/light/dark transitions. The major apparent control points are located at malate and isocitrate dehydrogenases, and less frequently at citrate synthase and fumarase. These findings are explained in terms of the light-induced changes in adenine nucleotides and nicotinamide adenine dinucleotides.  相似文献   

18.
In recent studies using intact chloroplasts of spinach (Spinacia oleracea L.) to investigate the accumulation of acetyl-CoA produced by the activity of either acetyl-CoA synthetase (EC 6.2.1.1) or the pyruvate-dehydrogenase complex, this product was not detectable. These results in combination with new information on the physiological levels of acetate and pyruvate in spinach chloroplasts (H.-J. Treede et al. 1986, Z. Naturforsch. 41 C, 733–740) prompted a reinvestigation of the incorporation of [1-14C] acetate and [2-14C] pyruvate into fatty acids at physiological concentrations.The K m for the incorporation into fatty acids was about 0.1 mM for both metabolites and thus agreed with the values obtained by H.-J. Treede et al. (1986) for acetyl-CoA synthetase and the pyruvate dehydrogenase complex. However, acetate was incorporated with a threefold higher V max. Saturation for pyruvate incorporation into the fattyacid fraction was achieved only at physiological pyruvate concentrations (<1.0 mM). The diffusion kinetics observed at higher concentrations may be the result of contamination with derivates of the labeled substrate. Competition as well as double-labeling experiments with [3H]acetate and [2-14C]pyruvate support the notion that, at least in spinach, chloroplastic acetate is the preferred substrate for fatty-acid synthesis when both substrates are supplied concurrently (P.G. Roughan et al., 1979 b, Biochem. J. 184, 565–569).Experiments with spinach leaf discs confirmed the predominance of fatty-acid incorporation from acetate. Radioactivity from [1-14C]acetate appeared to accumulate in glycerolipids while that from [2-14C]pyruvate was apparently shifted in favor of the products of prenyl metabolism.Abbreviations Chl chlorophyll - TLC thin-layer chromatography  相似文献   

19.
Summary When discs punched out of the median part of the phylloid of Laminaria saccharina Lamour. were exposed to H14CO3 - in the light for periods of 10 sec to 10 min, 14C was rapidly incorporated into various photosynthetic products. As compared with dark fixation, 14C-photosynthesis increased exponentially during the first 60 sec of incubation in H14CO3 -. Fixation rates were found to be 76 mol CO2·dm-2·h-1 or 100 mol CO2·mg-1 chlorophyll a·h-1. Eighty-five per cent of the total 14C assimilated after 10 sec was fixed in phosphoglycerate and in the sugar monophosphates, 2% in the sugar diphosphates, and only 3.5% in malate and aspartate. While the radioactivity of malate and aspartate only rose to a constant level, the percentage of the total 14C in phosphoglycerate and-to a lower extent-that in the sugar monophosphates rapidly decreased with the duration of light exposure. Simultaneously, mannitol and glycine+serine became labelled with 43% and 32% respectively of the total 14C after 10 min light fixation. In the dark, the percentage of the total 14C in malate decreased with the time of H14CO2--incubation, while there was a remarkable increase in radioactivity of aspartate and glutamate. Within 60 min darkness no labelling of mannitol was found.From the present results it is concluded that the photosynthetic carbon cycle first described by Bassham and Calvin operates in Laminaria saccharina.

Auszug aus einer Diplomarbeit.  相似文献   

20.
Abstract—
  • 1 Metabolism of [2-14C]pyruvate, [1-14C]acetate and [5-14C]citrate in the rat cerebral cortex slices was studied in the presence of halothane. Metabolites assayed include acetylcholine (ACh), citrate, glutamate, glutamine, γ-aminobutyrate (GABA) and aspartate. The trichloroacetic acid soluble extract, the trichloroacetic acid insoluble precipitate and its lipid extract were also studied.
  • 2 In control experiments, pyruvate preferentially labelled ACh, citrate, glutamate, GABA and aspartate. Acetate labeled ACh, but to a lesser extent than pyruvate. Acetate also labeled lipids and glutamine. Citrate labeled lipids but not ACh and served as a preferential precursor for glutamine. These data support a three-compartment model for cerebral tricarboxylic acid cycle metabolism.
  • 3 Halothane caused increases in GABA and aspartate contents and a decrease in ACh content. It has no effect on the contents of citrate, glutamate and glutamine.
  • 4 Halothane preferentially inhibited the metabolic transfer of radioactivity from pyruvate into almost all metabolites, an effect probably not related to pyruvate permeability. This is interpreted as halothane depression of the‘large metabolic compartment’ which includes the nerve endings.
  • 5 Halothane increased the metabolic transfer of radioactivity from acetate into lipids but did not alter such a transfer into the trichloracetic acid extract.
  • 6 Halothane increased the metabolic transfer of radioactivity from citrate into the trichloroacetic acid precipitate, lipids and especially glutamine. Transfer of citrate radioactivity into GABA was somewhat decreased.
  • 7 The differential effects of halothane on acetate and citrate utilization suggest that the ‘small metabolic compartment’ should be subdivided. Therefore, at least three metabolic compartments are demonstrated.
  • 8 Halothane did not interfere with the dicarboxylic acid portion of the tricarboxylic acid cycle.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号