首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent findings from our laboratory as well as those of other laboratories do not support the postulation that the mechanism of the positive inotropic action of digitalis is due to inhibition of NA,K-ATPase. Using short-acting digitalis steroids and drug washout experiments, in isolated myocardial preparations, it has been demonstrated that Na,K-ATPase isolated from such preparations is still significantly inhibited, whereas the positive inotropic effect is no longer present. Also, based on kinetic measurements the two exponential rate constants observed for drug half-life, a rapid and slow phase, were found to be associated, respectively, with the very short inotropic half-life and the very long enzyme inhibition half-life. In addition, a dissociation of the transient inotropic effects of digitalis was observed from the long lasting cardiotoxic effects of digitalis during drug washout. Moreover, a temporal correlation was noted between the persistent inhibitory effects of digitalis on Na,K-ATPase and the persistent cardiotoxic effects of digitalis. Therefore, it is concluded that inhibition of Na,K-ATPase is not responsible for the positive inotropic action of digitalis, but may be the mechanism, at least in part, for certain cardiotoxic effects of digitalis.  相似文献   

2.
The phosphorylation of the alpha-subunit of Na+/K(+)-transporting ATPase (Na,K-ATPase) by cAMP-dependent protein kinase (PKA) and protein kinase C (PKC) was characterized in purified enzyme preparations of Bufo marinus kidney and duck salt gland and in microsomes of Xenopus oocytes. In addition, we have examined cAMP and phorbol esters, which are stimulators of PKA and PKC, respectively, for their ability to provoke the phosphorylation of alpha-subunits of Na,K-ATPase in homogenates of Xenopus oocytes. In the enzyme from the duct salt gland, phosphorylation by PKA and PKC occurs on serine and threonine residues, whereas in the enzyme from B. marinus kidney and Xenopus oocytes, phosphorylation by PKA occurs only on serine residues. Phosphopeptide analysis indicates that a site phosphorylated by PKA resides in a 12-kDa fragment comprising the C terminus of the polypeptide. Studies of phosphorylation performed on homogenates of Xenopus oocytes show that not only endogenous oocyte Na,K-ATPase but also exogenous Xenopus Na,K-ATPase expressed in the oocyte by microinjection of cRNA can be phosphorylated in response to stimulation of oocyte PKA and PKC. In conclusion, these data are consistent with the possibility that the alpha-subunit of Na,K-ATPase can serve as a substrate for PKA and PKC in vivo.  相似文献   

3.
Review of hormonal function of endogenous cardiac steroids. Special attention is paid to recently discovered mechanism of signal transduction from Na,K-ATPase that is due to not a change of ionic gradients but to ouabain-induced alteration of enzyme conformation, that, in turn, results in interaction of the enzyme with intracellular proteins. The data concerning discovery and identification of endogenous cardiac steroids and different isoforms of Na,K-ATPase that have various sensitivity to cardiac steroid, are also considered.  相似文献   

4.
Abstract

Recently, Na, K-ATPase isoforms with differential affinities for digitalis have been identified that may contribute to different toxicity profiles. Our objectives were to localize them and to define tissue receptor patterns by examining the effect of different glycosides on the Na, K-ATPase activity. The digitalis derivatives used exhibit variation in lipophilicity and rate of enzyme inhibition. Membrane fractions enriched in Na, K-ATPase were prepared from canine heart, brain, aorta and peripheral nerves. The inhibition of enzyme activities indicates a pattern of differential sensitivities with IC50 values starting from 3 nM in heart and 30 nM in brain. Therefore, high and low affinity active forms of the Na, K-ATPase enzyme coexist in these tissues. The data also suggest the existence of two Na, K-ATPase isoforms in aorta and peripheral nerves as identified by the action of digitoxigenin and LND 796 where the predominant expression is that of a high affinity form. The comparison of the patterns of digitalis sensitivities in these different tissues, suggests a more complex molecular interaction than that which can be explained by the presence of only two forms.  相似文献   

5.
In this study we compared the protein kinase dependent regulation of gastric H,K-ATPase and Na,K-ATPase. The protein kinase A/protein kinase C (PKA/PKC) phosphorylation profile of H,K-ATPase was very similar to the one found in the Na,K-ATPase. PKC phosphorylation was taking place in the N-terminal part of the alpha-subunit with a stoichiometry of approximately 0.6 mol Pi/mole alpha-subunit. PKA phosphorylation was in the C-terminal part and required detergent, as is also found for the Na,K-ATPase. The stoichiometry of PKA-induced phosphorylation was approximately 0.7 mol Pi/mole alpha-subunit. Controlled proteolysis of the N-terminus abolished PKC phosphorylation of native H,K-ATPase. However, after detergent treatment additional C-terminal PKC sites became exposed located at the beginning of the M5M6 hairpin and at the cytoplasmic L89 loop close to the inner face of the plasma membrane. N-terminal PKC phosphorylation of native H,K-ATPase alpha-subunit was found to stimulate the maximal enzyme activity by 40-80% at saturating ATP, depending on pH. Thus, a direct modulation of enzyme activity by PKC phosphorylation could be demonstrated that may be additional to the well-known regulation of acid secretion by recruitment of H,K-ATPase to the apical membranes of the parietal cells. Moreover, a distinct difference in the regulation of H,K-ATPase and Na,K-ATPase is the apparent absence of any small regulatory proteins associated with the H,K-ATPase.  相似文献   

6.
The Na,K-ATPase belongs to the P-type ATPase family of primary active cation pumps. Metal fluorides like magnesium-, beryllium-, and aluminum fluoride act as phosphate analogues and inhibit P-type ATPases by interacting with the phosphorylation site, stabilizing conformations that are analogous to specific phosphoenzyme intermediates. Cardiotonic steroids like ouabain used in the treatment of congestive heart failure and arrhythmias specifically inhibit the Na,K-ATPase, and the detailed structure of the highly conserved binding site has recently been described by the crystal structure of the shark Na,K-ATPase in a state analogous to E2·2K(+)·P(i) with ouabain bound with apparently low affinity (1). In the present work inhibition, and subsequent reactivation by high Na(+), after treatment of shark Na,K-ATPase with various metal fluorides are characterized. Half-maximal inhibition of Na,K-ATPase activity by metal fluorides is in the micromolar range. The binding of cardiotonic steroids to the metal fluoride-stabilized enzyme forms was investigated using the fluorescent ouabain derivative 9-anthroyl ouabain and compared with binding to phosphorylated enzyme. The fastest binding was to the Be-fluoride stabilized enzyme suggesting a preformed ouabain binding cavity, in accord with results for Ca-ATPase where Be-fluoride stabilizes the E2-P ground state with an open luminal ion access pathway, which in Na,K-ATPase could be a passage for ouabain. The Be-fluoride stabilized enzyme conformation closely resembles the E2-P ground state according to proteinase K cleavage. Ouabain, but not its aglycone ouabagenin, prevented reactivation of this metal fluoride form by high Na(+) demonstrating the pivotal role of the sugar moiety in closing the extracellular cation pathway.  相似文献   

7.
Cornelius F  Mahmmoud YA 《Biochemistry》2007,46(9):2371-2379
FXYD10 is a 74 amino acid small protein which regulates the activity of shark Na,K-ATPase. The lipid dependence of this regulatory interaction of FXYD10 with shark Na,K-ATPase was investigated using reconstitution into DOPC/cholesterol liposomes with or without the replacement of 20 mol % DOPC with anionic phospholipids. Specifically, the effects of the cytoplasmic domain of FXYD10, which contains the phosphorylation sites for protein kinases, on the kinetics of the Na,K-ATPase reaction were investigated by a comparison of the reconstituted native enzyme and the enzyme where 23 C-terminal amino acids of FXYD10 had been cleaved by mild, controlled trypsin treatment. Several kinetic properties of the Na,K-ATPase reaction cycle as well as the FXYD-regulation of Na,K-ATPase activity were found to be affected by acidic phospholipids like PI, PS, and PG. This takes into consideration the Na+ and K+ activation, the K+-deocclusion reaction, and the poise of the E1/E2 conformational equilibrium, whereas the ATP activation was unchanged. Anionic phospholipids increased the intermolecular cross-linking between the FXYD10 C-terminus (Cys74) and the Cys254 in the Na,K-ATPase A-domain. However, neither in the presence nor in the absence of anionic phospholipids did protein kinase phosphorylation of native FXYD10, which relieves the inhibition, affect such cross-linking. Together, this seems to indicate that phosphorylation involves only modest structural rearrangements between the cytoplasmic domain of FXYD10 and the Na,K-ATPase A-domain.  相似文献   

8.
In our previous study, we ware successful in isolation and purification of an endogenous inhibitor of the Na/Ca exchanger (NCX1) from the calf ventricle extracts. The purified factor has characterized to have strong positive inotropic effect on isometric contractions of isolated ventricle strips of guinea pig. A possibility is that besides the NCX1 the endogenous factor may also interact with other ion-transport systems (e.g., Na,K-ATPase) involved in modulation of muscle contractility-relaxation. Therefore, a primary goal of the present study was to detect a possible effect of newly found NCX1 inhibitor on Na,K-ATPase and Ca-ATPase activities. The preparations of isolated sarcolemma vesicles were used for this goal. Although the crude extracts of calf ventricles can inhibit both the Na/Ca exchange and Na,K-ATPase, these two inhibitory activities can be separated on the Sephadex G-10 column, meaning that different molecular entities might be responsible for inhibition of Na/Ca exchange and Na,K-ATPase. Addition of 100 U of purified endogenous factor to the assay medium results in nearly complete inhibition of forward (Na(i)-dependent Ca-uptake) and reverse (Na(o)-dependent Ca-efflux) modes of Na/Ca exchange. On the other hand, no effect was detected on activities of Na,K-ATPase and Ca-ATPase even in the presence of 500 U of purified factor in the assay medium. In light of the present data, it is concluded that the endogenous inhibitor of NCX1 does not resemble the targeting properties of digitalis like compound. Obviously, more systematic studies are required in the future for resolving a possible interaction of the endogenous inhibitor of NCX1 with other ion-transport systems involved in calcium homeostasis and action potential.  相似文献   

9.
Endogenous cardiotonic steroids (CTS), also called digitalis like factors, have been postulated to play important roles in pathogenesis of hypertension for nearly half of a century. For the past 50 years biomedical scientists have been in quest of an unidentified factor or hormone that both increases blood pressure and renal sodium excretion; this “natriuretic hormone” was, in fact, postulated to interact with the Na/K-ATPase. Recent discoveries have led to the identification of steroid molecules which are present in humans, rodents and amphibians, and which, in a complex manner, interact with each other and with the other systems that regulate renal salt handling and contribute to the salt-sensitivity of blood pressure.Recent findings include the specific identification of endogenous cardenolide (endogenous ouabain) and bufadienolide (marinobufagenin) CTS in humans along with the delineation of mechanisms by which CTS can signal through the Na/K-ATPase. Although CTS were first considered important in the regulation of renal sodium transport and arterial pressure, more recent work implicates these hormones in the central regulation of blood pressure and regulation of cell growth, and development of cardiovascular and renal fibrosis in particular.  相似文献   

10.
The Na/K-ATPase was discovered as an energy transducing ion pump. A major difference between the Na/K-ATPase and other P-type ATPases is its ability to bind a group of chemicals called cardiotonic steroids (CTS). The plant-derived CTS such as digoxin are valuable drugs for the management of cardiac diseases, whereas ouabain and marinobufagenin (MBG) have been identified as a new class of endogenous hormones. Recent studies have demonstrated that the endogenous CTS are important regulators of renal Na+ excretion and blood pressure. The Na/K-ATPase is not only an ion pump, but also an important receptor that can transduce the ligand-like effect of CTS on intracellular protein kinases and Ca2+ signaling. Significantly, these CTS-provoked signaling events are capable of reducing the surface expression of apical NHE3 (Na/H exchanger isoform 3) and basolateral Na/K-ATPase in renal proximal tubular cells. These findings suggest that endogenous CTS may play an important role in regulation of tubular Na+ excretion under physiological conditions; conversely, a defect at either the receptor level (Na/K-ATPase) or receptor–effector coupling would reduce the ability of renal proximal tubular cells to excrete Na+, thus culminating/resulting in salt-sensitive hypertension.  相似文献   

11.
Comparison of Na,K-ATPase from skeletal and cardiac muscle revealed that, although the skeletal muscle enzyme was only slightly less sensitive to inhibition by ouabain, the rates of [3H]ouabain binding to, and dissociation from, the skeletal enzyme were much faster than the corresponding rates for the cardiac enzyme. The skeletal muscle enzyme required higher concentrations of potassium to stabilize the ouabainenzyme complex and to stimulate the K+-phosphatase activity. The K+-phosphatase activity was only 8% of the Na,K-ATPase activity of the skeletal muscle enzyme, compared to 22% for the cardiac preparation. The glycoprotein subunit found in Na,K-ATPases from cardiac and many other tissues appeared to be absent in the enzyme from skeletal muscle. The differences in binding and dissociation rates for ouabain suggest that there may be significant differences in the structure of the digitalis receptor in the two enzymes. The I50 for ouabain inhibition of the skeletal muscle Na,K-ATPase was, however, only slightly higher than for the cardiac enzyme, suggesting that the lack of an inotropic effect of cardiac glycosides on skeletal muscle could not be due to failure of the digitalis drugs to bind to and inhibit the membrane-linked sodium pump.  相似文献   

12.
Phospholemman (FXYD1), mainly expressed in heart and skeletal muscle, is a member of the FXYD protein family, which has been shown to decrease the apparent K(+) and Na(+) affinity of Na,K-ATPase ( Crambert, G., Fuzesi, M., Garty, H., Karlish, S., and Geering, K. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 11476-11481 ). In this study, we use the Xenopus oocyte expression system to study the role of phospholemman phosphorylation by protein kinases A and C in the modulation of different Na,K-ATPase isozymes present in the heart. Phosphorylation of phospholemman by protein kinase A has no effect on the maximal transport activity or on the apparent K(+) affinity of Na,K-ATPase alpha1/beta1 and alpha2/beta1 isozymes but increases their apparent Na(+) affinity, dependent on phospholemman phosphorylation at Ser(68). Phosphorylation of phospholemman by protein kinase C affects neither the maximal transport activity of alpha1/beta1 isozymes nor the K(+) affinity of alpha1/beta1 and alpha2/beta1 isozymes. However, protein kinase C phosphorylation of phospholemman increases the maximal Na,K-pump current of alpha2/beta1 isozymes by an increase in their turnover number. Thus, our results indicate that protein kinase A phosphorylation of phospholemman has similar functional effects on Na,K-ATPase alpha1/beta and alpha2/beta isozymes and increases their apparent Na(+) affinity, whereas protein kinase C phosphorylation of phospholemman modulates the transport activity of Na,K-ATPase alpha2/beta but not of alpha1/beta isozymes. The complex and distinct regulation of Na,K-ATPase isozymes by phosphorylation of phospholemman may be important for the efficient control of heart contractility and excitability.  相似文献   

13.
Cornelius F  Mahmmoud YA  Meischke L  Cramb G 《Biochemistry》2005,44(39):13051-13062
The proteolytic profile after mild controlled trypsin cleavage of shark rectal gland Na,K-ATPase was characterized and compared to that of pig kidney Na,K-ATPase, and conditions for achieving N-terminal cleavage of the alpha-subunit at the T(2) trypsin cleavage site were established. Using such conditions, the shark enzyme N-terminus was much more susceptible to proteolysis than the pig enzyme. Nevertheless, the maximum hydrolytic activity was almost unaffected for the shark enzyme, whereas it was significantly decreased for the pig kidney enzyme. The apparent ATP affinity was unchanged for shark but increased for pig enzyme after N-terminal truncation. The main common effect following N-terminal truncation of shark and pig Na,K-ATPase is a shift in the E(1)-E(2) conformational equilibrium toward E(1). The phosphorylation and the main rate-limiting E(2) --> E(1) step are both accelerated after N-terminal truncation of the shark enzyme, but decreased significantly in the pig kidney enzyme. Some of the kinetic differences, like the acceleration of the phosphorylation reaction, following N-terminal truncation of the two preparations may be due to the fact that under the conditions used for N-terminal truncation, the C-terminal domain of the FXYD regulatory protein of the shark enzyme, PLMS or FXYD10, was also cleaved, whereas the gamma or FXYD2 of the pig enzyme was not. In the shark enzyme, N-terminal truncation of the alpha-subunit abolished association of exogenous PLMS with the alpha-subunit and the functional interactions were abrogated. Moreover, PKC phosphorylation of the preparation, which relieves PLMS inhibition of Na,K-ATPase activity, exposed the N-terminal trypsin cleavage site. It is suggested that PLMS interacts functionally with the N-terminus of the shark Na,K-ATPase to control the E(1)-E(2) conformational transition of the enzyme and that such interactions may be controlled by regulatory protein kinase phosphorylation of the N-terminus. Such interactions are likely in shark enzyme where PLMS has been demonstrated by cross-linking to associate with the Na,K-ATPase A-domain.  相似文献   

14.
In our previous studies, we have demonstrated that the Src-coupled α1 Na/K-ATPase works as a receptor for cardiotonic steroids, such as ouabain, to regulate cellular protein kinase cascades. Here, we explore further the structural determinants of the interaction between the α1 Na/K-ATPase and Src and demonstrate that the Src-coupled α1 Na/K-ATPase allows the cell to decode the transmembrane transport activity of the Na/K-ATPase to turn on/off protein kinases. The α1 Na/K-ATPase undergoes E1/E2 conformational transition during an ion pumping cycle. The amount of E1 and E2 Na/K-ATPase is regulated by extracellular K(+) and intracellular Na(+). Using purified enzyme preparations we find that the E1 Na/K-ATPase can bind both the Src SH2 and kinase domains simultaneously and keep Src in an inactive state. Conversely, the E1 to E2 transition releases the kinase domain and activates the associated Src. Moreover, we demonstrate that changes in E1/E2 Na/K-ATPase by either Na(+) or K(+) are capable of regulating Src and Src effectors in live cells. Together, the data suggest that the Src-coupled α1 Na/K-ATPase may act as a Na(+)/K(+) receptor, allowing salt to regulate cellular function through Src and Src effectors.  相似文献   

15.
Pre-steady-state phosphorylation of purified Na,K-ATPase from red outer medulla of pig kidney was studied at 25 degrees C and an ample range of [tau-32P]ATP concentrations. At 10 microM ATP phosphorylation followed simple exponential kinetics reaching after 40 ms a steady level of 0.76 +/- 0.04 nmol of P/mg of protein with kapp = 73.0 +/- 6.5 s-1. At 500 microM ATP the time course of phosphorylation changed drastically, since the phosphoenzyme reached a level two to four times higher at a much higher rate (kapp greater than or equal to 370 s-1) and in about 40 ms dropped to the same steady level as with 10 microM ATP. This superphosphorylation was not observed in Na,K-ATPase undergoing turnover in a medium with Mg2+, Na+, and ATP, suggesting that it required the enzyme to be at rest. Superphosphorylation depended on Mg2+ and Na+ and was fully inhibited by ouabain and FITC. After denaturation the phosphoenzyme made by superphosphorylation had the electrophoretic mobility of the alpha-subunit of the Na,K-ATPase, and its hydrolysis was accelerated by hydroxylamine. On a molar basis, the stoichiometry of phosphate per ouabain bound was 2.40 +/- 0.60 after phosphorylation with 1000 microM ATP. The results are consistent with the idea that under proper conditions every functional Na,K-ATPase unit can accept two, or more, phosphates of rapid turnover from ATP.  相似文献   

16.
We have recently shown that inactivation of renal Na,K-ATPase by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide occurs via an intramolecular cross-link formed between an activated carboxyl group and an endogenous nucleophile (Pedemonte, C.H., and Kaplan, J.H. (1986) J. Biol. Chem. 261, 3632-3639). The modified enzyme shows the same level of Rb+ binding as untreated enzyme: 3.16 and 2.93 ATP-sensitive mumol of Rb+ binding/mumol of phosphoenzyme, respectively. Thus, the Rb+ binding site and the transition accomplished by low affinity nucleotide binding which accelerates de-occlusion are not greatly affected by the carbodiimide inactivation. 1 mM K+ reduces the ADP binding to the high affinity nucleotide binding site to the same extent in normal and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide-treated enzyme and Na+ counteracts this effect. Thus, the competition between Na+ and K+ ions for binding to the free enzyme are also largely unaltered by the modification. Phosphorylation from ATP (microM) in the presence of Na+ and Mg2+ ions and from inorganic phosphate in the presence of Mg2+ ions (in the absence or presence of ouabain) is greatly inhibited (85%) following carbodiimide treatment. The extent of inhibition of phosphorylation quantitatively correlates with the residual Na,K-ATPase activity (15%). Consequently, the rate of inactivation by carbodiimide is reduced when a greater proportion of the enzyme is in the phosphorylated form. Fluoroscein isothiocyanate, which inhibits the Na,K-ATPase by covalently modifying a lysine residue close to the high affinity binding site for ATP in the alpha-subunit does not bind to the carbodiimide-inactivated enzyme. Since high affinity nucleotide binding is only partially inhibited by the modification produced by the carbodiimide this suggests that the lysine residue to which fluoroscein isothiocyanate binds is not specifically required for competent nucleotide binding.  相似文献   

17.
We have observed that, in renal proximal tubular cells, cardiotonic steroids such as ouabain in vitro signal through Na/K-ATPase, which results in inhibition of transepithelial (22)Na(+) transport by redistributing Na/K-ATPase and NHE3. In the present study, we investigate the role of Na/K-ATPase signaling in renal sodium excretion and blood pressure regulation in vivo. In Sprague-Dawley rats, high salt diet activated c-Src and induced redistribution of Na/K-ATPase and NHE3 in renal proximal tubules. In Dahl salt sensitive (S) and resistant (R) rats given high dietary salt, we found different effects on blood pressure but, more interestingly, different effects on renal salt handling. These differences could be explained by different signaling through the proximal tubular Na/K-ATPase. Specifically, in Dahl R rats, high salt diet significantly stimulated phosphorylation of c-Src and ERK1/2, reduced Na/K-ATPase activity and NHE3 activity, and caused redistribution of Na/K-ATPase and NHE3. In contrast, these adaptations were either much less effective or not seen in the Dahl S rats. We also studied the primary culture of renal proximal tubule isolated from Dahl S and R rats fed a low salt diet. In this system, ouabain induced Na/K-ATPase/c-Src signaling and redistribution of Na/K-ATPase and NHE3 in the Dahl R rats, but not in the Dahl S rats. Our data suggested that impairment of Na/K-ATPase signaling and consequent regulation of Na/K-ATPase and NHE3 in renal proximal tubule may contribute to salt-induced hypertension in the Dahl S rat.  相似文献   

18.
Oligomycin induces occlusion of Na+ in membrane-bound Na,K-ATPase. Here it is shown that Na,K-ATPase from pig kidney or shark rectal gland solubilized in the nonionic detergent C12E8 is capable of occluding Na+ in the presence of oligomycin. The apparent affinity for Na+ is reduced for both enzymes upon solubilization, and there is an increase in the sigmoidicity of binding curves, which indicates a change in the cooperativity between the occluded ions. A high detergent/protein ratio leads to a decreased occlusion capacity. De-occlusion of Na+ by addition of K+ is slow for solubilized Na,K-ATPase, with a rate constant of about 0.1 s-1 at 6 degrees C. Stopped-flow fluorescence experiments with 6-carboxyeosin, which can be used to monitor the E1Na-form in detergent solution, show that the K(+)-induced de-occlusion of Na+ correlates well with the fluorescence decrease which follows the transition from the E1Na-form to the E2-form. There is a marked increase in the rate of fluorescence change at high detergent/protein ratios, indicating that the properties of solubilized enzyme are subject to modification by detergent in other respects than mere solubilization of the membrane-bound enzyme. The temperature dependence of the rate of de-occlusion in the range 2 degrees C to 12 degrees C is changed slightly upon solubilization, with activation energies in the range 20-23 kcal/mol for membrane-bound enzyme, increasing to 26-30 kcal/mol for solubilized enzyme. Titrations of the rate of transition from E1Na to E2K with oligomycin can be interpreted in a model with oligomycin having an apparent dissociation constant of about 2.5 microM for C12E8-solubilized shark Na,K-ATPase and 0.2 microM for solubilized pig kidney Na,K-ATPase.  相似文献   

19.
Some mechanisms of regulation of Na,K-ATPase activity in various tissues including the phosphorylation of the catalytic subunit of the enzyme by different protein kinases (PKA, PKC, and tyrosine kinase) and the interaction of the -subunit with different proteins (Na,K-ATPase - and -subunits, ankyrin, phosphoinositide-3 kinase, and AP-2 protein) and endogenous digitalis-like factors are considered. Special attention is given to the search for possible protein-partners including melittin-like protein and to the mechanism of enzyme regulation connected with the change of Na,K-ATPase quaternary structure. A recently discovered role of Na,K-ATPase as a receptor providing signal transduction inside the cell not only by changing the concentration of biologically significant cations but also using direct interaction of the enzyme with the protein-partners is discussed.  相似文献   

20.
Although it was shown earlier that phosphorylation of Na,K-ATPase by cAMP-dependent protein kinase (PKA) occurs in intact cells, the purified enzyme in vitro is phosphorylated by PKA only after treatment by detergent. This is accompanied by an unfortunate side effect of the detergent that results in complete loss of Na,K-ATPase activity. To reveal the effect of Na,K-ATPase phosphorylation by PKA on the enzyme activity in vitro, the effects of different detergents and ligands on the stoichiometry of the phosphorylation and activity of Na,K-ATPase from duck salt glands (11-isoenzyme) were comparatively studied. Chaps was shown to cause the least inhibition of the enzyme. In the presence of 0.4% Chaps at 1 : 10 protein/detergent ratio in medium containing 100 mM KCl and 0.3 mM ATP, PKA phosphorylates serine residue(s) of the Na,K-ATPase with stoichiometry 0.6 mol Pi/mol of -subunit. Phosphorylation of Na,K-ATPase by PKA in the presence of the detergent inhibits the Na,K-ATPase. A correlation was found between the inclusion of Pi into the -subunit and the loss of activity of the Na,K-ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号