首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Photoaffinity heterobifunctional cross-linking reagents are described that incorporate a 4-azidosalicylate group at one terminus and an N-hydroxysuccinimidyl ester at the other terminus with a "linking arm" of variable length separating the photoactive and electrophilic termini. Exposure of calmodulin (CaM) to succinimidyl N-[2-[(4-azidosalicyloyl)oxy]ethyl]suberamate (4C) led to monoadducts at Lys-21, Lys-75, and Lys-94. Separation of the monoadducts from CaM and polyadducts, radioiodination, and photolysis in the presence of human erythrocyte plasma membrane Ca2+, Mg2(+)-ATPase led to calcium-dependent cross-linking with 8% cross-linking efficiency.  相似文献   

2.
Calmodulin and calmodulin complexed with calcineurin phosphatase were trace labeled with [3H]acetic anhydride and the incorporation of [3H]acetate into each epsilon-amino lysine of calmodulin was measured. The relative reactivities of calmodulin lysines were higher in the presence of Ca2+ than in the presence of EGTA, and the order was: Lys-75 greater than Lys-94 greater than Lys-148 greater than or equal to Lys-77 greater than Lys-13 greater than or equal to Lys-21 greater than Lys-30. The changes in relative reactivity implied a change in conformation. When calmodulin was complexed with the phosphatase, Lys-21, Lys-77, and Lys-148 were most protected, implying that these residues are at or near the interaction sites or are conformationally perturbed by the interaction. Lys-30 and Lys-75 were slightly protected, lysine 13 showed no change, while lysine 94 significantly increased in reactivity. Comparison with results obtained from myosin light chain kinase using a similar technique (Jackson, A. E., Carraway, K. L., III, Puett, D., and Brew, K. (1986) J. Biol. Chem. 261, 12226-12232) reveals that calmodulin may interact with each of the two enzymes similarly at or near Lys-21, Lys-75, and Lys-148; one difference with phosphatase is that complex formation also involved Lys-77. These findings suggest that calmodulin interacts differently with its target enzymes.  相似文献   

3.
This paper describes characterization of the reaction of calmodulin with a series of nitrosoureas which are capable of releasing amine-reactive isocyanates of varying hydrophobic character. The site of calcium-dependent carbamoylation on calmodulin by the antineoplastic agent 1-(2-chloroethyl)-3-(4-methylcyclohexyl)-1-nitrosourea (methyl CCNU) was determined to be Lys-75 as demonstrated using [ring-14C]methyl CCNU and sequence analysis of the sole labeled peptide obtained from tryptic digestion of reversed-phase high pressure liquid chromatography (HPLC)-purified radiolabeled calmodulin. CCNU, the 4-desmethylcyclohexyl derivative of methyl CCNU, and its reactive hydrolysis product, cyclohexyl isocyanate, were also determined to modify calmodulin in a similar manner and at the same site, as demonstrated by specific blockade of modification by the calmodulin antagonist calmidazolium. Nitrosoureas which release the less hydrophobic 4-hydroxy- and 4-carboxycyclohexyl isocyanates are unable to modify calmodulin at 25-fold higher concentrations than those required for modification with methyl CCNU, CCNU, or cyclohexyl isocyanate. With this monomodified Lys-75 derivative, purified to homogeneity by HPLC, differential effects of modification on the activation of bovine brain 3',5'-cyclic nucleotide phosphodiesterase (phosphodiesterase) and human erythrocyte Ca2+,Mg2+-ATPase were observed. Compared to the amounts of native calmodulin needed, phosphodiesterase required 7-fold higher amounts of this derivative to reach maximal activation, whereas the activation of the ATPase was unaffected. Clearly, different regions of calmodulin are responsible for the activation of phosphodiesterase and the ATPase. We conclude that Lys-75 is not essential for the function of calmodulin but is in a region of the molecule involved in interaction with phosphodiesterase as well as the binding of certain hydrophobic calmodulin antagonists.  相似文献   

4.
Islet cell plasma membranes contain a calcium-stimulated and magnesium-dependent ATPase (Ca2+ + Mg2+)-ATPase) which requires calmodulin for maximum enzyme activity (Kotagal, N., Patke, C., Landt, M., McDonald, J., Colca, J., Lacy, P., and McDaniel, M. (1982) FEBS Lett. 137, 249-252). Investigations indicated that exogenously added calmodulin increases the velocity and decreases the Km for Ca2+ of the high affinity (Ca2+ + Mg2+)-ATPase. These studies routinely employed the chelator ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) to maintain Ca2+ concentrations in the submicromolar range. During the course of these investigations, it was found unexpectedly that increasing the concentrations of EGTA (0.1-4 mM) and total calcium in the media, while maintaining constant free Ca2+ levels, increased the velocity of the high affinity (Ca2+ + Mg2+)-ATPase. The free calcium concentrations under these conditions were verified by a calcium-sensitive electrode. The (Ca2+ + Mg2+)-ATPase maximally activated by 2-4 mM EGTA was not further stimulated by calmodulin, whereas camodulin stimulation increased as the concentration of EGTA in the media was decreased. A similar enhancement by Ca-EGTA was observed on active calcium transport by the plasma membrane-enriched fraction. Moreover, Ca-EGTA had a negligible effect on both active calcium transport as well as Ca2+-stimulated ATPase activity by the islet cell endoplasmic reticulum, processes which are not stimulated by calmodulin. The results indicate that stimulation by Ca-EGTA may be used to differentiate calcium transport systems by these subcellular organelles. Furthermore, the concentration of EGTA routinely employed to maintain free Ca2+ levels may itself obscure effects of calmodulin and other physiological agents on calcium-dependent activities.  相似文献   

5.
Calmodulin has been shown to stimulate the initial rates of Ca2+-uptake and Ca2+-ATPase in cardiac sarcoplasmic reticulum, when it is present in the reaction assay media for these activities. To determine whether the stimulatory effect of calmodulin is mediated directly through its interaction with the Ca2+-ATPase, or indirectly through phosphorylation of phospholamban by an endogenous protein kinase, two approaches were taken in the present study. In the first approach, the effects of calmodulin were studied on a Ca2+-ATPase preparation, isolated from cardiac sarcoplasmic reticulum, which was essentially free of phospholamban. The enzyme was preincubated with various concentrations of calmodulin at 0 degrees C and 37 degrees C, but there was no effect on the Ca2+-ATPase activity assayed over a wide range of [Ca2+] (0.1-10 microM). In the second approach, cardiac sarcoplasmic reticulum vesicles were prephosphorylated by an endogenous protein kinase in the presence of calmodulin. Phosphorylation occurred predominantly on phospholamban, an oligomeric proteolipid. The sarcoplasmic reticulum vesicles were washed prior to assaying for Ca2+ uptake and Ca2+-ATPase activity in order to remove the added calmodulin. Phosphorylation of phospholamban enhanced the initial rates of Ca2+-uptake and Ca2+-ATPase, and this stimulation was associated with an increase in the affinity of the Ca2+-pump for calcium. The EC50 values for calcium activation of Ca2+-uptake and Ca2+-ATPase were 0.96 +/- 0.03 microM and 0.96 +/- 0.1 microM calcium by control vesicles, respectively. Phosphorylation decreased these values to 0.64 +/- 0.12 microM calcium for Ca2+-uptake and 0.62 +/- 0.11 microM calcium for Ca2+-ATPase. The stimulatory effect was associated with increases in the apparent initial rates of formation and decomposition of the phosphorylated intermediate of the Ca2+-ATPase. These findings suggest that calmodulin regulates cardiac sarcoplasmic reticulum function by protein kinase-mediated phosphorylation of phospholamban.  相似文献   

6.
The fluorescent spinach calmodulin derivative 2-(4-maleimidoanilino)naphthalene-6-sulfonic acid-calmodulin (MIANS-CaM) was used to investigate calmodulin interaction with the purified, detergent-solubilized erythrocyte Ca2(+)-ATPase. Previous studies have shown that the Ca2(+)-ATPase exists in equilibria between monomeric and oligomeric forms. We report here that MIANS-CaM binds to both enzyme forms in a Ca2(+)-dependent manner, with a approximately 50% fluorescence enhancement. These findings confirm our previous observation that enzyme oligomers retain their ability to bind calmodulin, even though they are fully activated in the absence of calmodulin. The Ca2+ dependence of MIANS-CaM binding to monomeric Ca2(+)-ATPase is of higher affinity (K 1/2 = 0.09 microM Ca2+) and less cooperative (nH = 1.1) than the Ca2+ dependence of enzyme activation by MIANS-CaM (K 1/2 = 0.26 microM Ca2+, nH = 2.8). These Ca2+ dependences and the order of events, in which calmodulin binding precedes enzyme activation, demonstrate that calmodulin indeed could be a physiological activator of the monomeric enzyme. The calcium dependence of calmodulin binding to oligomeric Ca2(+)-ATPase occurs at even lower levels of Ca2+ (K 1/2 = 0.04 microM Ca2+), in a highly cooperative fashion (nH = 2.3), and essentially in parallel with enzyme activation (K 1/2 = 0.05 microM Ca2+, nH = 2.9). The observed differences between monomers and oligomers suggest that the oligomerized Ca2(+)-ATPase is in a conformation necessary for efficient, cooperative calcium binding at nanomolar Ca2+, which the monomeric enzyme acquires only upon interaction with calmodulin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The differential reactivities of individual lysines on porcine testicular calmodulin were determined by trace labeling with high specific activity [3H]acetic anhydride as a function of the molar ratio of Ca2+ to calmodulin. In progressing from the Ca2+-depleted form of the protein to a Ca2+:calmodulin molar ratio of 5:1, six of the seven lysyl residues exhibited a modest 1.5- to 3.0-fold increase in reactivity. Lys 75, in contrast, was enhanced in reactivity greater than 20-fold. When the change in reactivity of each lysine was normalized as a percentage of the maximum change, most of the residues were found to fall into two distinct classes. One class, comprising lysines 94 and 148 from the two carboxy terminal Ca2+-binding domains 3 and 4, respectively, exhibited about 90% of their reactivity change when the Ca2+:calmodulin molar ratio was 2:1, and these residues were perturbed very little upon further addition of Ca2+. The other class, encompassing lysines 13, 21, and 30 from the amino terminal domain 1 and Lys 75 from the extended helix connecting the two globular lobes of calmodulin, underwent most of their overall reactivity change (55-70%) between 2 and 5 equivalents of Ca2+ per mol of calmodulin. Lys 77 was distinct in its pattern of change, undergoing approximately equal changes with each Ca2+ increment. These results are consistent with a model where Ca2+ first binds to the two carboxy terminal sites of calmodulin with no apparent preference, concomitant with minor alterations in the microenvironments of lysines in the unoccupied amino terminal domains. The third and fourth Ca2+ ions then bind to these latter two domains, again with no evidence of preference, with little change in the lysine reactivities at the carboxy terminus of the molecule. The environments of groups in the central helix appear to undergo changes in a manner that reflects their proximity to the amino and carboxy terminal domains. In the course of this work, it was found that Lys 94 in apocalmodulin is specifically perturbed by the addition of EGTA, suggesting that the chelating agent may interact with calmodulin at or near the third Ca2+-binding domain.  相似文献   

8.
A unique cytoplast preparation from Ehrlich ascites tumor cells (G. V. Henius, P. C. Laris, and J. D. Woodburn (1979) Exp. Cell. Res. 121, 337-345), highly enriched in plasma membranes, was employed to characterize the high-affinity plasma membrane calcium-extrusion pump and its associated adenosine triphosphatase (ATPase). An ATP-dependent calcium-transport system which had a high affinity for free calcium (K0.5 = 0.040 +/- 0.005 microM) was identified. Two different calcium-stimulated ATPase activities were detected. One had a low (K0.5 = 136 +/- 10 microM) and the other a high (K0.5 = 0.103 +/- 0.077 microM) affinity for free calcium. The high-affinity enzyme appeared to represent the ubiquitous high-affinity plasma membrane (Ca2+ + Mg2+)-ATPase (calcium-stimulated, magnesium-dependent ATPase) seen in normal cells. Both calcium transport and the (Ca2+ + Mg2+)-ATPase were significantly stimulated by the calcium-dependent regulatory protein calmodulin, especially when endogenous activator was removed by treatment with the calcium chelator ethylene glycol bis(beta-aminoethyl ether) N,N'-tetraacetic acid. Other similarities between calcium transport and the (Ca2+ + Mg2+)-ATPase included an insensitivity to ouabain (0.5 mM), lack of activation by potassium (20 mM), and a requirement for magnesium. These similar properties suggested that the (Ca2+ + Mg2+)-ATPase represents the enzymatic basis of the high-affinity calcium pump. The calcium pump/enzyme system was inhibited by orthovanadate at comparatively high concentrations (calcium transport: K0.5 congruent to 100 microM; (Ca2+ + Mg2+)-ATPase: K0.5 greater than 100 microM). Upon Hill analysis, the tumor cell (Ca2+ + Mg2+)-ATPase failed to exhibit cooperative activation by calcium which is characteristic of the analogous enzyme in the plasma membrane of normal cells.  相似文献   

9.
Calcium accumulation by human erythrocyte inside-out vesicles was linear for at least 30 min in the presence of ATP. In untreated inside-out vesicles, 3.76 +/- 1.44 nmol of calcium/min/unit of acetylcholinesterase were transported, compared with 10.57 +/- 2.05 (+/- S.D.; n = 11) in those treated with calmodulin. The amount of calmodulin necessary for 50% activation of Ca2+ accumulation was 60 +/- 22 ng/ml (+/- S.D.; n = 4). The Km (Ca2+) for calmodulin-stimulated accumulation was 0.8 +/- 0.05 microM (+/- S.D.; n = 5) using Ca2+ /ethylene glycol bis(beta-aminoethyl ether)N,N,N',N'-tetraacetic acid (EGTA) buffers, or 25 microM with direct addition of unbuffered calcium. In the absence of calmodulin, these values were 0.4 and 60 microM, respectively, Km (ATP) values of 90 and 60 microM in the presence and absence of calmodulin, respectively, were measured at constant magnesium concentration (3 mM). In the presence of calmodulin, a broad pH profile is exhibited from pH 6.6 to 8.2. Maximal calcium accumulation occurs at pH 7.8. In the absence of calmodulin, the pH profile exhibits a linear upward increase from pH 7.0 to 8.2. The (Ca2+-Mg2+)-ATPase activity, measured under identical conditions, was 2.40 +/- 0.72 nmol of Pi/min/unit of acetylcholinesterase in the untreated vesicles and 11.29 +/- 2.87 nmol of Pi/min/unit of acetylcholinesterase (+/- S.D.; n = 4) in calmodulin-treated vesicles. A stoichiometry of 1.6 Ca2+/ATP hydrolyzed was determined in the absence of calmodulin; in the presence of calmodulin, this ratio was decreased to 0.94 Ca2+/ATP hydrolyzed.  相似文献   

10.
A S Manalan  C B Klee 《Biochemistry》1987,26(5):1382-1390
In affinity selection, calcineurin selects from a population of randomly modified calmodulins those species with which it prefers to interact. The method shows that acetylation of lysines affects calmodulin so as to interfere with its ability to interact with calcineurin. Monoacetylation of any lysine of calmodulin reduces its affinity for calcineurin by 5-10-fold. Multiple acetylations amplify the loss of affinity; none of the modifications are imcompatible with activity. The lack of selectivity of calcineurin against any particular modified lysine indicates that the loss of affinity reflects changes induced by the removal of the charged groups and suggests an important role for electrostatic interactions in the cooperative structural transitions which calmodulin undergoes upon binding its target proteins or calcium. In the presence of calcineurin, a large and specific decrease in the rate of acetylation of Lys-75 and -148 of calmodulin is observed. The reactivity of the same residues is greatly increased in the presence of calcium alone [Giedroc, D. P., Sinha, S. K., Brew, K., & Puett, D. (1985) J. Biol. Chem. 260, 13406-13413]. Lys-75, located in the central helix, and the C-terminal Lys-148 [Babu, Y. S., Sacks, J. S., Greenhouse, T. J., Bugg, C. E., Means, A. R., & Cook, W. J. (1985) Nature (London) 315, 37-40] may act as sensors of the calmodulin allosteric transitions. Their reactivity changes in opposite directions in response to calcium-induced or calcineurin-induced structural changes. The reactivity of other residues such as Lys-21, decreased in the presence of calcineurin but not calcium, is also affected by a conformational change which is induced specifically by calcineurin.  相似文献   

11.
J Mackall  C B Klee 《Biochemistry》1991,30(29):7242-7247
The rate of proteolysis of trypsin-sensitive bonds was used to examine the nature of the structural changes accompanying Ca2+ and Mg2+ binding to calmodulin. In the Ca(2+)-free form, the rates of proteolysis at Arg-106 and Arg-37 are rapid (greater than 300 and 28 nmol min-1 mL-1, respectively), the bonds at Arg-74, Lys-75, and Lys-77, in the central helix, are cleaved more slowly (10 nmol min-1 mL-1), and a lag in the cleavage at the remaining bonds (Lys-13, Lys-30, Arg-86, Arg-90, and Arg-126) suggests that they are not cleaved in the native protein. High concentrations of Ca2+, but not Mg2+, almost completely abolish proteolysis at Arg-106 and drastically reduce the rate of cleavage at Arg-37. Both Ca2+ and Mg2+ exert a moderate protective effect on the proteolysis of the central helix. These results suggest that the F-helix of domains III and, to a lesser extent, the F-helix of domain I are somewhat flexible in the Ca(2+)-free form and are stabilized by Ca2+. Whereas full occupancy of the four Ca(2+)-binding sites produces little change in the susceptibility of the central helix to proteolytic attack, binding of two Ca2+ produces a 10-fold enhancement of the rate of proteolysis in this part of the molecule. We propose that at intermediate Ca2+ levels the flexibility of the central helix of calmodulin is greatly increased, resulting in the transient formation of intermediates which have not been detected by spectroscopic techniques but are trapped by the irreversible action of trypsin.  相似文献   

12.
Calmodulin was purified from goat erythrocyte hemolysate using heat treatment and Sephadex G-100 gel filtration chromatography. The molecular weight and Stokes, radius of the purified calmodulin was determined. The goat erythrocyte calmodulin stimulated (Ca(2+)-Mg2+)-ATPase but not (Mg2+)-ATPase and (Na(+)-K(+)-Mg2+)-ATPase. The (Ca(2+)-Mg2+)-ATPase of the erythrocyte membrane derived from human, rat, rabbit and pig were significantly stimulated.  相似文献   

13.
Calcium release from high and low-affinity calcium-binding sites of intact bovine brain calmodulin (CaM) and from the tryptic fragment 78-148, purified by high-pressure liquid chromatography, containing only the high-affinity calcium-binding sites, was determined by fluorescence stopped-flow with 2-p-toluidinylnaphthalene sulfonate (TNS). The tryptic fragments 1-77 and 78-148 each contain a calcium-dependent TNS-binding site, as shown by the calcium-dependent increase in TNS fluorescence. The rate of the monophasic fluorescence decrease in endogenous tyrosine on calcium dissociation from intact calcium-saturated calmodulin (kobs 10.8 s-1 and 3.2 s-1 at 25 degrees C and 10 degrees C respectively) as well as the rate of equivalent slow phase of the biphasic decrease in TNS fluorescence (kobsslow 10.6 s-1 and 3.0 s-1 at 25 degrees C and 10 degrees C respectively) and the rate of the solely monophasic decrease in TNS fluorescence, obtained with fragment 78-148 (kobs 10.7 s-1 and 3.5 s-1 at 25 degrees C and 10 degrees C respectively), were identical, indicating that the rate of the conformational change associated with calcium release from the high-affinity calcium-binding sites on the C-terminal half of calmodulin is not influenced by the N-terminal half of the molecule. The fast phase of the biphasic decrease of TNS fluorescence, observed by the N-terminal half of the molecule. The fast phase of the biphasic decrease of TNS fluorescence, observed with intact calmodulin only (kobsfast 280 s-1 at 10 degrees C) but not with fragment 78-148, is most probably due to the conformational change associated with calcium release from low-affinity sites on the N-terminal half. The calmodulin fragments 1-77 and 78-148 neither activated calcium/calmodulin-dependent protein kinase of cardiac sarcoplasmic reticulum nor inhibited calmodulin-dependent activation at a concentration approximately 1000-fold greater (5 microM) than that of the calmodulin required for half-maximum activation (5.9 nM at 0.8 mM Ca2+ and 5 mM Mg2+) of calmodulin-dependent phosphoester formation.  相似文献   

14.
The calmodulin activation of the (Ca2+ + Mg2+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) in human erythrocyte membranes was studied in the range of 1 nM to 40 microM of purified calmodulin. The apparent calmodulin-affinity of the ATPase was strongly dependent on Ca2+ and decreased approx. 1000-times when the Ca2+ concentration was reduced from 112 to 0.5 microM. The data of calmodulin (Z) activation were analyzed by the aid of a kinetic enzyme model which suggests that 1 molecule of calmodulin binds per ATPase unit and that the affinities of the calcium-calmodulin complexes (CaiZ) decreases in the order of Ca3Z greater than Ca4Z greater than Ca2Z greater than or equal to CaZ. Furthermore, calmodulin dissociates from the calmodulin-saturated Ca2+-ATPase in the range of 10(-7)-10(-6) M Ca2+, even at a calmodulin concentration of 5 microM. The apparent concentration of calmodulin in the erythrocyte cytosol was determined to be 3 to 5 microM, corresponding to 50-80-times the cellular concentration of Ca2+-ATPase, estimated to be approx. 10 nmol/h membrane protein. We therefore conclude that most of the calmodulin is dissociated from the Ca2+-transport ATPase in erythrocytes at the prevailing Ca2+ concentration (probably 10(-7)-10(-8) M) in vivo, and that the calmodulin-binding and subsequent activation of the Ca2+-ATPase requires that the Ca2+ concentration rises to 10(-6)-10(-5) M.  相似文献   

15.
Calmodulin derivatives, specifically biotinylated in domains I and III, were synthesized to address the structures of calmodulin necessary for binding to its target enzymes in active conformations. By binding avidin to these biotinylated calmodulins, the role of specific sequences of the calmodulin molecule in target enzyme interactions could then be evaluated. The role of domain I in these interactions was assessed by biotinylation of Cys-27 of wheat germ calmodulin with N-ethylmaleimidobiotin. This modification did not affect the ability of this calmodulin to activate 3'-5'-cyclic nucleotide phosphodiesterase (PDE) or human erythrocyte Ca2+-Mg2+ ATPase. The addition of avidin to form a stable calmodulin-avidin complex also did not affect activation. Bovine testes calmodulin was biotinylated on Lys-94 by calcium-dependent reaction with N-hydroxysuccinimido ester-biotin at pH 6.0. This derivative was used to probe the Ca+2 binding region of domain III. The incorporation of biotin at Lys-94 of bovine calmodulin did not affect calmodulin activation of PDE. However, compared to unmodified calmodulin, a 4-fold higher concentration of this derivative was required to fully activate the ATPase. The addition of excess avidin to this derivative abolished all activation for both PDE and the ATPase. Sites of modification were determined by sequence analysis of labeled peptides.  相似文献   

16.
The Ca2+ affinity of (Mg2+ + Ca2+)-ATPase in human red blood cells is regulated by a number of intracellular factors, including the association of the enzyme with the cytosolic Ca2+ binding protein, calmodulin. Ghosts prepared by hypotonic lysis in the presence of 0.1 mM CaCl2, or by a gradual stepwise hemolysis procedure, contain an EDTA-extractable protein whose effects are mimicked by calmodulin, whereas ghosts prepared by extensive washes in the absence of added CaCl2 lack calmodulin and contain only a high molecular weight heat stable activator. Purified calmodulin from human red cells or bovine brain shifts the apparent Ca2+ affinity of (Mg2+ + Ca2+)-ATPase activity in extensively washed ghosts to a high Ca2+ affinity state. The shift was most apparent in ghosts in which the Ca2+ affinity was decreased by EDTA treatment. Calmodulin increased the velocity of (Mg2+ + Ca2+)-ATPase in the EDTA-treated ghosts about 36-fold at a low (1.4 microM) Ca2+ concentration, compared with 6-fold before EDTA treatment. The maximum shift in apparent Ca2+ affinity occurred only in the presence of saturating concentrations of calmodulin. It is concluded that red cell calmodulin confers to the Ca2+ transport ATPase the ability to increase its apparent Ca2+ affinity, as well as its maximum velocity, in response to increases in intracellular Ca2+.  相似文献   

17.
Ca2+-stimulated, Mg2+-dependent ATPase in bovine thyroid plasma membranes   总被引:1,自引:0,他引:1  
An isolated plasma membrane fraction from bovine thyroid glands contained a Ca2+-stimulated, Mg2+-dependent adenosine triphosphatase ((Ca2+ + Mg2+)-ATPase) activity which was purified in parallel to (Na+ + K+)-ATPase and adenylate cyclase. The (Ca2+ + Mg2+)-ATPase activity was maximally stimulated by approx. 200 microM added calcium in the presence of approx. 200 microM EGTA (69.7 +/- 5.2 nmol/mg protein per min). In EGTA-washed membranes, the enzyme was stimulated by calmodulin and inhibited by trifluoperazine.  相似文献   

18.
Active Ca2+ uptake and the associated (Ca2+ + Mg2+)-ATPase activity were studied under the same conditions in an inside-out vesicle preparation of human red blood cells made essentially by the procedure of Quist and Roufogalis (Journal of Supramolecular Structure 6, 375-381, 1977). Some preparations were treated with 1 mM EDTA at 30 degrees to further deplete them of endogenous levels of calmodulin. As the Ca2+ taken up by the EDTA-treated inside-out vesicles, as well as the non-EDTA treated vesicles, was maintained after addition of 4.1 mM EGTA, the vesicles were shown to be impermeable to the passive leak of Ca2+ over the time course of the experiments. In the absence of added calmodulin, both active Ca2+ uptake and (Ca2+ + Mg2+)-ATPase were sensitive to free Ca2+ over a four log unit concentration range (0.7 microM to 300 microM Ca2+) at 6.4 mM MgCl2. Below 24 microM Ca2+ the stoichiometry of calcium transported per phosphate liberated was close to 2:1, both in EDTA and non-EDTA treated vesicles. Above 50 microM Ca2+ the stoichiometry approached 1:1. When MgCl2 was reduced from 6.4 mM to 1.0 mM, the stoichiometry remained close to 2:1 over the whole range of Ca2+ concentrations examined. In contrast to the results at 6.4 mM MgCl2, the Ca2+ pump was maximally activated at about 2 microM free Ca2+ and significantly inhibited above this concentration at 1 mM MgCl2. Calmodulin (0.5-2.0 microgram/ml) had little effect on the stoichiometry in any of the conditions examined. The possible significance of a variable stoichiometry of the Ca2+ pump in the red blood cell is discussed.  相似文献   

19.
Two fragments of the C-terminal tail of the alpha(1) subunit (CT1, amino acids 1538-1692 and CT2, amino acids 1596-1692) of human cardiac L-type calcium channel (Ca(V)1.2) have been expressed, refolded, and purified. A single Ca(2+)-calmodulin binds to each fragment, and this interaction with Ca(2+)-calmodulin is required for proper folding of the fragment. Ca(2+)-calmodulin, bound to these fragments, is in a more extended conformation than calmodulin bound to a synthetic peptide representing the IQ motif, suggesting that either the conformation of the IQ sequence is different in the context of the longer fragment, or other sequences within CT2 contribute to the binding of calmodulin. NMR amide chemical shift perturbation mapping shows the backbone conformation of calmodulin is nearly identical when bound to CT1 and CT2, suggesting that amino acids 1538-1595 do not contribute to or alter calmodulin binding to amino acids 1596-1692 of Ca(V)1.2. The interaction with CT2 produces the greatest changes in the backbone amides of hydrophobic residues in the N-lobe and hydrophilic residues in the C-lobe of calmodulin and has a greater effect on residues located in Ca(2+) binding loops I and II in the N-lobe relative to loops III and IV in the C-lobe. In conclusion, Ca(2+)-calmodulin assumes a novel conformation when part of a complex with the C-terminal tail of the Ca(V)1.2 alpha(1) subunit that is not duplicated by synthetic peptides corresponding to the putative binding motifs.  相似文献   

20.
Some properties of synthetic calmodulin and its five mutants with replacement of Lys-75 were analyzed by means of electrophoresis, limited proteolysis and MALDI mass-spectrometry. A double mutant of calmodulin containing insert KGK between residues 80 and 81 and replacement of Lys-75 by Pro has a highly flexible central helix which is susceptible to trypsinolysis in the presence of Ca2+. Two mutants, K75P and K75E, having a distorted central helix demonstrate high resistance to trypsinolysis in the absence of Ca2+. Arg-90 and Arg-106 being the primary site of trypsinolysis of synthetic calmodulin are partially-protected in K75P and K75E mutants. The central helix of K75A and K75V mutants is stabilized by hydrophobic interactions between residues located in positions 71, 72 and 75. In the presence of Ca2+, the central helix of K75V is resistant to trypsinolysis. Mutations K75A and K75V decrease the rate of trypsinolysis of the central helix with a simultaneous increase of the rate of trypsinolysis in the C-terminal domain of calmodulin. It is concluded that the point mutation in the central helix has a long distance effect on the structure of calmodulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号