首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Calcium-dependent protease activity was found associated with a neurofilament-enriched cytoskeleton isolated from the bovine spinal cord. The protease was extracted from the cytoskeleton by 0.6 M KCl, and purified to apparent homogeneity (3300-fold) by chromatography on organomercurial-Sepharose 4B, casein-Sepharose 4B, and Sepharose CL-6B. A cytosolic calcium-dependent protease was similarly purified from the bovine spinal cord, after the cytosol was fractionated on DEAE-cellulose. Both cytoskeleton-bound and cytosolic enzymes had an apparent molecular mass of 100 kDa as judged by gel filtration, and consisted of two subunits (79 kDa and 20 kDa) upon sodium dodecyl sulfate/polyacrylamide gel electrophoresis. Both enzymes exhibited caseinolytic activity with 0.5 mM Ca2+ and above, and the activity was strongly inhibited by various thiol protease inhibitors. In the presence of 0.1-0.2 mM Ca2+, the 68-kDa and 160-kDa components, and to a lesser extent the 200-kDa component, of the neurofilament triplet polypeptides were degraded by the cytosolic protease, whereas the cytoskeleton-bound protease needed two-fold higher concentration of Ca2+ to degrade the neurofilaments. Nevertheless, the cytoskeleton-bound protease in situ, i.e. before its extraction form the cytoskeleton by 0.6 M KCl, preferentially degraded the 160-kDa component in the presence of 0.1-0.2 mM Ca2+, suggesting that a proper locational relation of this enzyme to the neurofilament structure is a prerequisite to its preference for the 160-kDa component. It appears that a factor or factors involved in such an interaction between the protease and the neurofilament were eliminated during the course of enzyme purification. The glial fibrillary acidic protein was almost insensitive to the proteases purified in the present study.  相似文献   

3.
A proteolytic activity was identified in Dugesia tigrina planaria using the chromogenic substrate Phe-Ala-Ala-Phe (4-NO2)-Phe-Val-Leu-O4MP. The activity of the enzyme increased four times during the regeneration and presented a maximum at 120 hr being higher in tail than head regenerating segments. The protease that displays this activity was purified from worms by a single step on pepstatin-agarose followed by gel-filtration high performance liquid chromatography. The purification resulted in a 34-fold increase in specific activity and the final yield was 10%. The active D. tigrina hydrolase appears to be a dimeric protein composed of identical subunits with 34 kDa associated by disulphide bridges similar to vertebrate cathepsin D. By SDS-PAGE several bands were detected but upon gel filtration HPLC one proteolytically active component, termed Asp-68, was detected and isolated. The maximal activity was observed in a range between pH 3.5-5.0 and the enzyme became inactivated at a pH value above 7.2. The purified enzyme was not inhibited by inhibitors from serine (aprotinin, TPCK, PMSF and TLCK), metallo (EDTA) and cysteine proteinase (E-64) classes. In contrast, inhibitors such as pepstatin, EPNP, and 4-beta-PMA efficiently inhibited the activity of the 68-kDa protease.  相似文献   

4.
An immunoaffinity column was used for the purification of alpha-mannosidase from human placenta. The enzyme was purified to homogeneity by extraction in the presence of various protease inhibitors, immunoaffinity chromatography, Ultrogel AcA-34 gel filtration and hydroxyapatite chromatography. Two subunits were identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Their molecular weights were 65 kDa and 27 kDa. Heterogeneity of the molecular weight of the large subunit was not observed in our preparation. This method is relatively simple and rapid for obtaining the purified enzyme which is structurally not modified during purification procedures.  相似文献   

5.
An N-ethylmaleimide-sensitive ATPase was purified 100-fold from chromaffin granule membranes. The purification procedure included solubilization with polyoxyethylene 9 lauryl ether, chromatography on hydroxylapatite and DEAE-cellulose columns, and glycerol gradient centrifugations. Inclusion of phosphatidylserine and a mixture of protease inhibitors during the purification procedure was necessary to maintain the activity of the preparation. The purified preparation contained four major polypeptides with molecular masses of about 115, 72, 57, and 39 kDa, which were copurified with the ATPase activity. The 115-kDa subunit binds [14C]dicyclohexylcarbodiimide and the subunits of 115 and 39 kDa bind [14C]N-ethylmaleimide. The ATP-dependent proton uptake activity of chromaffin granule membranes is inhibited 50% with about 20 microM N-ethylmaleimide, while over 5 mM concentrations of the inhibitor were required to block the ATPase activity of the membranes. The ATPase activity of the purified enzyme was inhibited via two different affinities: a high affinity site with a Ki in the microM range and a low affinity site in the mM range, each contributing to about 50% inhibition of the enzyme. It is concluded that the proton-ATPase of chromaffin granule membranes contains at least four subunits with the 115-kDa polypeptide being the main subunit having the active site for the ATPase activity of the enzyme.  相似文献   

6.
A new, rapid method for purification of inositol(1,4,5)P3 3-kinase in high yield from rat brain is described. Purified enzyme exhibited a polypeptide of Mr = 53,000 on sodium dodecyl sulfate-polyacrylamide gel and a specific activity of 29 mumol/min/mg at 37 degrees C in the absence of calmodulin. Inclusion of calpain inhibitors was critical for obtaining the 53-kDa protein as the major product and 0.1% of the zwitterionic detergent, 3-[(3-cholamidopropyl)dimethylamino]-2-propanesulfonate, was necessary to stabilize enzyme activity. In the absence of calpain inhibitors, the 53-kDa protein degraded progressively during purification and yielded a mixture containing polypeptides of various sizes. Relative intensity of these degradation products on sodium dodecyl sulfate-polyacrylamide gel varied from one preparation to another. However, broad band(s) at the 42-45 kDa region and a band at 35 kDa were always weak, while bands of 53, 51, 40 (sometimes doublets), 33, and 32 KDa were usually strong. The fact that all of these polypeptides including the weak bands of 42-45 and 35 kDa were derived from the 53 kDa form was confirmed by their immunocross-reactivity with monoclonal antibodies to the 53 kDa form. When the 51, 40, and a mixture of the 33 and 32 kDa forms were obtained separately and nearly free from other forms, each of them exhibited catalytic activity. Nevertheless, calmodulin binds to polypeptides larger than 35,000 but not to the 33 and 32 kDa forms. Incubation of the purified 53 kDa form with calpain generated a fragmentation pattern nearly identical to that generated during purification in the absence of calpain inhibitors. Incubation with five other endoproteases produced proteolytic fragments slightly different from those by calpain. However, the general fragmentation patterns generated by the proteases were similar, suggesting that inositol(1,4,5)P3 3-kinase contains several motifs susceptible to a variety of proteases.  相似文献   

7.
Lysosomal beta-mannosidase (EC 3.2.11.25) has a functional size of 120-150 kDa, but the enzyme purified from guinea pig liver (GPL) reportedly gave a single band corresponding to a molecular mass of 110 kDa. In order to investigate the subunit structure and tissue-specific expression of beta-mannosidase, we prepared a polyclonal antibody against GPL beta-mannosidase in rabbits which immunoprecipitated beta-mannosidase activity, free from other lysosomal hydrolase activity. Following storage at -20 degrees C and SDS polyacrylamide gel electrophoresis in the presence of 2-mercaptoethanol, a sample of purified GPL beta-mannosidase gave a major Coomassie blue staining band at 97 kDa. This was confirmed by Western blot analysis, which also revealed a faster moving 37 kDa protein. In contrast, Western blot analysis of fresh GPL homogenate prepared in the presence of proteinase inhibitors showed a major band at 150 kDa. Upon freezing and thawing, we observed immunoreactive bands at 120 and 20 kDa and finally, immunoreactive bands at 97, 37 and 20 kDa. The formation of the 97, 37 and 20 kDa forms from the 150 kDa species was accelerated by an n-butanol/ether extraction of the associated lipids, suggesting some tight hydrophobic association of these subunits. In contrast to liver, both fresh and freeze-thawed preparations of guinea pig kidney (GPK) yielded only the 97, 37 and 20 kDa subunit forms confirming that these are the major beta-mannosidase subunits. Endo-F treatment converted both the liver and kidney 97 kDa into a 91 kDa form and the 37 kDa form into a 35 kDa form, whereas the 20 kDa form was unaffected. Total beta-mannosidase activity, as measured with the synthetic substrate 4MU-beta-mannoside was unaffected by dissociation of the 150 form into the 97, 37 and 20 kDa subunits, suggesting that these are the functional forms of the enzyme rather than proteolytic degradation products.  相似文献   

8.
B J Chen  D Wang  A I Yuan  R D Feinman 《Biochemistry》1992,31(37):8960-8966
alpha 2-Macroglobulin (alpha 2M) forms several different covalent complexes with proteases. These include unusual forms in which more than one of the four identical subunits of alpha 2M are cross-linked by amide bonds to more than one lysyl amino group of the bound protease. The structure of these complexes and the question of how the identical subunits are arranged to form two protease binding sites are matters of current controversy. The 185-kDa subunits are arranged into two disulfide-bonded half-molecules which are, in turn, noncovalently associated. We have provided evidence that, in the major multivalent cross-linked form, proteases can span the two half-molecules, forming a covalently bonded tetramer [Wang, D., Yuan, A. I., & Feinman, R. D. (1984) Biochemistry 23, 2807-2811]. An alternative theory has recently been proposed in which the major high molecular weight form has two bonds to protease that are within half-molecules--a multivalent cross-linked dimer [Sottrup-Jensen, L., Hansen, H. F., Pedersen, H. S., & Kristensen, L. (1990) J. Biol. Chem. 265, 17727-17737]. To resolve this conflict, experiments were carried out to determine the structure of one of the high molecular weight bands (band 3) seen on SDS-PAGE. Band 3 has anomalous migration, corresponding to markers of apparent molecular mass of 550 kDa (between the tetramer and dimer). In the experiments described here, reactions of thrombin with alpha 2M were run in the presence of methylamine, which competes for one of the two thrombin-alpha 2M covalent bonds.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Isolation and characterization of acetylcholinesterase from Drosophila   总被引:9,自引:0,他引:9  
The purification and characterization of acetylcholinesterase from heads of the fruit fly Drosophila are described. Sequential extraction procedures indicated that approximately 40% of the activity was soluble and 60% membrane-bound and that virtually none (less than 4%) corresponded to collagen-tailed forms. The membrane-bound enzyme was extracted with Triton X-100 and purified over 4000-fold by affinity chromatography on acridinium resin. Hydrodynamic analysis by both sucrose gradient centrifugation and chromatography on Sepharose CL-4B revealed an Mr of 165,000 similar to that observed for dimeric (G2) forms of the enzyme in mammalian tissues. In contrast, the purified enzyme gave predominant bands of about 100 kDa prior to disulfied reduction and 55 kDa after reduction on polyacrylamide gel electrophoresis in sodium dodecyl sulfate, values that are significantly lower than those reported for purified G2 enzymes from other species. However, the presence of a faint band at 70 kDa which could be labeled by [3H]diisopropyl fluorophosphate prior to denaturation suggested that the 55-kDa band as well as a 16-kDa species arose from proteolysis. This was confirmed by reductive radiomethylation and amine analysis of the 70-, 55-, and 16-kDa bands. All three contained ethanolamine and glucosamine residues that are characteristic of a C-terminal glycolipid anchor in other G2 acetylcholinesterases. The catalytic properties of the enzyme were examined by titration with a fluorogenic reagent which revealed a turnover number for acetylthiocholine that was 6-fold lower than eel and 3-fold lower than human erythrocyte acetylcholinesterase. Furthermore, the Drosophila enzyme hydrolyzed butyrylthiocholine much more efficiently than these eel or human enzymes, an indication that the fly head enzyme has a substrate specificity intermediate between mammalian acetylcholinesterases and butyrylcholinesterases.  相似文献   

10.
The voltage-dependent calcium channel from guinea-pig skeletal muscle T-tubules has been isolated with a rapid, two-step purification procedure. Reversible postlabelling of the channel-linked 1,4-dihydropyridine receptor and stereoselective photolabelling as a novel approach were employed to assess purity. A 135-fold purification to a specific activity of 1311 +/- 194 pmol/mg protein (determined by reversible equilibrium binding with (+)-[3H]PN200-110) was achieved. Three polypeptides of 155 kDa, 65 kDa and 32 kDa were identified in the purified preparation. The 155-kDa band is a glycoprotein. The arylazide photoaffinity probe (-)-[3H]azidopine bound with high affinity to solubilized membranes (Kd = 0.7 +/- 0.2 nM) and highly purified fractions (Kd = 3.1 +/- 2 nM), whereas the optical antipode (+)-azidopine was of much lower affinity. Irradiation of (-)-[3H]azidopine and (+)-[3H]azidopine receptor complexes with ultraviolet light led to preferential incorporation of the (-) enantiomer into the 155-kDa polypeptide in crude solubilized and purified preparations. The pharmacological profile of irreversible labelling of the 155-kDa glycoprotein by (-)-[3H]azidopine is identical to that found in reversible binding experiments. Specific photolabelling of the 155-kDa band by (-)-[3H]azidopine per milligram of protein increases 150-fold upon purification, whereas incorporation into non-specific bands in the crude solubilized material is identical for both, (-) and (+)-[3H]azidopine.  相似文献   

11.
Stearoyl-CoA desaturase (SCD) is an integral membrane protein of the endoplasmic reticulum that is rapidly and selectively degraded when isolated liver microsomes are incubated at 37 degrees C. We previously reported the purification of a 90-kDa microsomal protein with SCD protease activity and characterized the inhibitor sensitivity of the protease. Here we show that the 90-kDa protein is a microsomal form of plasminogen (Pg) and that the purified SCD protease contains a spectrum of plasmin-like derivatives. The 90-kDa protein was identified as Pg by mass spectrometry of its tryptic peptides. The purified SCD protease reacted with Pg antibody, and immunoblotting demonstrated enrichment of Pg by the purification procedure established for the SCD protease. Analysis of microsomes by zymography demonstrated a single band of proteolytic activity at 70-kDa corresponding to the mobility of Pg in nonreduced polyacrylamide gels. When microsomes were incubated at 37 degrees C prior to zymography, an intense band of proteolytic activity developed at 30-kDa. The purified SCD protease displayed a spectrum of proteolytic bands ranging from 70 to 30 kDa. Degradation of SCD by the purified protease and by microsomes was inhibited by bdellin, a plasmin inhibitor from the medicinal leech Hirudo medicinalis. To explore the role of Pg in the degradation of SCD in vivo, we examined SCD expression and degradation in microsomes isolated from Pg-deficient (Pg-/-) mice. Compared with microsomes from wild-type littermate control mice, liver microsomes from Pg-/- mice had significantly higher levels of SCD. Degradation of SCD in microsomes from Pg-/- mice was markedly diminished, whereas liver microsomes from control mice showed rapid SCD degradation similar to that observed in rat liver microsomes. These findings indicate that SCD is degraded by a protease related to Pg and suggest that plasmin moonlights as an intracellular protease.  相似文献   

12.
In recent years, many research on the quantity of lignocellulosic waste have been developed. The production, partial purification, and characterisation of ligninolytic enzymes from various fungi are described in this work. On the 21st day of incubation in Potato Dextrose (PD) broth, Hypsizygus ulmarius developed the most laccase (14.83 × 10−6 IU/ml) and manganese peroxidase (24.11 × 10−6 IU/ml), while Pleurotus florida produced the most lignin peroxidase (19.56 × −6 IU/ml). Laccase (Lac), lignin peroxidase (LiP), and manganese peroxidase (MnP), all generated by selected basidiomycetes mushroom fungi, were largely isolated using ammonium sulphate precipitation followed by dialysis. Laccase, lignin peroxidase, and manganese peroxidase purification findings indicated 1.83, 2.13, and 1.77 fold purity enhancements, respectively. Specific activity of purified laccase enzyme preparations ranged from 305.80 to 376.85 IU/mg, purified lignin peroxidase from 258.51 to 336.95 IU/mg, and purified manganese peroxidase from 253.45 to 529.34 IU/mg. H. ulmarius laccase (376.85 IU/mg) with 1.83 fold purification had the highest specific activity of all the ligninolytic enzymes studied, followed by 2.13 fold purification in lignin peroxidase (350.57 IU/mg) and manganese peroxidase (529.34 IU/mg) with 1.77-fold purification. Three notable bands with molecular weights ranging from 43 to 68 kDa and a single prominent band with a molecular weight of 97.4 kDa were identified on a Native PAGE gel from mycelial proteins of selected mushroom fungus. The SDS PAGE profiles of the mycelial proteins from the selected mushroom fungus were similar to the native PAGE. All three partially purified ligninolytic isozymes display three bands in native gel electrophoresis, with only one prominent band in enzyme activity staining. The 43 kDa, 55 kDa, and 68 kDa protein bands correspond to laccase, lignin peroxidase, and manganese peroxidase, respectively.  相似文献   

13.
Serotonin binding protein (SBP) is a constituent of the synaptic vesicles of serotonergic neurons. Two types of SBP, with molecular masses of 45 kDa and 56 kDa, have been purified. To determine whether there are shared epitopes between the two forms of SBP, we raised and tested for cross-reactivity monoclonal antibodies (MAbs) against each form of SBP. We obtained 12 MAbs, all of which recognize both forms of SBP. Hybridoma clones were produced by fusing P3 X 63Ag8.653 mouse myeloma cells with spleen cells from a mouse that had been immunized with 45-kDa or 56-kDa SBP. Culture supernatants were screened for the presence of anti-SBP antibodies. MAb isotypes were determined by immunodiffusion, using immunoglobulin type-specific antisera. Each antibody to SBP consisted of only a single subclass of immunoglobulin (IgM). We obtained 12 MAbs, each of which interacted with both forms of SBP, as judged by enzyme-linked immunosorbent assay and immunoblot analysis. Ascites fluid to one clone (44-10) was obtained and affinity-purified. In the presence of goat anti-mouse IgM, the partially purified 44-10 antibodies quantitatively immunoprecipitated SBP from crude brain extracts. Immunoblotting revealed two major bands corresponding to 45 kDa and 56 kDa and a minor band corresponding to 68 kDa. MAb 44-10 blocked the binding of [3H]serotonin ([3H]5-HT) to 45-kDa and 56-kDa SBP in a concentration-dependent manner. The 68-kDa protein was found to bind [3H]5-HT. Sites reacting with MAB 44-10 were located immunocytochemically in sections of rat brain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Cysteine proteases are important virulence factors of Entamoeba histolytica, the causative agent of amoebiasis. A novel cysteine protease from parasite extracts was purified 15-fold by a procedure including concanavalin A-Sepharose, hydroxylapatite and DEAE-Sepharose chromatography. The purification resulted in the obtainment of an homogeneous protein with a molecular mass of 66 kDa on native PAGE. In 10% SDS/PAGE, three bands of 60, 54 and 50 kDa were evident. Each of the three specific mouse antisera raised against these proteins showed cross-reactivity with the three bands obtained from the purified eluate. The N-terminal sequencing of the first 10 amino acids from the three proteins showed 100% identity. These results support the hypothesis of a common precursor for the 60, 54 and 50-kDa proteins. Protease activity of the purified enzyme was demonstrated by electrophoresis in a gelatine-acrylamide copolymerized gel. Its activity was quantified by cleaving a synthetic fluorogenic peptide substrate such as N-carbobenzyloxy-arginyl-arginyl-7-amido-4-methylcoumarin. The optimum pH for the protease activity was 6.5; however, enzymatic activity was observed between pH 5 and pH 7.5. Typical of cysteine proteases, the enzyme was inhibited by 4-[(2S, 3S)-carboxyoxiran-2-ylcarbonyl-L-leucylamido]butylg uanidine and iodoacetamide, and activated by free sulfhydryl groups. The cellular location of the enzyme was examined on trophozoites before and after contact with red blood cells using indirect immunofluorescence and cellular fractionation. The 60-kDa cysteine protease translocated to the amoebic surface upon the interaction of trophozoites with red blood cells. This result provided evidence for participation of the 60-kDa protease in erythrophagocytosis.  相似文献   

15.
16.
Cytosolic 5'-nucleotidase from bovine liver has been purified to homogeneity. Two affinity chromatographies on concanavalin A and 5'AMP-Sepharose columns result in a 12,000-fold purification. The sequential elution of glycoproteins from the concanavalin-A-Sepharose column with methyl alpha-D-glucoside and methyl alpha-D-mannoside greatly increases the degree of purification of the enzyme. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate shows two subunits having apparent molecular masses of 65 kDa and 57 kDa respectively, while only one band at 70 kDa is observed in the case of the membrane-bound 5'-nucleotidase. Both the Stokes radii, measured by gel exclusion HPLC, and the sedimentation coefficient, determined by density gradient ultracentrifugation, indicate that the cytosolic enzyme is a heterodimer of about 130 kDa. This contrasts with the membrane-bound 5'-nucleotidase which is a homodimer of 140 kDa. Moreover, the antibodies raised against the membrane 5'-nucleotidase inhibited the cytosolic form indicating that a common antigenic determinant(s) exists between the two isoenzymes. However, structural differences are revealed by immunoblotting. In the same way, the effect of lectins suggests that differences in the structure of the carbohydrate chains exist between the two isoenzymes. The purified cytosolic enzyme has lower affinity for the nucleotides than does the membrane enzyme. In addition, while ADP, [alpha,beta-CH2]ADP and ATP were strong competitive inhibitors of the membrane enzyme, ADP and ATP activate the cytosolic form and [alpha,beta-CH2]ADP has no effect. Moreover, two pH optima at 7.5 and 9.5 are observed in the cytosolic enzyme while only one at 7.5 occurred in the membrane form. Finally the exogenous cations, MgCl2 and MnCl2, are necessary for the maximal activity of the cytosolic but not of the membrane 5'-nucleotidase. All these observations indicate that the two isoenzymes are different.  相似文献   

17.
An antibody to a highly pure enzyme preparation was developed to facilitate detailed studies of rat adipose tissue lipoprotein lipase regulation. Lipoprotein lipase was purified by heparin-Sepharose affinity chromatography followed by preparative isoelectric focusing. The enzyme migrated as a single broad band on SDS disc gel and two-dimensional gel electrophoresis with an apparent molecular mass of 67 000 and 62 000 Da, respectively. The amino acid composition of the purified rat enzyme was virtually identical to that of bovine milk. A major protein component with no lipase activity co-eluted with the enzyme from the affinity column, but was separated by the isoelectric focusing step. The molecular mass was slightly lower (58 000 Da) but the amino acid composition of this protein was similar to that of the enzyme. An antibody raised against the purified rat enzyme was highly potent and was effective in inhibiting rat heart lipoprotein lipase, but not the salt-resistant hepatic lipase. Analysis of crude acetone-ether adipose tissue preparation on SDS slab polyacrylamide gel coupled to Western blotting revealed five protein bands = (62 000, 56 000, 41 700, 22 500, 20 000 Da). Similarly, following affinity purification by immunoadsorption, the purified antibody reacted with five equivalent protein bands. Fluorescent concanavalin A binding data indicated that the 56 kDa band is a glycosylated form of lipoprotein lipase. Pretreatment of adipose tissue with proteinase inhibitors revealed that the lower molecular mass proteins (41 700 and 20 000 Da) were degradation products of lipoprotein lipase, and the 22 500 Da band could be accounted for by non-specific binding.  相似文献   

18.
A pepstatin A-sensitive enzyme involved in yolk formation was purified from the masu salmon (Oncorhynchus masou) ovary using in vitro generation of yolk proteins from purified vitellogenin to assay enzymatic activity. Purification of the enzyme involved precipitation of ovarian extracts by water and ammonium sulfate followed by five steps of column chromatography. After SDS-PAGE and Western blotting, the purified enzyme appeared as a single approximately 42 kDa band that was immunoreactive to anti-human cathepsin D. The course of proteolytic cleavage of the three major yolk proteins (lipovitellin, beta'-component, and phosvitin) in fertilized masu salmon and Sakhalin taimen (Hucho perryi) eggs and embryos was visualized by SDS-PAGE and Western blotting using specific antisera. Major yolk protein bands appeared in positions corresponding to 92 kDa, 68 kDa, and 22 kDa (lipovitellin-derived peptides), as well as 17 kDa (beta'-component). During embryo development, the 92 kDa and 22 kDa bands gradually decreased in intensity, becoming undetectable in alevins. The 68 kDa band and a minor 24 kDa band became more intense after the eyed stage. Two additional peptides, corresponding to 40 and 28 kDa, newly appeared in alevins. During embryonic growth, the beta'-component band (17 kDa) persisted and phosvitin appeared to be progressively dephosphorylated. In vitro analysis of lipovitellin proteolysis indicated that the enzyme involved is a Pefabloc SC-sensitive serine protease. These results demonstrate, for the first time, that a cathepsin D-like protease and serine proteases play key roles in yolk formation and degradation, respectively, in salmonid fishes.  相似文献   

19.
20.
Using specific antibodies against calf thymus DNA ligases I and II (EC 6.5.1.1), we have investigated the polypeptide structures of DNA ligases I and II present in the impure enzyme preparations, and estimated the polypeptides of DNA ligases I and II present in vivo. Immunoblot analysis of DNA ligase I after sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a 130-kDa polypeptide as a major one in the enzyme preparations from calf thymus throughout the purification. In addition to the 130-kDa polypeptide, a 200-kDa polypeptide was detected in the enzyme preparations at the earlier steps of the purification, and a 90-kDa polypeptide was observed as a minor one in the enzyme preparations at the later steps of the purification. The polypeptides with molecular weight of 130 000 and 90 000 were detected by SDS-polyacrylamide gel electrophoresis of DNA ligase I-[3H]AMP complex. These results suggest that a 200-kDa polypeptide of DNA ligase I present in vivo is degraded to a 130-kDa polypeptide and then to a 90-kDa polypeptide during the isolation and purification procedures. On the other hand, the monospecific antibody against calf thymus DNA ligase II cross-reacted with only a 68 kDa polypeptide in the enzyme preparations throughout the purification, suggesting that the 68-kDa polypeptide is a single form of calf thymus DNA ligase II present in vivo as well as in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号