首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigated diel variations in zooplankton composition and abundance, and the species composition, density, size structure, feeding activity, diet composition and prey selection of larval and 0+ year juvenile fishes in the littoral of a man‐made floodplain waterbody over five 24 h periods within a 57 day period. There was a significant difference in the species composition of diurnal and nocturnal catches, with most species consistently peaking in abundance either during daylight or at night, reflecting their main activity period. There were no consistent diel patterns in assemblage structure or the abundance of some species, however, most likely, respectively, due to the phenology of fish hatching and ontogenetic shifts in diel behaviour or habitat use. There were few clear diel patterns in the diet composition or prey selection of larval and 0+ year juvenile roach Rutilus rutilus and perch Perca fluviatilis, with most taxa consistently selected or avoided irrespective of the time of day or night, and no obvious shift between planktonic and benthic food sources, but dietary overlap suggested that interspecific interactions were probably strongest at night. It is essential that sampling programmes account for the diel ecology of the target species, as diurnal surveys alone could produce inaccurate assessments of resource use. The relative lack of consistent diel patterns in this study suggests that multiple 24 h surveys are required in late spring and early summer to provide accurate assessments of 0+ year fish assemblage structure and foraging ecology.  相似文献   

2.
Few studies have documented the activity patterns of both predators and their common prey over 24 h diel cycles. This study documents the temporal periodicity of two common resident predators of juvenile reef fishes, Cephalopholis cyanostigma (rockcod) and Pseudochromis fuscus (dottyback) and compares these to the activity and foraging pattern of a common prey species, juvenile Pomacentrus moluccensis (lemon damselfish). Detailed observations of activity in the field and using 24 h infrared video in the laboratory revealed that the two predators had very different activity patterns. C. cyanostigma was active over the whole 24 h period, with a peak in feeding strikes at dusk and increased activity at both dawn and dusk, while P. fuscus was not active at night and had its highest strike rates at midday. The activity and foraging pattern of P. moluccensis directly opposes that of C. cyanostigma with individuals reducing strike rate and intraspecific aggression at both dawn and dusk, and reducing distance from shelter and boldness at dusk only. Juveniles examined were just outside the size-selection window of P. fuscus. We suggest that the relatively predictable diel behaviour of coral reef predators results from physiological factors such as visual sensory abilities, circadian rhythmicity, variation in hunting profitability, and predation risk at different times of the day. Our study suggests that the diel periodicity of P. moluccensis behaviour may represent a response to increased predation risk at times when both the ability to efficiently capture food and visually detect predators is reduced.  相似文献   

3.
Information on the ecology and feeding behaviour of the large oceanic predatory fishes is crucial for the ecosystem approaches to fisheries management models. Co-existing large pelagic predators in the open oceans may avoid competition for the limited forage by resource partitioning on spatial, temporal or trophic levels. To test this, we studied the prey species composition, diet overlap, trophic level, and trophic organisation of 12 large predatory fishes co-existing in the eastern Arabian Sea. Stomach contents of 1,518 specimens caught by exploratory longline operations in the Indian Exclusive Economic Zone during the years 2006–2009 were analysed. Finfishes were dominant prey of all species except blue marlin (Makaira nigricans) and yellowfin tuna (Thunnus albacares), which fed mainly on cephalopods, and long-snouted lancetfish (Alepisaurus ferox) and pelagic stingray (Pteroplatytrygon violacea), which fed mainly on crustaceans. Common dolphinfish (Coryphaena hippurus) and yellowfin tuna fed on a wider variety of prey than the other species, while the diets of lancetfish and black marlin (Istiompax indica) were narrowest. Pelagic stingray and great barracuda (Sphyraena barracuda) fed on species occupying epipelagic waters, whereas the contribution of mesopelagic prey was higher in the diets of swordfish (Xiphias gladius) and pelagic thresher (Alopias pelagicus). Trophic levels of these fishes ranged from 4.13 to 4.37. Diet overlap index revealed that some of the large pelagic predatory fishes share common prey species. Cluster analysis of the diets revealed four distinct trophic guilds namely ‘flyingfish feeders’ (common dolphinfish and great barracuda); ‘mesopelagic predators’ (pelagic thresher and swordfish); ‘crab feeders’ (lancetfish, pelagic stingray and silky shark) and ‘squid feeders’ (yellowfin tuna, Indo-Pacific sailfish (Istiophorus platypterus), skipjack tuna (Katsuwonus pelamis), black marlin and blue marlin). Large predatory fishes of the eastern Arabian Sea target different prey types, and limit their vertical extent and time of feeding to avoid competing for prey.  相似文献   

4.
Information on the fine-scale movement of predators and their prey is important to interpret foraging behaviours and activity patterns. An understanding of these behaviours will help determine predator-prey relationships and their effects on community dynamics. For instance understanding a predator's movement behaviour may alter pre determined expectations of prey behaviour, as almost any aspect of the prey's decisions from foraging to mating can be influenced by the risk of predation. Acoustic telemetry was used to study the fine-scale movement patterns of the Broadnose Sevengill shark Notorynchus cepedianus and its main prey, the Gummy shark Mustelus antarcticus, in a coastal bay of southeast Tasmania. Notorynchus cepedianus displayed distinct diel differences in activity patterns. During the day they stayed close to the substrate (sea floor) and were frequently inactive. At night, however, their swimming behaviour continually oscillated through the water column from the substrate to near surface. In contrast, M. antarcticus remained close to the substrate for the entire diel cycle, and showed similar movement patterns for day and night. For both species, the possibility that movement is related to foraging behaviour is discussed. For M. antarcticus, movement may possibly be linked to a diet of predominantly slow benthic prey. On several occasions, N. cepedianus carried out a sequence of burst speed events (increased rates of movement) that could be related to chasing prey. All burst speed events during the day were across the substrate, while at night these occurred in the water column. Overall, diel differences in water column use, along with the presence of oscillatory behaviour and burst speed events suggest that N. cepedianus are nocturnal foragers, but may opportunistically attack prey they happen to encounter during the day.  相似文献   

5.
Interspecific variation in diel-scale temporal niches is common in natural communities. Such variation changes population dynamics via effects on the growth and reproduction of individuals. Also at the community level, theory predicts that animals can reduce competition for shared resources by changing diel activity in certain situations. However, the role of diel activity at the community-level has not been examined sufficiently. In this study, to examine whether the diel-scale temporal niche act as a competition-mitigating mechanism for stream fishes at the community level, we surveyed diel changes in microhabitat use and foraging, and the pattern of interspecific diet overlap in the middle reaches of a temperate stream where various fish species that seemed to be either nocturnal or diurnal coexisted. Our results suggest that the fishes forage during both daytime and night, but change their foraging mode at different times of the day, so that the foraging habits of these fish species cannot be divided simply into nocturnal and diurnal. Furthermore, fishes appeared to aggregate in the vicinity of common food resources during time zones with high availability of the resources, and therefore, inter-guild diet overlap was high during certain time zones. On the other hand, when inter-guild diet overlap was low, each fish species used foods or microhabitats that did not any have the potential to be used by species of another guild. Therefore, we conclude that variation in diel niche use is influenced by variation in the fundamental niche and food supply or availability rather than by competitive interaction between fishes in the stream fish community.  相似文献   

6.
Although diel food habit studies have been undertaken on a number of individual species, few studies have examined diel variation in the diets of fish communities. We examined the diel diet variation and feeding periodicity of a fish community in the Juniata River, Pennsylvania. Nine species, totalling 1,098 fish, were collected at 4-h intervals over a 24-h period in October 1989, in numbers sufficient to describe their diel variation in diet composition. Diel variation in diet composition was evident in all species, as no single prey taxon was dominant in the diet of any species during any 4-h interval. Ephemeropterans were the most important prey taxa for four species of centrarchids, whereas chironomids were the main prey of banded killifish, mimic shiners, and spotfin shiners. Algae was the major component in the diet of spottail shiners, whereas bluntnose minnows contained mostly detritus. Feeding activities of rock bass, redbreast sunfish, and pumpkinseed occurred at low levels throughout the day; peak feeding occurred from 2000 to 0400 hours. Food consumption of smallmouth bass increased throughout the day with peak consumption occurring at 2000 hours. Non-centrarchids fed little during daylight hours and showed peak activity at 2000–2400 h. Construction of a 24-hour diet from six 4-h interval estimates and feeding periodicity data provided a comprehensive representation of the diel feeding ecology of all species collected.  相似文献   

7.
We employ molecular methods to profile the diet of the little brown bat, Myotis lucifugus, and describe spatial and temporal changes in diet over their maternity season. We identified 61 prey species of insects and 5 species of arachnid. The largest proportion of prey (~32%) were identified as species of the mass-emerging Ephemeroptera (mayfly) genus Caenis. Bats roosting in agricultural settings had lower dietary richness than those occupying a roost located on a forest fragment in a conservation area. We detected temporal fluctuations in diet over the maternity season. Dipteran (fly) species dominated the diet early in the season, replaced later by species of mayfly. Because our methodology provides species-level identification of prey, we were able to isolate environmental indicator species in the diet and draw conclusions about the location and type of their foraging habitat and the health of these aquatic systems. The species detected suggested that the bats use variable habitats; members of one agricultural roost foraged on insects originating in rivers or streams while those in another agricultural roost and the forest roost fed on insects from pond or lake environments. All source water for prey was of fair to good quality, though no species detected are intolerant of pollution thus the habitat cannot be classified as pristine. Our study outlines a model system to investigate the abiotic and biotic interactions between habitat factors through this simple food chain to the top predator.  相似文献   

8.
Food partitioning among scorpaenid fishes in Mediterranean seagrass beds   总被引:9,自引:0,他引:9  
Diets of three scorpaenid fishes, Scorpaena notata, S. porcus and S. scrofa , from a Posidonia seagrass bed off Marseilles were quantitatively analysed and categorized according to the size and sex of individuals, to elucidate diel and seasonal rhythms. All three preyed on the same crustacean and fish species, but in different proportions: S. notata mostly fed on Caridae, S. porcus on brachyurans and S. scrofa on fishes. Individual size and diel period were the main factors responsible for diet variation and food partitioning that evolved according to both cyclic (temporal) and continuous (ontogenic) trends. A strong interspecific food overlap was observed in juveniles (S.L. < 50 mm), whereas intraspecific potential competition was low between juveniles and adults. Among medium and large size classes, intra- and interspecific food overlaps were high and of equal intensity. Narrower food niches at night, due to a stronger specialization on type and size of prey, diminished the intra- and interspecific potential competition during this period of maximum feeding activity. This probably allowed the high number of coexisting scorpaenid populations in Mediterranean seagrass beds. Nevertheless, microhabitat and time partitioning seemed as important as food partitioning in the structuring of fish assemblages.  相似文献   

9.
Diel feeding patterns of herring Clupea harengus and mackerel Scomber scombrus in the southern Gulf of St Lawrence were examined based on samples obtained by midwater trawling between 19 and 26 June 2001. Within 3 h time periods, stomach contents tended to be more similar between fish from the same tow than between fish from different tows. Thus, in contrast to previous diet studies, which have used individual fish stomachs as independent observations, tow was used as the experimental unit in statistical analyses in this study. Diel patterns in stomach fullness were identified using generalized additive models. Two peaks in stomach fullness occurred for herring, one in the morning and the other in the evening. Mackerel showed an increase in feeding intensity throughout the day with a peak in mid‐afternoon. The diel changes in stomach contents suggested rapid gastric evacuation rates for both species, especially for herring. The estimate of the instantaneous evacuation rate for herring was twice that for mackerel. Calanus copepods (mainly C. hyperboreus ), fishes (mainly capelin Mallotus villosus ) and euphausiids were the main prey found in the stomachs of both species. Calanus copepods dominated the diet of herring regardless of time period. They also dominated the diet of mackerel during the late afternoon, evening and night while fishes and euphausiids were dominant during the morning and early afternoon. These diel patterns emphasize the need for sampling throughout the day and night in order to estimate ration and diet composition for bioenergetic and ecosystem models.  相似文献   

10.
Increased industrial activities on the Peace and Athabasca River systems have raised concerns about cumulative impacts on fish and water resources downstream, in the Slave River of Alberta and the Northwest Territories, Canada. Because very little information was available on the fish communities in this system, we examined spatial and temporal patterns of diet for nine species (four piscivores and five invertebrate feeders) from three different types of habitat along the lower Slave River system and assessed trophic relationships within the communities. All actively feeding species exhibited seasonal variations in diet within and among the study areas. Dietary overlap was generally low throughout all seasons and locations. In the lower Slave River and its major tributary, the Salt River, substantial dietary overlap between piscivores (particularly walleye, Stizostedion vitreum), and invertebrate feeders occurred in the spring. In the summer no overlap occurred as walleye shifted to a more piscivorous diet, attaining a moderate degree of overlap with northern pike, Esox lucius. Compared with the Slave River, which is a large but homogeneous system upstream of its delta at Great Slave Lake, there was a greater diversity of actively feeding invertebrate feeders in the Salt River. Three of the latter were benthic feeders exhibiting moderate degrees of diet overlap during spring and summer. During the fall, few fish were feeding. Most fishes in the lower Slave River system are generalist, opportunistic feeders, consuming a number of different prey, the importance of which varies spatially and seasonally, as the abundance of these prey varies in the environment.  相似文献   

11.
Diel activity of resident and immigrant waterbirds at Lake Turkana, Kenya   总被引:1,自引:0,他引:1  
M. FASOLA  L. CANOVA 《Ibis》1993,135(4):442-450
Of the 42 dominant species of waterbirds at Lake Turkana, Kenya, 14 foraged uniformly throughout the day and night, five foraged mostly during the night, five foraged during both the night and day but with diurnal peaks, 17 were exclusively diurnal and only one was exclusively nocturnal. Species with uniform feeding activity usually captured small prey, using tactile or visual plus tactile cues; most diurnal species captured large prey, using visual cues. However, some species which fed mostly at night, or uniformly, relied exclusively on visual cues. We found support from only one species that moonlight influenced foraging activities. Palaearctic immigrants spent significantly more time foraging than partial migrants and residents; they were also smaller and mainly microphagous. Only gulls and terns were restricted to diurnal feeding, presumably by their need to see and capture prey while flying. The other groups were formed by species which foraged uniformly over 24 h or partially by day or night. These patterns indicate that in most waterbirds feeding activities are not basically tied to any phase of the diel cycle. Since most waterbirds display some degree of nocturnal activity, time budget studies based only on diurnal observations are likely to be misleading.  相似文献   

12.
Development in foraging behaviour and dietary intake of many vertebrates are age-structured. Differences in feeding ecology may correlate with ontogenetic shifts in dispersal patterns, and therefore affect foraging habitat and resource utilization. Such life-history traits have important implications in interpreting tropho-dynamic linkages. Stable isotope ratios in the whiskers of sub-yearling southern elephant seals (Mirounga leonina; n = 12) were used, in conjunction with satellite telemetry and environmental data, to examine their foraging habitat and diet during their first foraging migration. The trophic position of seals from Macquarie Island (54°30′S, 158°57′E) was estimated using stable carbon (δ1 3C) and nitrogen (δ15N) ratios along the length of the whisker, which provided a temporal record of prey intake. Satellite-relayed data loggers provided details on seal movement patterns, which were related to isotopic concentrations along the whisker. Animals fed in waters south of the Polar Front (>60°S) or within Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) Statistical Subareas 88.1 and 88.2, as indicated by both their depleted δ1 3C (<−20‰) values, and tracking data. They predominantly exploited varying proportions of mesopelagic fish and squid, and crustaceans, such as euphausiids, which have not been reported as a prey item for this species. Comparison of isotopic data between sub-yearlings, and 1, 2 and 3 yr olds indicated that sub-yearlings, limited by their size, dive capabilities and prey capture skills to feeding higher in the water column, fed at a lower trophic level than older seals. This is consistent with the consumption of euphausiids and most probably, Antarctic krill (Euphausia superba), which constitute an abundant, easily accessible source of prey in water masses used by this age class of seals. Isotopic assessment and concurrent tracking of seals are successfully used here to identify ontogenetic shifts in broad-scale foraging habitat use and diet preferences in a highly migratory predator.  相似文献   

13.
The ontogenetic, diel, seasonal, and yearly variations in gut fullness, diet, and prey diversity for a California estuarine gobiid (Lepidogobius lepidus Girard) were examined. Also the feeding behavior of this species was described.Small (<50 mm, SL) and large (? 50 mm, SL) gobies consumed similar prey types in different proportions. Major prey items were polychaetes, harpacticoid copepods, gammarid amphipods, molluscs, and other crustaceans. Diets of large and small gobies were not significantly correlated, and larger fish had a more diverse diet. Small fish fed at all times while larger gobies fed primarily at night. Changes in diet may be related to differential prey preferences, feeding chronologies, and increases in fish size.Both large and small gobies displayed seasonal differences in diet and prey diversity. Year-to-year changes in diet also were noted for both size classes. The bay goby uses different feeding behaviors to capture sedentary and motile prey and appears to forage opportunistically. This behavior is probably advantageous in an environment which fluctuates drastically.  相似文献   

14.
Understanding the foraging patterns of reef fishes is crucial for determining patterns of resource use and the sensitivity of species to environmental change. While changes in prey availability and interspecific competition have been linked to patterns of prey selection, body condition, and survival in coral reef fishes, rarely has the influence of abiotic environmental conditions on foraging been considered. We used underwater digital video to explore how prey availability and wave exposure influence the behavioural time budgets and prey selectivity of four species of obligate coral-feeding butterflyfishes. All four species displayed high selectivity towards live hard corals, both in terms of time invested and frequency of searching and feeding events. However, our novel analysis revealed that such selectivity was sensitive to wave exposure in some species, despite there being no significant differences in the availability of each prey category across exposures. In most cases, these obligate corallivores increased their selectivity towards their most favoured prey types at sites of high wave exposure. This suggests there are costs to foraging under different wave environments that can shape the foraging patterns of butterflyfishes in concert with other conditions such as prey availability, interspecific competition, and territoriality. Given that energy acquisition is crucial to the survival and fitness of fishes, we highlight how such environmental forcing of foraging behaviour may influence the ecological response of species to the ubiquitous and highly variable wave climates of shallow coral reefs.  相似文献   

15.
The study of feeding habits of the Atlantic bluefin tuna was carried out in 123 specimens, ranging from 115 to 222 cm fork length (FL) and collected during spring seasons of 2010 and 2011 in the central Mediterranean Sea (Strait of Messina). The analysis of stomach contents allowed us to identify 91 taxa of prey items, mainly belonging to Teleostea (54), Cephalopoda (20) and Crustacea (13). The percentage of index of relative abundance (IRI) shows the highest values for the myctophid Hygophum benoiti (%IRI = 22.854) and the stomiid Chauliodus sloani (%IRI = 15.124), followed by the oegopsid squid Illex coindetii (%IRI = 14.316). The broad spectrum of prey items could suggest a generalist behavior of this predator, with several species that occasionally occurs in its diet. However, if prey are grouped into food categories, the importance of mesopelagic and benthopelagic fishes can be appreciated (54.41 % of %IRI). The assessment of the hypothetical foraging rhythm of the Atlantic bluefin tuna highlighted that its feeding activity is concentrated on diel migrating fauna during night and on larger preys upon daylight. The predation on the high-energetic food as mesopelagic and bathypelagic fishes during the pre-spawning and the spawning period may bring an energetic advantage in tuna metabolism and gonadal maturation  相似文献   

16.
I studied the feeding behavior and diet of the carangid jack Caranx latus in a subtropical reef at Búzios Island on the southeastern Brazilian coast. Caranx latus foraged alone or in small groups of up to three individuals during daytime employing two main feeding styles: searching for prey while swimming in mid-water and following individuals of other fish species which disturbed the substrate while foraging among the rocks. The labrid wrasse Bodianus rufus was the main fish species followed by the jack. The jack feeds on crustaceans and fishes some of which are benthic rocky bottom dwellers and are caught during following. The behavioral flexibility of C. latus enables this fish to consume both crustaceans from the water column and benthic rocky dweller fishes. There is little dietary overlap between C. latus and the followed B. rufus. The interspecific feeding associations could be regarded as advantageous for C. latus allowing access to a broader range of prey categories and increasing the food intake through the consumption of large benthic fish prey  相似文献   

17.
Knowledge of humpback whale (Megaptera novaeangliae) foraging on feeding grounds is becoming increasingly important as the growing North Pacific population recovers from commercial whaling and consumes more prey, including economically important fishes. We explored spatial and temporal (interannual, within‐season) variability in summer foraging by humpback whales along the eastern side of the Kodiak Archipelago as described by stable carbon (δ13C) and nitrogen (δ15N) isotope ratios of humpback whale skin (n = 118; 2004–2013). The trophic level (TL) of individual whales was calculated using basal food web δ15N values collected within the study area. We found evidence for the existence of two subaggregations of humpback whales (“North,” “South”) on the feeding ground that fed at different TLs throughout the study period. Linear mixed models suggest that within an average year, Kodiak humpback whales forage at a consistent TL during the feeding season. TL estimates support mixed consumption of fish and zooplankton species in the “North” (mean ± SE; 3.3 ± 0.1) and predominant foraging on zooplankton in the “South” (3.0 ± 0.1). This trend appears to reflect spatial differences in prey availability, and thus, our results suggest North Pacific humpback whales may segregate on feeding aggregations and target discrete prey species.  相似文献   

18.
Fatty acid and stable isotope analyses have previously been used to investigate foraging patterns of fish, birds, marine mammals and most recently cephalopod species. To evaluate the application of these methods for dietary studies in squid, it is important to understand the degree to which fatty acid and stable isotope signatures of prey species are reflected in the squids' tissue. Four groups of Lolliguncula brevis were fed on prey species with distinctly different fatty acid and stable isotope profiles over 30 consecutive days. One group of squid were fed fish for fifteen days, followed by crustaceans for a further fifteen days. A second and third group were fed exclusively on fish or crustaceans for thirty days. And a fourth group was fed on a mixture of fish and crustaceans for thirty days. Analysis of squid tissue showed that, after 10 days of feeding, fatty acid profiles of squid tended to reflect those of their prey. Squid that fed on a single prey type, i.e. fish or crustacean, showed only minor modifications in fatty acid proportions after the initial change and fatty acid profiles were clearly distinguishable between the two feeding groups. Shifts in fatty acid proportions towards respective prey profiles could clearly be observed in squid the diet of which was swapped after 15 days. Clear differences could also be seen in fatty acid profiles of squid feeding on a mixed diet with trends towards either fish or crustacean fatty acid signatures. Stable isotope signatures of squid tissues clearly distinguished between animals feeding on different diets and supported findings from fatty acid analysis, thus indicating both methods to be viable tools in feeding studies on squid species.  相似文献   

19.
The foraging ecology of larval and juvenile fishes   总被引:1,自引:0,他引:1  
Knowledge of the foraging ecology of fishes is fundamental both to understanding the processes that function at the individual, population and community levels, and for the management and conservation of their populations and habitats. Furthermore, the factors that influence the acquisition and assimilation of food can have significant consequences for the condition, growth, survival and recruitment of fishes. The majority of marine and freshwater fish species are planktivorous at the onset of exogenous nutrition and have a limited ability to detect, capture, ingest and digest prey. Improvements in vision, development of fins and associated improvements in swimming performance, increases in gape size and development of the alimentary tract during ontogeny often lead to shifts in diet composition. Prey size, morphology, behaviour and abundance can all influence the prey selection of larval and juvenile fishes. Differences in feeding behaviour between fish species, individuals or during ontogeny can also be important, as can inter- and intraspecific interactions (competition, predation risk). Temporal (diel, seasonal, annual) and spatial (microhabitat, mesohabitat, macrohabitat, regional) variations in prey availability can have important implications for the prey selection, diet composition, growth, survival, condition and, ultimately, recruitment success of fishes. For fish populations to persist, habitat must be available in sufficient quality and quantity for the range of activities undertaken during all periods of development. Habitats that enhance the diversity, size ranges and abundance of zooplankton should ensure that sufficient food resources are available to larval and juvenile fishes.  相似文献   

20.
Non-consumptive effects (NCEs) of predators occur as prey alters their habitat use and foraging decisions to avoid predation. Although NCEs are recognized as being important across disparate ecosystems, the factors influencing their strength and importance remain poorly understood. Ecological context, such as time of day, predator identity, and prey condition, may modify how prey species perceive and respond to risk, thereby altering NCEs. To investigate how predator identity affects foraging of herbivorous coral reef fishes, we simulated predation risk using fiberglass models of two predator species (grouper Mycteroperca bonaci and barracuda Sphyraena barracuda) with different hunting modes. We quantified how predation risk alters herbivory rates across space (distance from predator) and time (dawn, mid-day, and dusk) to examine how prey reconciles the conflicting demands of avoiding predation vs. foraging. When we averaged the effect of both predators across space and time, they suppressed herbivory similarly. Yet, they altered feeding differently depending on time of day and distance from the model. Although feeding increased strongly with increasing distance from the predators particularly during dawn, we found that the barracuda model suppressed herbivory more strongly than the grouper model during mid-day. We suggest that prey hunger level and differences in predator hunting modes could influence these patterns. Understanding how context mediates NCEs provides insight into the emergent effects of predator–prey interactions on food webs. These insights have broad implications for understanding how anthropogenic alterations to predator abundances can affect the spatial and temporal dynamics of important ecosystem processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号