首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of organic and inorganic calcium antagonists on washed platelets from rat and human have been studied. Platelet aggregation was assessed by turbidimetry. Endogenous serotonin release was measured on the same sample by means of electrochemically treated carbon fiber electrodes. The organic calcium antagonist, nitrendipine, and the inorganic calcium channel blockers (Co2+, Mn2+, Cd2+, La3+) drastically inhibited rat and human platelet aggregation induced by thrombin, ADP or adrenaline in the presence of 0.32 mM Ca2+. In our conditions, the thrombin-induced release of endogenous serotonin was found to be external Ca2+-dependent and completely inhibited by 20 microM nitrendipine or 1 mM Cd2+. In addition, Ba2+ or Sr2+ ions can be substituted for Ca2+ to bring about platelet aggregation as well as endogenous serotonin secretion. In Ba2+ or Sr2+-containing media, rat platelet aggregation and/or serotonin secretion can be inhibited by either nitrendipine or Cd2+. Finally, we have also studied the thrombin- and external Ca2+-dependence of radiolabeled calcium uptake by rat platelets. We found that the thrombin-induced 45Ca uptake was inhibited by either 18 microM nitrendipine or 1 mM Cd2+. These results provide strong evidence for the existence of an influx of divalent cations (Ca2+, Sr2+, Ba2+) triggering platelet function. They also suggest, although they do not prove, that the translocation of these cations occurs through an agonist-operated channel as proposed by Hallam and Rink (FEBS Lett. 186 (1986) 175-179).  相似文献   

2.
The action of the polyether antibiotic monensin on the release of gamma-[3H]amino-n-butyric acid [( 3H]GABA) from mouse brain synaptosomes is characterized. Monensin enhances the release of this amino acid transmitter in a dose-dependent manner and does not modify the efflux of the nontransmitter amino acid alpha-[3H]aminoisobutyrate. The absence of external Ca2+ fails to prevent the stimulatory effect of monensin on [3H]GABA release. Furthermore, monensin is less effective in stimulating [3H]GABA release in the presence of Ca2+. The releasing response to monensin is absolutely dependent on external Na+. The blockade of voltage-sensitive Na+ or Ca2+ channels does not modify monensin-induced release of the transmitter. Also, the blockade of the GABA uptake pathway fails to prevent the stimulatory effect of monensin on [3H]GABA release. Although monensin markedly increases Na+ permeability in synaptosomes, these data indicate that the Ca2+-independent monensin-stimulated transmitter release is not mediated by the Na+-dependent uptake pathway. It is concluded that the entrance of Na+ through monensin molecules inserted in the presynaptic membrane might be sufficient to initiate the intraterminal molecular events underlying transmitter release.  相似文献   

3.
Toxic peptides II-9.2.2 and II-10, purified from Centruroides noxius venom, bear highly homologous N-terminal amino acid sequences, and both toxins are lethal to mice. However, only toxin II-10 is active on the voltage-clamped squid axon, selectively decreasing the voltage-dependent Na+ current. Here, we have tested toxins II-9 and II-10 on synaptosomes from mouse brain: both toxins increased the release of gamma-[3H]aminobutyric acid ([3H]GABA). Their effect was completely blocked by tetrodotoxin or by the absence of external Na+. Also, both toxins increased Na+ permeability in isolated nerve terminals. Besides the observation that toxin II-9 is active on synaptosomes, the effect of toxin II-10 in this preparation is opposite to that observed in the squid axon. Thus, our results reflect functional differences between the populations of Na+ channels in mouse brain synaptosomes and in the squid axon. The release of GABA evoked by these toxins from synaptosomes required external Ca2+ and was blocked by Ca2+ channel blockers (verapamil and Co2+). This latter observation is in sharp contrast to the releasing action of veratrine, which evoked release even in the absence of external Ca2+. Furthermore, the action of both C. noxius toxins was potentiated by veratrine, a result suggesting they have different mechanisms of action. Among drugs that release neurotransmitters by increasing Na+ permeability, it is noteworthy that scorpion toxins are the only ones yet reported to have a strict requirement for external Ca2+.  相似文献   

4.
Intracranial microdialysis was used to investigate the origin of extracellular gamma-aminobutyric acid (GABA) in the ventral pallidum. Changes in basal GABA levels in response to membrane depolarizers, ion-channel blockers, and receptor agonists were determined. Antagonism of Ca2+ fluxes with high Mg2+ in a Ca(2+)-free perfusion buffer decreased GABA levels by up to 30%. Inhibition of voltage-dependent Na+ channels by the addition of tetrodotoxin also significantly decreased basal extracellular GABA concentrations by up to 45%, and blockade of Ca2+ and Na+ channels with verapamil reduced extracellular GABA by as much as 30%. The addition of either the GABAA agonist, muscimol, or the GABAB agonist, baclofen, produced a 40% reduction in extracellular GABA. GABA release was stimulated by high K+ and the addition of veratridine to increase Na+ influx. High K(+)-induced release was predominantly Ca(2+)-dependent, whereas the effect of veratridine was potentiated in the absence of extracellular Ca2+. Both high K(+)- and veratridine-induced elevations in extracellular GABA were inhibited by baclofen, whereas only veratridine-induced release was antagonized by muscimol. These results demonstrate that at least 50% of basal extracellular GABA in the ventral pallidum is derived from Ca(2+)- or Na(+)-dependent mechanisms. They also suggest that Na(+)-dependent release of GABA via reversal of the uptake carrier can be shown in vivo.  相似文献   

5.
The dependence of gamma-aminobutyric acid (GABA) and acetylcholine (ACh) release on Ca2+ was comparatively studied in synaptosomes from mouse brain, by correlating the influx of 45Ca2+ with the release of the transmitters. It was observed that exposure of synaptosomes to a Na+-free medium notably increases Ca2+ entry, and this condition was used, in addition to K+ depolarization and the Ca2+ ionophore A23187, to stimulate the influx of Ca2+ and the release of labeled GABA and ACh. The effect of ruthenium red (RuR) on these parameters was also investigated. Of the three experimental conditions used, the absence of Na+ in the medium proved to be the most efficient in increasing Ca2+ entry. RuR inhibited by 60-70% the influx of Ca2+ stimulated by K+ depolarization but did not affect its basal influx or its influx stimulated by the absence of Na+ or by A23187. The release of ACh was stimulated by K+ depolarization, absence of Na+ in the medium, and A23187 in a strictly Ca2+-dependent manner, whereas the release of GABA was only partially dependent on the presence of Ca2+ in the medium. The extent of stimulation of ACh release was related to the extent of Ca2+ entry, whereas no such correlation was observed for GABA. In the presence of Na+, RuR did not affect the release of the transmitters induced by A23187. In the absence of Na+, paradoxically RuR notably enhanced the release of both ACh and GABA induced by A23187, in a Ca2+-dependent manner.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Purified adrenomedullary plasma membranes contain two high-affinity binding sites for 125I-omega-conotoxin, with KD values of 7.4 and 364 pM and Bmax values of 237 and 1,222 fmol/mg of protein, respectively. Dissociation kinetics showed a biphasic component and a high stability of the toxin-receptor complex, with a t1/2 of 81.6 h for the slow dissociation component. Unlabeled omega-conotoxin inhibited the binding of the radioiodinated toxin, adjusting to a two-site model with Ki1 of 6.8 and Ki2 of 653 pM. Specific binding was not affected by Ca2+ channel blockers or activators, cholinoceptor antagonists, adrenoceptor blockers, Na+ channel activators, dopaminoceptor blockers, or Na+/H+ antiport blockers, but divalent cations (Ca2+, Sr2+, and Ba2+) inhibited the toxin binding in a concentration-dependent manner. The binding of the dihydropyridine [3H]nitrendipine defined a single specific binding site with a KD of 490 pM and a Bmax of 129 fmol/mg of protein. At 0.25 microM, omega-conotoxin was not able to block depolarization-evoked Ca2+ uptake into cultured bovine adrenal chromaffin cells depolarized with 59 mM K+ for 30 s, whereas under the same conditions, 1 microM nitrendipine inhibited uptake by approximately 60%. When cells were hyperpolarized with 1.2 mM K+ for 5 min and then Ca2+ uptake was subsequently measured during additions of 59 mM K+. Omega-conotoxin partially inhibited Ca2+ uptake in a concentration-dependent manner. These results suggest that two different types of Ca2+ channels might be present in chromaffin cells. However, the molecular identity of omega-conotoxin binding sites remains to be determined.  相似文献   

7.
The effect of EGTA on the release of labeled gamma-aminobutyric acid (GABA), glutamate, acetylcholine, and dopamine was studied in superfused synaptosomes from mouse brain. In the absence of both Ca2+ and Mg2+, EGTA and also EDTA at 50 microM or higher concentrations induced a 2.5-5-fold stimulation of [3H]GABA release, similar to that produced by potassium depolarization, whereas only a slight effect, or no effect at all, was observed on the release of the other transmitters studied. The GABA-releasing action of EGTA was practically abolished in the presence of Mg2+. In contrast, the effect of EDTA was also observed when the medium contained Mg2+. Studies on the ionic dependence showed that the stimulation of GABA release by EGTA was abolished in a Na+-free medium. Li+ did not substitute Na+ for the EGTA effect, which was also independent of chloride. This Na+ dependence does not seem to involve voltage-sensitive channels, since tetrodotoxin did not affect the GABA-releasing action of EGTA, whereas in parallel superfusion chambers it blocked over 80% the stimulation of GABA release by veratridine. In contrast, two calcium channel blockers in synaptosomes, La3+ and the cationic dye ruthenium red, greatly inhibited the GABA-releasing effect of EGTA. L-2,4-Diaminobutyric acid, an inhibitor of the Na+-dependent GABA carrier, did not affect the releasing action of EGTA, whereas in a parallel experiment this drug inhibited by more than 90% the exchange of labeled GABA with unlabeled GABA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Calcium and olfactory transduction   总被引:1,自引:0,他引:1  
1. Inorganic cations, organic calcium antagonists, and calmodulin antagonists were applied to olfactory epithelia of frogs (Rana pipiens) while recording electroolfactogram (EOG) responses. 2. Inorganic cations inhibited EOGs in a rank order, reflecting their calcium channel blocking potency: La3+ greater than Zn2+ greater than Cd2+ greater than Al3+ greater than Ca2+ greater than Sr2+ greater than Co2+ greater than Ba2+ greater than Mg2+. Barium ion significantly enhanced EOGs immediately following application. 3. Diltiazem and verapamil produced dose-dependent EOG inhibition. 4. Calmodulin antagonists inhibited EOGs without correlation to their anti-calmodulin potency.  相似文献   

9.
The release of [3H]GABA evoked by depolarization with various concentrations of KCl was studied using superfused rat cerebrocortex synaptosomes. Elevating [K+] produced release of [3H]GABA over basal which was increasingly less dependent on external Ca2+ but more sensitive to the GABA transporter blocker SKF 100330 A. Accordingly, the sensitivity to clostridial toxins of the depolarization-evoked amino acid release was inversely correlated to the concentration of KCl used. However, at 50 mM K+, one-third of the stimulated release remained which was external Ca2+-independent but insensitive to SKF 100330 A. This release was prevented by BAPTA, thapsigargin or dantrolene; it also was inhibited by blocking in mitochondria the ATP production with oligomycin, the H+-dependent Ca2+ uniporter with RU 360, the Na+/Ca2+ exchanger with CGP 37157 or by lowering extraterminal [Na+]. In fluorescence experiments with fura-2/AM, 50 mM K+ (in Ca2+ free medium) caused elevation of cytosolic [Ca2+] that was sensitive to thapsigargin or CGP 37157; these compounds produced partially additive effects. When exocytosis was monitored with the fluorescent dye acridine orange, the fluorescence elicited by 50 mM K+ was sensitive to thapsigargin or CGP 37157, which produced additive effects, and to low-Na+ media. To conclude, extracellular K+ concentrations occurring in the CNS in certain pathological conditions provoke GABA release by mechanisms different from classical exocytosis. These include carrier-mediated release and internal Ca2+-dependent exocytosis; in the latter, mitochondrial Ca2+ seems to play a primary role.  相似文献   

10.
The relative contribution of Ca2+ and Na+ channels to the mechanism underlying the action of the dihydropiridines (DHPs), nimodipine, nitrendipine and nifedipine was investigated in rat striatum synaptosomes. The rise in internal Ca2+ (Ca(i), as determined with fura-2) induced by high K+ was unchanged by the DHPs, which like tetrodotoxin (TTX) inhibited both the rise in internal Na+ (Na(i), as determined with the Na+ selective indicator dye, SBFI) and the rise in Ca(i) induced by veratridine. Nimodipine and nitrendipine were much more potent than nifedipine. Oppositely to TTX and to the DHPs, the P/Q type Ca2+ channel blocker, omega-agatoxin IVA did not inhibit the rise in Ca(i) induced by veratridine, but inhibited the rise in Ca(i) induced by high K+. Veratridine-evoked release of dopamine, GABA, Glu, and Asp (detected by HPLC) was inhibited by nimodipine, nitrendipine, and TTX, while high K+-evoked release was unchanged by the DHPs or TTX. It is concluded that the reduction in presynaptic Na+ channel permeability might contribute to the cerebral effects of DHPs.  相似文献   

11.
The adhesion and internalization of Chlamydia trachomatis by HeLa cells was unaffected by removal of K+, Mg2+, or glucose from the incubation medium, slightly reduced by removal of Na+, and significantly reduced by omission of Ca2+, Sr2+, Mg2+, and Mn2+ could replace Ca2+ in the adhesion but only Sr2+ supported internalization, and La3+, Co2+, Fe3+, Ba2+, and Zn2+ all reduced internalization more than adhesion. During initial infection there was no measurable difference in the uptake or release of 45Ca2+ or 86Rb+ between infected and noninfected HeLa monolayers. Infection was not prevented by pretreatment of the monolayers with the calcium channel blockers, verapamil, D600, and nitrendipine, or the calmodulin inhibitors, TMB-8 or trifluperazine. The results suggest that divalent cations are not essential for chlamydial infection but that the process of internalization is facilitated by the presence of cations, particularly Na+ and Ca2+.  相似文献   

12.
Pathways for Ca2+ efflux in heart and liver mitochondria.   总被引:1,自引:0,他引:1       下载免费PDF全文
1. Two processes of Ruthenium Red-insensitive Ca2+ efflux exist in liver and in heart mitochondria: one Na+-independent, and another Na+-dependent. The processes attain maximal rates of 1.4 and 3.0 nmol of Ca2+.min-1.mg-1 for the Na+-dependent and 1.2 and 2.0 nmol of Ca2+.min-1.mg-1 for the Na+-independent, in liver and heart mitochondria, respectively. 2. The Na+-dependent pathway is inhibited, both in heart and in liver mitochondria, by the Ca2+ antagonist diltiazem with a Ki of 4 microM. The Na+-independent pathway is inhibited by diltiazem with a Ki of 250 microM in liver mitochondria, while it behaves as almost insensitive to diltiazem in heart mitochondria. 3. Stretching of the mitochondrial inner membrane in hypo-osmotic media results in activation of the Na+-independent pathway both in liver and in heart mitochondria. 4. Both in heart and liver mitochondria the Na+-independent pathway is insensitive to variations of medium pH around physiological values, while the Na+-dependent pathway is markedly stimulated parallel with acidification of the medium. The pH-activated, Na+-dependent pathway maintains the diltiazem sensitivity. 5. In heart mitochondria, the Na+-dependent pathway is non-competitively inhibited by Mg2+ with a Ki of 0.27 mM, while the Na+-independent pathway is less affected; similarly, in liver mitochondria Mg2+ inhibits the Na+-dependent pathway more than it does the Na+-independent pathway. In the presence of physiological concentrations of Na+, Ca2+ and Mg2+, the Na+-independent and the Na+-dependent pathways operate at rates, respectively, of 0.5 and 1.0 nmol of Ca2+.min-1.mg-1 in heart mitochondria and 0.9 and 0.2 nmol of Ca2+.min-1.mg-1 in liver mitochondria. It is concluded that both heart and liver mitochondria possess two independent pathways for Ca2+ efflux operating at comparable rates.  相似文献   

13.
Using a Ca2+-selective electrode and Quin 2 and chlortetracycline fluorescence spectra, a comparative study of caffeine- and Ca2+-induced release of Ca2+ from the terminal cisterns of rabbit fast skeletal muscle sarcoplasmic reticulum was carried out. It was shown that the caffeine-induced release of Ca2+ depends on Ca2+ and Mg2+ concentration in the medium; Mg2+ inhibit, while Ca2+ stimulate this process. The caffeine-induced transport of Ca2+ is blocked by ruthenium red, tetracaine and dimethylsulfoxide. The Ca2+ release induced by Ca2+ was shown to occur in two ways, i. e., via Mg2+-dependent (inhibited by Mg2+ and caffeine blockers) and Mg2+-independent (insensitive to caffeine inhibitors, including Mg2+) routes. It was assumed that caffeine stimulates the Mg2+-dependent, Ca2+-induced release of Ca2+. The sensitivity of Ca2+ transport to caffeine testifies to the fact that about 80% of the total Ca2+ transport activity of fast skeletal muscle homogenates belongs to terminal cisterns. The total amount of sarcoplasmic reticulum membranes in the muscle makes up to 15-20 mg of protein/g of tissue.  相似文献   

14.
Histamine stimulates catecholamine release and tyrosine hydroxylase activity in a Ca(2+)-dependent manner in bovine adrenal chromaffin cells. The role of voltage-sensitive Ca2+ channels in these two responses has been investigated. Using an EC50 concentration of histamine, 1 microM, catecholamine release was enhanced by (+/-)BayK8644, and partially inhibited by nitrendipine and omega-agatoxin IVA, blockers of L- and P/Q-type Ca2+ channels. omega-Conotoxin GVIA gave small and variable inhibitory effects. With a maximal histamine concentration, 10 microM, similar results were obtained except that now omega-conotoxin GVIA reliably reduced release. In contrast, neither (+/-)BayK8644 nor any of the individual Ca2+ channel antagonists had any significant effect on tyrosine hydroxylase (TOH) activation induced by either an EC50 or a maximal concentration of histamine. When high concentrations of nitrendipine, omega-conotoxin GVIA and omega-agatoxin IVA were combined with omega-conotoxin MVIIC (a non-selective blocker of N, P and Q channels) to block voltage-sensitive Ca2+ channels in these cells, release induced by K+ depolarization was completely blocked. Release caused by histamine, however, was substantially reduced but not abolished. The combination of antagonists also only partially inhibited TOH activation by histamine. The results show that the G protein-coupled receptor agonist histamine activates several different types of voltage-sensitive Ca2+ channels in chromaffin cells to mediate its cellular effects. Histamine may also activate additional pathways for Ca2+ entry. The results also suggest that the manner by which Ca2+ controls release and TOH activation once it has entered chromaffin cells through these channels are different.  相似文献   

15.
The potent marine toxin, maitotoxin, induced the release of gamma-[3H]aminobutyric acid (GABA) from reaggregate cultures of striatal neurons in a dose-dependent manner. Maitotoxin-induced release occurred following a lag period of several minutes and was persistent. Release induced by 70 mM K+ on the other hand was immediate and transient in nature. Co2+ (3 mM) and Cd2+ (1 mM) inhibited maitotoxin-induced release of GABA as did removal of extracellular Ca2+. However, the organic calcium antagonists nisoldipine, nitrendipine, and D-600 at concentrations of 10(-6) M did not block maitotoxin-induced or 70 mM K+-induced release. High concentrations of D-600 (10(-4) M) partially blocked both maitotoxin- and 70 mM K+-induced release. The dihydropyridine calcium agonist BAY K8644 (10(-6) M) did not enhance maitotoxin-induced or 70 mM K+-induced release. Replacement of Na+ in the incubation medium with choline led to an increased basal output of GABA and an apparent inhibition of the effect of maitotoxin. These data are discussed with reference to the hypothesis that maitotoxin can directly activate voltage-sensitive calcium channels.  相似文献   

16.
The effects of maitotoxin (MTX) on endogenous amino acid release were tested on highly purified striatal neurons differentiated in primary culture. MTX induced a large and concentration-dependent release of gamma-aminobutyric acid (GABA). This effect was abolished when experiments were performed in the absence of external Ca2+, and restored when Ca2+ ions were added after removing the MTX-containing Ca2+-free solution. MTX-induced amino acid release was not affected by 1 microM nifedipine and only slightly inhibited by 1 mM Co2+. MTX also induced a massive accumulation of 45Ca2+ in the neurons which, in contrast to the MTX-evoked GABA release, was totally blocked in the presence of 1 mM Co2+. Whereas 500 nM tetrodotoxin was without significant effect, MTX-evoked GABA release was dependent on the presence of external Na+ and sensitive to nipecotic acid, a GABA uptake inhibitor. It is concluded that, on striatal neurons, MTX induced Na+ influx only in the presence of external Ca2+. The increase in cytoplasmic Na+ ions then triggers the release of GABA.  相似文献   

17.
Plasma membrane vesicles from a glucose-responsive insulinoma exhibited properties consistent with the presence of a membrane Na+/Ca2+ exchange. The exchange was rapid, reversible, and was dependent on the external Ca2+ concentration (Km = 4.1 +/- 1.1 microM). External Na+ inhibited the uptake in a dose-dependent manner (IC50 = 15 mM). Dissipation of the Na+ gradient by 10 microM monensin decreased Na+/Ca2+ exchange from 0.74 +/- 0.17 nmoles/mg protein/s to 0.11 +/- 0.05 nmoles/mg protein/s. Exchange was not influenced by veratridine, tetrodotoxin and ouabain, or by modifiers of cAMP. No effect was seen using the calcium channel blockers, nitrendipine or nifedipine. Glucose had no direct effect on Na+/Ca2+ exchange, while glyceraldehyde, glyceraldehyde-3-phosphate and dihydroxyacetone inhibited the exchange. Na+ induced efflux of calcium was seen in Ca2+ loaded vesicles and was half maximal at [Na+] of 11.1 +/- 0.75 mM. Ca2+ efflux was dependent on [Na+], with a Hill coefficient of 2.7 +/- 0.07 indicating that activation of Ca2+ release involves a minimum of three sites. The electrogenicity of this exchange was demonstrated using the lipophilic cation tetraphenylphosphonium [( 3H]-TPP), a membrane potential sensitive probe. [3H]-TPP uptake increased transiently during Na+/Ca2+ exchange indicating that the exchange generated a membrane potential. These results show that Na+/Ca2+ exchange operates in the beta cell and may be an important regulator of intracellular free Ca2+ concentrations.  相似文献   

18.
Using a Ca2+-selective electrode and Quin 2 and chlortetracycline fluorescence, a Ca2+ release from terminal cysterns of skeletal muscle sarcoplasmic reticulum under effects of heparin, caffeine and Ca2+ has been studied. It was shown that Ca2+ release induced by heparin is insensitive to the blockers of Mg2+-dependent system of Ca2+-induced Ca2+ release, i.e., Mg2+, tetracaine and dimethylsulfoxide. Preliminary release of Ca2+ in the presence of caffeine, which activates Mg2+-dependent Ca2+ release, does not prevent the heparin-induced Ca2+ release. At the same time, after Ca2+ release caused by Ca2+ in a Mg2+-independent system, heparin cannot cause additional efflux of Ca2+. It has been shown that the heparin-induced release of Ca2+ diminishes with a decrease in a decrease in Ca2+ concentration. This effect is less pronounced in the presence of Na+ than with K+. The data obtained suggest that sarcoplasmic reticulum terminal cysterns contain two systems of Ca2+-induced release of Ca2+, i.e., a Mg2+-dependent, caffeine-sensitive and a Mg2+-independent heparin-sensitive ones. The mechanism of activation of both systems by caffeine and heparin consists, in all probability, in their increased affinity for Ca2+.  相似文献   

19.
The properties of interaction of the Ca2+ channel antagonist [3H]nitrendipine have been investigated in chick hearts at various stages of in ovo and post-natal development and in cultured cells. The dissociation constant of the [3H]nitrendipine-receptor complex is between 0.4 nM and 0.5 nM for intact ventricle and cultured cells. [3H]Nitrendipine binding is antagonized by nitrendipine analogs. The order of efficacy of the different dihydropyridine molecules is nitrendipine greater than nimodipine greater than nifedipine greater than nisoldipine with Kd values ranging from 0.5 to 4 nM. Inhibition of [3H]nitrendipine binding by other antiarrhythmic molecules like amiodarone, F13004 and bepridil was observed. Half-maximum inhibitions (K0.5) were found for verapamil and D600 at concentrations between 0.23 and 0.26 microM. The potency of organic Ca2+ blockers to depress by 50% the maximum amplitude of spontaneous beating of heart cells is closely related to K0.5 values obtained from [3H]nitrendipine binding experiments. Electrophysiological results indicate that the slow channel is insensitive to nitrendipine at the younger stage of development (3-day-old) whereas, in adult like cells, nitrendipine (50 nM) abolished both slow action potential due to the slow Ca2+ channel and contraction. The maximum binding capacity for [3H]nitrendipine is found to increase during development of the embryonic heart from 40 fmol/mg protein at day 3 to 100 fmol/mg protein at day 14, to stay relatively stable until day 18. Then the number of sites increases rapidly to reach a second plateau at 210 fmol/mg protein on day 4 after hatching. Treatment with 6-hydroxydopamine results in 35% increase in [3H]nitrendipine binding, whereas reserpine treatment is without effect. Developmental properties of nitrendipine-sensitive Ca2+ channels have been compared with those of tetrodotoxin-sensitive Na+ channels and muscarinic receptors. These results indicate that nitrendipine receptors exist at the early stage of development (3-day-old-hearts) but that they do not correspond to functional slow Ca2+ channels, that in ovo development corresponds both to an increase of the number of [3H]nitrendipine receptors and to the transformation of silent Ca2+ channels into functional Ca2+ channels, and that there is a regulation of the level nitrendipine-sensitive Ca2+ channels by innervation.  相似文献   

20.
Embryonic cells transiently express an embryonic muscarinic system during morphogenesis. Stimulation of the embryonic muscarinic receptor results in biphasic intracellular Ca2+ mobilization: an initial "peak" due to Ca2+ release from intracellular stores is followed by a sustained "plateau" of enhanced cytoplasmic Ca2+ due to influx of extracellular Ca2+. In the present investigation, we characterized the Ca2+ influx by measuring the cytoplasmic free Ca2+ concentration [Ca2+]i using the Ca2+ indicator fura-2: 1. The increase of [Ca2+]i during the plateau depended linearly on the logarithm of the extracellular calcium concentration whereas the initial peak was almost independent from extracellular calcium. 2. The organic Ca2+ entry blockers verapamil, gallopamil, nifedipine, nitrendipine and the inorganic blockers Mn2+, Mg2+ and La3+ were without effect on both phases of Ca2+ mobilization. Only Ni2+ at concentrations above 1 mM was able to reduce the influx without affecting the intracellular Ca2+ release. 3. Substitution of extracellular Na+ by guanidine+, choline+ or tris+ and membrane depolarisation by increasing the extracellular K+ concentration had no effect on either phase of Ca2+ mobilization. We conclude that a non-voltage dependent, receptor-operated influx mechanism, probably a "second messenger operated Ca2+ channel", is responsible for the Ca2+ influx after stimulation of the embryonic muscarinic receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号