首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amino acid polyoxometalate nanoparticles-embedded microcapsules were in situ fabricated by layer-by-layer (LbL) self-assembly method [polyoxometalate, H3PMo12O40·nH2O (PMo12); amino acid, glycine (Gly)]. The morphology of the obtained microcapsules was characterized by transmission electron microscopy and scanning electron microscopy. The electrochemical behavior of the amino acid polyoxometalate nanoparticles-embedded microcapsules was studied by cyclic voltammetry. The microcapsules show the pH-dependent properties, indicating that the pH of solution plays an important role in the electrochemical behavior of heteropolyanions.  相似文献   

2.
Catalysts are required for the oxygen evolution reaction, which are abundant, active, and stable in acid. MnO2 is a promising candidate material for this purpose. However, it dissolves at high overpotentials. Using first‐principles calculations, a strategy to mitigate this problem by decorating undercoordinated surface sites of MnO2 with a stable oxide is developed here. TiO2 stands out as the most promising of the different oxides in the simulations. This prediction is experimentally verified by testing sputter‐deposited thin films of MnO2 and Ti–MnO2. A combination of electrochemical measurements, quartz crystal microbalance, inductively coupled plasma mass spectrometry measurements, and X‐ray photoelectron spectroscopy is performed. Small amounts of TiO2 incorporated into MnO2 lead to a moderate improvement in stability, with only a small decrease in activity. This study opens up the possibility of engineering surface properties of catalysts so that active and abundant nonprecious metal oxides can be used in acid electrolytes.  相似文献   

3.
The acid-catalysed, aqueous phase dehydration of xylose (a monosaccharide obtainable from hemicelluloses, e.g., xylan) to furfural was investigated using vanadium phosphates (VPO) as catalysts: the precursors, VOPO4·2H2O, VOHPO4·0.5H2O and VO(H2PO4)2, and the materials prepared by calcination of these precursors, that is, γ-VOPO4, (VO)2P2O7 and VO(PO3)2, respectively. The VPO precursors were completely soluble in the reaction medium. In contrast, the orthorhombic vanadyl pyrophosphate (VO)2P2O7, prepared by calcination of VOHPO4·0.5H2O at 550 °C/2 h, could be recycled by simply separating the solid acid from the reaction mixture by centrifugation, and no drop in catalytic activity and furfural yields was observed in consecutive 4 h-batch runs (ca. 53% furfural yield, at 170 °C). However, detailed catalytic/characterisation studies revealed that the vanadyl pyrophosphate acts as a source of active water-soluble species in this reaction. For a concentration of (VO)2P2O7 as low as 5 mM, the catalytic reaction of xylose (ca. 0.67 M xylose in water, and toluene as solvent for the in situ extraction of furfural) gave ca. 56% furfural yield, at 170 °C/6 h reaction.  相似文献   

4.
Phosphine and amine functionalized mesoporous silica materials were metallated with Rh(CO)2(i-Pr2NH)Cl or Rh2(CO)4Cl2, respectively, to yield catalysts containing the Rh(PPh2R)2(CO)Cl or Rh(CO)2(NH2R)Cl, where R is a propyl chain bonded to the silica surface, reactive centers. In order to ascertain the effect of pore size on rates of hydroformylation catalysis both 35 and 45 Å pore size materials were used. Using the hydroformylation of octene as a reference reaction, the phosphine based, 45 Å catalysts were 1.5-1.3 times faster than the amine based, 45 Å catalysts, and the 45 Å materials were 2.6-2.1 times faster than the 35 Å materials. The orientation of the catalyst relative to the functionalized surface, and the steric environment around the catalyst active site appear to be significant in determining rate of reaction. The ability of the surface bound phosphine catalysts to affect hydroformylation was strongly influenced by the steric constraints of the substrate. Terminal alkenes were readily hydroformylated and norbornene was slowly hydroformylated, but pinene, trans-cyclododecene, cyclohexene and cholesterol were nonreactive to the catalytic center.  相似文献   

5.
An efficient, durable, and low‐cost hydrogen evolution reaction (HER) catalyst is an essential requirement for practical hydrogen production. Herein, an effective approach to facilitate the HER kinetics of molybdenum carbide (Mo2C) electrocatalysts is presented by tuning its electronic structure through atomic engineering of nitrogen implantation. Starting from the organoimido‐derivatized polyoxometalate nanoclusters with inherent Mo? N bonds, the formation of N‐implanted Mo2C (N@Mo2C) nanocrystals with perfectly adjustable amounts of N atoms is demonstrated. The optimized N@Mo2C electrocatalyst exhibits remarkable HER performance and good stability over 20 h in both acid and basic electrolytes. Further density functional theory calculations show that engineering suitable nitrogen atoms into Mo2C can regulate its electronic structure well and decrease Mo? H strength, leading to a great enhancement of the HER activity. It could be believed that this ligand‐controlled atomic engineering strategy might influence the overall catalyst design strategy for engineering the activation sites of nonprecious metal catalysts for energy conversions.  相似文献   

6.
A new homogeneous catalyst system has been developed for the oxidation of olefins to carbonyls — ethylene to acetaldehyde and higher olefins to ketones. The catalyst system was first developed for the oxidation of ethylene to acetaldehyde in Wacker-type acetaldehyde plants. The aqueous catalyst solution has three key components. A palladium(II) catalyst oxidizes the olefin to the carbonyl, which is analogous to the Wacker system but with only a fraction of its palladium. Keggin phosphomolybdovanadates of the general formula PMo(12–x) V x O 40 (3+x)– provide a dioxygen-reversible vanadium(V)/vanadium(IV) redox agent for palladium(O) reoxidation, which is analogous to the copper(II)/copper(I) chlorides in the Wacker system. Chloride at centimolar concentrations, lacking in earlier reported palladium and polyoxometalate catalyst systems, is essential to maintain stable palladium(II) catalyst activity. Kinetic characterization and reaction engineering provided ethylene and oxygen reaction rates comparable to those obtained with the Wacker catalyst. A new, efficient method of preparing aqueous phosphomolybdovanadate solutions was developed for laboratory and large-scale production. This paper describes the catalyst system and its reactions with emphasis on the polyoxometalate chemistry.  相似文献   

7.
This review concentrates on two areas of intense research interest involving polyoxometalates, homogeneous catalysis and medicine. The discussion of homogeneous catalysis covers a brief historical overview of organic substrate oxidation, oxidant desirability, and other classes of oxidation catalysts. The principal focus of the catalysis, use of oxidatively resistant d-electron-transition-metal-substituted polyoxometalates (TMSP) for sustained oxygenation of organic substrates, is then examined. A general compilation is given in Table I of the literature reactions involving 21 TMSP complexes, 10 oxidants, five classes of substrates, and 10 solvent systems. Possible extensions of this chemistry are discussed.The discussion of polyoxometalates in anti-HIV chemotherapy includes brief historical background of this rapidly developing area followed by an evaluation of the effectiveness of polyoxometalates as anti-HIV agents. Over two hundred polyoxometalates have been examined in cell culture with the activities (EC50 values) and toxicities (IC50 values) listed in Table II. Polyoxotungstates as a class of polyoxometalates show the most promise with respectable levels of activity, selectivity, and low toxicity. The effect of polyoxometalate countercation and modes of HIV inhibition are discussed. The review contains 60 references.  相似文献   

8.
Oxidation of H2O by photosystem II is a unique redox reaction in that it requires Ca2+ as well as Cl as obligatory activators/cofactors of the reaction, which is catalyzed by Mn atoms. The properties of the binding site for Ca2+ in this reaction resemble those of other Ca2+ binding proteins, and recent X-ray structural data confirm that the metal is in fact ligated at least in part by amino acid side chain oxo anions. Removal of Ca2+ blocks water oxidation chemistry at an early stage in the cycle of redox reactions that result in O-O bond formation, and the intimate involvement of Ca2+ in this reaction that is implied by this result is confirmed by an ever-improving set of crystal structures of the cyanobacterial enzyme. Here, we revisit the photosystem II Ca2+ site, in part to discuss the additional information that has appeared since our earlier review of this subject (van Gorkom HJ, Yocum CF In: Wydrzynski TJ, Satoh K (eds) Photosystem II: the light-driven water:plastoquinone oxidoreductase), and also to reexamine earlier data, which lead us to conclude that all S-state transitions require Ca2+.  相似文献   

9.
In the reaction of [Fe(H2O)6]3+ with pyrazoic acid, reduction of iron(III) to iron(II) is observed. When an excess of iron is present, the reaction involves a transfer of four electrons per mole of acid. At room temperature the redox reaction, which is dependent on hydrogen ion, iron(III) and pyrazoic acid concentrations, is rather slow and is the rate-determining step. The kinetic study was carried out at 50.0 ± 0.1 °C. The redox reaction is followed by a fast reaction of the iron(II) with an excess of ligand, resulting in the production of well-known complexes, where the acid acts as a chelating ligand through the nitrogen and oxygen atoms.  相似文献   

10.
Efficient and recyclable heterogeneous catalysts from low-cost material is a research target in biodiesel industry to reduce production cost and minimize waste generation. The performance of carbon-based heterogeneous acid catalysts prepared from Hura crepitans seed pod via partial carbonization and sulfonation was evaluated in this study. Different catalysts, 0HuSO3H, 30HuSO3H, 60HuSO3H, 90HuSO3H, and 120HuSO3H, obtained by varying preparation conditions were characterized using emission scanning electron microscope, Fourier transform infrared spectroscopy, X-ray powder diffraction, and thermogravimetric and titrimetric analyses. The activity of the catalysts towards esterification of high free fatty acid-containing H. crepitans seed oil was assessed. Effects of process parameters, temperature, catalyst load, methanol/oil ratio, reaction time, and their various optimum levels on the esterification reaction, were investigated using Taguchi L9 orthogonal array method of optimization. The results showed that the H. crepitans seed pod-derived solid acid catalysts exhibited superior catalytic properties primarily due to high acid density (2.0 mmol/g). The resident time of carbonization before sulfonation showed a strong influence on the acid site density, pore sizes, hydrophobicity, and acid site retention capacity. The optimum process conditions as predicted by the optimization model gave 94.81% ester conversion. The catalyst was effective up to four cycles with only 1.44% decrease in activity.  相似文献   

11.
PtM alloy catalysts (e.g., PtFe, PtCo), especially in an intermetallic L10 structure, have attracted considerable interest due to their respectable activity and stability for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). However, metal‐catalyzed formation of ·OH from H2O2 (i.e., Fenton reaction) by Fe‐ or Co‐containing catalysts causes severe degradation of PEM/catalyst layers, hindering the prospects of commercial applications. Zinc is known as an antioxidant in Fenton reaction, but is rarely alloyed with Pt owing to its relatively negative redox potential. Here, sub‐4 nm intermetallic L10‐PtZn nanoparticles (NPs) are synthesized as high‐performance PEMFC cathode catalysts. In PEMFC tests, the L10‐PtZn cathode achieves outstanding activity (0.52 A mgPt?1 at 0.9 ViR‐free, and peak power density of 2.00 W cm?2) and stability (only 16.6% loss in mass activity after 30 000 voltage cycles), exceeding the U.S. DOE 2020 targets and most of the reported ORR catalysts. Density function theory calculations reveal that biaxial strains developed upon the disorder‐order (A1? L10) transition of PtZn NPs would modulate the surface Pt? Pt distances and optimize Pt? O binding for ORR activity enhancement, while the increased vacancy formation energy of Zn atoms in an ordered structure accounts for the improved stability.  相似文献   

12.
Cathode materials with high energy density, long cycle life, and low cost are of top priority for energy storage systems. The Li‐rich transition metal (TM) oxides achieve high specific capacities by redox reactions of both the TM and oxygen ions. However, the poor reversible redox reaction of the anions results in severe fading of the cycling performance. Herein, the vacancy‐containing Na4/7[Mn6/7(?Mn)1/7]O2 (?Mn for vacancies in the Mn? O slab) is presented as a novel cathode material for Na‐ion batteries. The presence of native vacancies endows this material with attractive properties including high structural flexibility and stability upon Na‐ion extraction and insertion and high reversibility of oxygen redox reaction. Synchrotron X‐ray absorption near edge structure and X‐ray photoelectron spectroscopy studies demonstrate that the charge compensation is dominated by the oxygen redox reaction and Mn3+/Mn4+ redox reaction separately. In situ synchrotron X‐ray diffraction exhibits its zero‐strain feature during the cycling. Density functional theory calculations further deepen the understanding of the charge compensation by oxygen and manganese redox reactions and the immobility of the Mn ions in the material. These findings provide new ideas on searching for and designing materials with high capacity and high structural stability for novel energy storage systems.  相似文献   

13.
Development of inexpensive and efficient oxygen evolution reaction (OER) catalysts in acidic environment is very challenging, but it is important for practical proton exchange membrane water electrolyzers. A molecular iron–nitrogen coordinated carbon nanofiber is developed, which is supported on an electrochemically exfoliated graphene (FeN4/NF/EG) electrocatalyst through carbonizing the precursor composed of iron ions absorbed on polyaniline‐electrodeposited EG. Benefitting from the unique 3D structure, the FeN4/NF/EG hybrid exhibits a low overpotential of ≈294 mV at 10 mA cm?2 for the OER in acidic electrolyte, which is much lower than that of commercial Ir/C catalysts (320 mV) as well as all previously reported acid transitional metal‐derived OER electrocatalysts. X‐ray absorption spectroscopy coupled with a designed poisoning experiment reveals that the molecular Fe?N4 species are identified as active centers for the OER in acid. The first‐principles‐based calculations verify that the Fe?N4–doped carbon structure is capable of reducing the potential barriers and boosting the electrocatalytic OER activity in acid.  相似文献   

14.
Development of inexpensive and efficient oxygen evolution reaction (OER) catalysts in acidic environment is very challenging, but it is important for practical proton exchange membrane water electrolyzers. A molecular iron–nitrogen coordinated carbon nanofiber is developed, which is supported on an electrochemically exfoliated graphene (FeN4/NF/EG) electrocatalyst through carbonizing the precursor composed of iron ions absorbed on polyaniline‐electrodeposited EG. Benefitting from the unique 3D structure, the FeN4/NF/EG hybrid exhibits a low overpotential of ≈294 mV at 10 mA cm?2 for the OER in acidic electrolyte, which is much lower than that of commercial Ir/C catalysts (320 mV) as well as all previously reported acid transitional metal‐derived OER electrocatalysts. X‐ray absorption spectroscopy coupled with a designed poisoning experiment reveals that the molecular Fe? N4 species are identified as active centers for the OER in acid. The first‐principles‐based calculations verify that the Fe? N4–doped carbon structure is capable of reducing the potential barriers and boosting the electrocatalytic OER activity in acid.  相似文献   

15.
There is an escalating interest of using double stranded DNA molecules as a chiral scaffold to construct metal‐biomacromolecule hybrid catalysts for asymmetric synthesis. Several recent studies also evaluated the use of G‐quadruplex DNA‐based catalysts for asymmetric Diels‐Alder and Friedel‐Crafts reactions. However, there is still a lack of understanding of how different oligonucleotides, salts (such as NaCl and KCl), metal ligands and co‐solvents affect the catalytic performance of quadruplex DNA‐based hybrid catalysts. In this study, we aim to systematically evaluate these key factors in asymmetric Michael addition reactions, and to examine the conformational and molecular changes of DNA by circular dichroism (CD) spectroscopy and gel electrophoresis. We achieved up to 95% yield and 50% enantiomeric excess (ee) when the reaction of 2‐acylimidazole 1a and dimethylmalonate was catalyzed by 5′‐G3(TTAG3)3?3′ (G4DNA1) in 20 mM MOPS (pH 6.5) containing 50 mM KCl and 40 µM [Cu(dmbipy)(NO3)2], and G4DNA1 was pre‐sonicated in ice bath for 10 min prior to the reaction. G‐quadruplex‐based hybrid catalysts provide a new tool for asymmetric catalysis, but future mechanistic studies should be sought to further improve the catalytic efficiency. The current work presents a systematic study of asymmetric Michael addition catalyzed by G‐quadruplex catalysts constructed via non‐covalent complexing, and an intriguing finding of the effect of pre‐sonication on catalytic efficiency. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:891–898, 2016  相似文献   

16.
With the help of pigment substitution, self-assembled monolayer film and square wave voltammetry, the influence of pigment substitution on the electrochemical properties ofRhodobacter sphaeroides 601 reaction centers was investigated. Results showed that the charge separation could also be driven by externally electric field, similar to the primary photochemical reaction in purple bacterial reaction center. On the surface of Au electrode, a self-assembled monolayer film (the RC-PDDA-DMSA film) was made up of 2,3-dimercaptosuccinic acid (DMSA), poly-dimethyldiallylammonium chloride (PDDA) and reaction center (RC). When square wave voltammetry was used to study the RC-PDDA-DMSA film, four redox pairs in the photochemical reaction of RC were observed by changing frequency. With nonlinear fitting, the standard potential of P/P+ and the corresponding electrode reaction rate constant were determined to be 0.522 V and 13.04 S-1, respectively. It was found that the redox peak at −0.02 V changed greatly when bacteriopheophytin was substituted by plant pheophytin in the reaction center. Further studies indicated that this change resulted from the decrease in electron transfer rate between Bphe-/Bphe (Phe-/Phe) and QA -/QA after pigment substitution. After investigations of spectra and electrochemical properties of different RCs and comparisons of different function groups of pigments, it was indicated that the phytyl tail, similar to other substituted groups of pheophytin, affected the efficiencies of pigment substitution.  相似文献   

17.
With the help of pigment substitution, self-assembled monolayer film and square wave voltammetry, the influence of pigment substitution on the electrochemical properties ofRhodobacter sphaeroides 601 reaction centers was investigated. Results showed that the charge separation could also be driven by externally electric field, similar to the primary photochemical reaction in purple bacterial reaction center. On the surface of Au electrode, a self-assembled monolayer film (the RC-PDDA-DMSA film) was made up of 2,3-dimercaptosuccinic acid (DMSA), poly-dimethyldiallylammonium chloride (PDDA) and reaction center (RC). When square wave voltammetry was used to study the RC-PDDA-DMSA film, four redox pairs in the photochemical reaction of RC were observed by changing frequency. With nonlinear fitting, the standard potential of P/P+ and the corresponding electrode reaction rate constant were determined to be 0.522 V and 13.04 S-1, respectively. It was found that the redox peak at −0.02 V changed greatly when bacteriopheophytin was substituted by plant pheophytin in the reaction center. Further studies indicated that this change resulted from the decrease in electron transfer rate between Bphe-/Bphe (Phe-/Phe) and QA -/QA after pigment substitution. After investigations of spectra and electrochemical properties of different RCs and comparisons of different function groups of pigments, it was indicated that the phytyl tail, similar to other substituted groups of pheophytin, affected the efficiencies of pigment substitution.  相似文献   

18.
Photolysis of polyoxometalates at the oxygen to metal charge transfer bands, at the near visible and UV areas, in the presence of a great variety of organic compounds, results in multielectron reduction of polyoxometalates and concomitant oxidation of organic compounds. In the absence of dioxygen, photolysis accumulates electrons on polyoxometalates, moving the redox potential to more negative values, until the reduced catalyst is able to deliver its electrons to H+. At this point, a steady state is produced at which the rate of photoreduction of polyoxometalate is matched by its rate of reoxidation by H+ (H2-evolution). The presence of dioxygen has the following results: (a) It reoxidizes very fast and effectively and photoreduced polyoxometalate, accelerating the photocatalytic cycle by an order of magnitude, and (b) its activation by the reduced catalyst provides, usually, an extra step in which further oxidations of a variety of organic compounds have been obtained.  相似文献   

19.
SBA-15 and SBA-3 mesoporous silicas are synthesised by P123 and CTAB surfactants via hydrothermal and liquid phase deposition procedures, respectively. An inorganic-organic hybrid mesoporous material is then synthesised by functionalization of SBA-15 with aminopropyl functional groups via grafting method. After characterization, effect of immobilizing support and functional groups on intercalation of phosphomolybdic acid (H3PMo12O40) is taken into consideration. The immobilization pattern is discussed and supported H3PMo12O40 catalysts are characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), EDX, inductively coupled plasma (ICP), FT-IR, and UV-vis analysis. The newly synthesised hybrid catalysts are investigated for epoxidation of cyclooctene in presence of hydrogen peroxide as oxidant. The reaction mechanism is discussed. Furthermore, effects of different immobilizing supports and functionalization on catalyst activity, stability, and reusability are taken into consideration. Similar catalytic reactions are carried out with pristine supports and neat H3PMo12O40 (homogeneous). Results reveal that the mesostructured phosphomolybdic acid based catalysts are shown to be efficient and selective heterogeneous catalysts for oxidation of alkenes.  相似文献   

20.
12-Tungstophosphoric acid (PW) supported on different metal oxides (SiO2, γ-Al2O3, KSF, K10) and activated carbon were prepared by impregnation method and their catalytic performances were evaluated in three component condensation of benzaldehyde, ethyl acetoacetate and ammonium acetate to afford corresponding 1,4-dihydropyridine. A high catalytic activity was found over silica supported PW. Effect of PW loading, catalyst loading and solvent was studied to introduce the best reaction condition. Based on the above experimental finding, catalytic performances was optimized with a loading of 40% PW onto SiO2 (0.2 g) under solvent-free condition. The characterization data derived from FT-IR, XRD, and TGA-DSC techniques reveal that the PW on silica support exists in Keggin structure. In addition, acidity measurements were performed by potentiometric titration with n-butylamine. The activity of the catalysts is strongly dependent on their acidic characteristic which, in turn, depended on PW loading. Finally, a series of 4-aryl, N-alkyl, and N-aryl substituted 1,4-dihydropyridines have been synthesized in high to excellent yield in short reaction times. PW/SiO2 was found to be reusable and a considerable catalytic activity still could be achieved after fourth run.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号