首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soluble royal jelly protein is a candidate factor responsible for mammiferous cell proliferation. Major royal jelly protein 1 (MRJP1), which consists of oligomeric and monomeric forms, is an abundant proliferative protein in royal jelly. We previously reported that MRJP1 oligomer has biochemical heat resistance. Therefore, in the present study, we investigated the effects of several heat treatments (56, 65 and 96°C) on the proliferative activity of MRJP1 oligomer. Heat resistance studies showed that the oligomer molecular forms were slightly maintained until 56℃, but the molecular forms were converted to macromolecular heat-aggregated MRJP1 oligomer at 65℃ and 96℃. But, the growth activity of MRJP1 oligomer treated with 96°C was slightly attenuated when compared to unheated MRJP1 oligomer. On the other hand, the cell proliferation activity was preserved until 96℃ by the cell culture analysis of Jurkat cells. In contrast, those of IEC-6 cells were not preserved even at 56°C. The present observations suggest that the bioactive heat-resistance properties were different by the origin of the cells. The cell proliferation analysis showed that MRJP1 oligomer, but not MRJP2 and MRJP3, significantly increased cell numbers, suggesting that MRJP1 oligomer is the predominant proliferation factor for mammiferous cells.  相似文献   

2.
The honey from chestnut, acacia, sunflower, eucalyptus and orange was analysed for its proteome content, in order to see if any plant proteins present would allow the proteo-typing of these different varieties. Since the total protein content turned out to be minute, 200g of each honey type were diluted to 1L and then added with ProteoMiner to enhance the visibility of the proteinaceous material. All bands visible in the SDS-PAGE profile of each type of honey were eluted, digested and identified by mass spectrometry in a LTQ-XL instrument. It turned out that all proteins identified (except one, the enzyme glyceraldehyde-3-phosphate dehydrogenase from Mesembryanthemum crystallinum) were not of plant origin but belonged to the Apis mellifera proteome. Among the total proteins identified (eight, but only seven as basic constituents of all types of honey) five belonged to the family of major royal jelly proteins 1-5, and were also the most abundant ones in any type of honey, together with α-glucosidase and defensin-1. It thus appears that honey has a proteome resembling the royal jelly proteome (but with considerably fewer species), except that its protein concentration is lower by three to four orders of magnitude as compared to royal jelly. Attempts at identifying additional plant (pollen, nectar) proteins via peptidome analysis were unsuccessful.  相似文献   

3.
Cyclin‐dependent kinases (CDKs), the master regulators of cell division, are activated by different cyclins at different cell cycle stages. In addition to being activators of CDKs, cyclins recognize various linear motifs to target CDK activity to specific proteins. We uncovered a cyclin docking motif, NLxxxL, that contributes to phosphorylation‐dependent degradation of the CDK inhibitor Far1 at the G1/S stage in the yeast Saccharomyces cerevisiae. This motif is recognized exclusively by S‐phase CDK (S‐CDK) Clb5/6‐Cdc28 and is considerably more potent than the conventional RxL docking motif. The NLxxxL and RxL motifs were found to overlap in some target proteins, suggesting that cyclin docking motifs can evolve to switch from one to another for fine‐tuning of cell cycle events. Using time‐lapse fluorescence microscopy, we show how different docking connections temporally control phosphorylation‐driven target degradation. This also revealed a differential function of the phosphoadaptor protein Cks1, as Cks1 docking potentiated degron phosphorylation of RxL‐containing but not of NLxxxL‐containing substrates. The NLxxxL motif was found to govern S‐cyclin‐specificity in multiple yeast CDK targets including Fin1, Lif1, and Slx4, suggesting its wider importance.  相似文献   

4.
蜜蜂蜂王浆主蛋白(MRJPs)的研究进展   总被引:3,自引:0,他引:3  
蜜蜂的蜂王浆主蛋白具有为蜂王和幼虫提供营养、影响蜂群社会行为及调节个体生理机能等作用,作为蜂王浆的主要成分对其他机体也可产生多方面的生物学功能。因此,近年来蜂王浆主蛋白的相关研究备受关注。本文针对蜂王浆主蛋白的发现、种类、功能、系统进化及其基因表达情况进行了系统综述。  相似文献   

5.
Royal jelly contains numerous components, including proteins. Major royal jelly protein (MRJP) 1 is the most abundant protein among the soluble royal jelly proteins. In its physiological state, MRJP 1 exists as a monomer and/or oligomer. This study focuses the molecular characteristics and functions of MRJP 1 oligomer. MRJP 1 oligomer purified using HPLC techniques was subjected to the following analyses. The molecular weight of MRJP 1 oligomer was found to be 290 kDa using blue native‐PAGE. MRJP 1 oligomer was separated into 55 and 5 kDa spots on 2‐D blue native/SDS‐PAGE. The 55 kDa protein was identified as MRJP 1 monomer by proteome analysis, whereas the 5 kDa protein was identified as Apisimin by N‐terminal amino acid sequencing, and this protein may function as a subunit‐joining protein within MRJP 1 oligomer. We also found that the oligomeric form included noncovalent bonds and was stable under heat treatment at 56°C. Furthermore, MRJP 1 oligomer dose dependently enhanced and sustained cell proliferation in the human lymphoid cell line Jurkat. In conclusion, MRJP 1 oligomer is a heat‐resistant protein comprising MRJP 1 monomer and Apisimin, and has cell proliferation activity. These findings will contribute to further studies analyzing the effects of MRJP 1 in humans.  相似文献   

6.
Metabolic fitness of T cells is crucial for immune responses against infections and tumorigenesis. Both the T cell receptor (TCR) signal and environmental cues contribute to the induction of T cell metabolic reprogramming, but the underlying mechanism is incompletely understood. Here, we identified the E3 ubiquitin ligase Peli1 as an important regulator of T cell metabolism and antitumor immunity. Peli1 ablation profoundly promotes tumor rejection, associated with increased tumor‐infiltrating CD4 and CD8 T cells. The Peli1‐deficient T cells display markedly stronger metabolic activities, particularly glycolysis, than wild‐type T cells. Peli1 controls the activation of a metabolic kinase, mTORC1, stimulated by both the TCR signal and growth factors, and this function of Peli1 is mediated through regulation of the mTORC1‐inhibitory proteins, TSC1 and TSC2. Peli1 mediates non‐degradative ubiquitination of TSC1, thereby promoting TSC1‐TSC2 dimerization and TSC2 stabilization. These results establish Peli1 as a novel regulator of mTORC1 and downstream mTORC1‐mediated actions on T cell metabolism and antitumor immunity.  相似文献   

7.
Hypoxia/reoxygenation (H/R)‐induced myocardial cell injury is the main cause of acute myocardial infarction (AMI). Many proofs show that circular RNA plays an important role in the development of AMI. The purpose of this study was to investigate the role of circSAMD4A in H/R‐induced myocardial injury. The levels of circular SAMD4A (circSAMD4A) were detected in the heart tissues of AMI mice and H/R‐induced H9C2 cells, and the circSAMD4A was suppressed in AMI mice and H/R‐induced H9C2 cells to investigate its’ function in AMI. The levels of circSAMD4A and miR‐138‐5p were detected by real‐time quantitative PCR, and MTT assay was used to detect cell viability. TUNEL analysis and Annexin V‐FITC were used to determine apoptosis. The expression of Bcl‐2 and Bax proteins was detected by Western blot. IL‐1β, TNF‐α and IL‐6 were detected by ELISA kits. The study found that the levels of circSAMD4A were up‐regulated after H/R induction and inhibition of circSAMD4A expression would reduce the H/R‐induced apoptosis and inflammation. MiR‐138‐5p was down‐regulated in H/R‐induced H9C2 cells. circSAMD4A was a targeted regulator of miR‐138‐5p. CircSAMD4A inhibited the expression of miR‐138‐5p to promote H/R‐induced myocardial cell injury in vitro and vivo. In conclusion, CircSAMD4A can sponge miR‐138‐5p to promote H/R‐induced apoptosis and inflammatory response.  相似文献   

8.
The outbreak of COVID‐19 has become a serious public health emergency. The virus targets cells by binding the ACE2 receptor. After infection, the virus triggers in some humans an immune storm containing the release of proinflammatory cytokines and chemokines followed by multiple organ failure. Several vaccines are enrolled, but an effective treatment is still missing. Mesenchymal stem cells (MSCs) have shown to secrete immunomodulatory factors that suppress this cytokine storm. Therefore, MSCs have been suggested as a potential treatment option for COVID‐19. We report here that the ACE2 expression is minimal or nonexistent in MSC derived from three different human tissue sources (adipose tissue, umbilical cord Wharton`s jelly and bone marrow). In contrast, TMPRSS2 that is implicated in SARS‐CoV‐2 entry has been detected in all MSC samples. These results are of particular importance for future MSC‐based cell therapies to treat severe cases after COVID‐19 infection.  相似文献   

9.
There is great interest in therapeutically harnessing endogenous regenerative mechanisms to increase the number of β cells in people with diabetes. By performing whole‐genome expression profiling of zebrafish islets, we identified 11 secreted proteins that are upregulated during β‐cell regeneration. We then tested the proteins'' ability to potentiate β‐cell regeneration in zebrafish at supraphysiological levels. One protein, insulin‐like growth factor (Igf) binding‐protein 1 (Igfbp1), potently promoted β‐cell regeneration by potentiating α‐ to β‐cell transdifferentiation. Using various inhibitors and activators of the Igf pathway, we show that Igfbp1 exerts its regenerative effect, at least partly, by inhibiting Igf signaling. Igfbp1''s effect on transdifferentiation appears conserved across species: Treating mouse and human islets with recombinant IGFBP1 in vitro increased the number of cells co‐expressing insulin and glucagon threefold. Moreover, a prospective human study showed that having high IGFBP1 levels reduces the risk of developing type‐2 diabetes by more than 85%. Thus, we identify IGFBP1 as an endogenous promoter of β‐cell regeneration and highlight its clinical importance in diabetes.  相似文献   

10.
This study aimed to investigate if Telmisartan as a novel N‐cadherin antagonist, can overcome cell migration of cancer cells. We investigated the mechanism and influence of Docetaxel and Telmisartan (as an analogous to ADH‐1, which is a well‐known N‐cadherin antagonist) on cancer cells. The effect of ADH‐1 and Telmisartan on cell attachment in PC3, DU145, MDA‐MB‐468 cell lines using recombinant human N‐cadherin was studied. Cell viability assay was performed to examine the anti‐proliferative effects of Telmisartan, ADH‐1 and Docetaxel. Migration was examined via wound healing assay, and apoptosis was determined by flow cytometry. The expression of AKT‐1 as a downstream gene of N‐cadherin signalling pathway was assayed by real‐time PCR. Treatment of PC3, MDA‐MB‐468 and DU145 cells with Telmisartan (0.1 µM) and ADH‐1 (40 µM) resulted in 50%, 58% and approximately 20% reduction in cell attachment to N‐cadherin coated plate respectively. It shows reduction of cell attachment in PC3 and MDA‐MB‐468 cell lines appeared to be more sensitive than that of DU145 cells to the Telmisartan and ADH‐1 treatments. Telmisartan (0.1 µM) and Docetaxel (0.01 nM) significantly reduced cell migration in PC3 and MDA‐MB‐468 cell lines compared with the control group. Using Real‐time PCR, we found that Telmisartan, Docetaxel and ADH‐1 had significant influence on the AKT‐1 mRNA level. The results of the current study for the first time suggest that, Telmisartan, exerts anti‐proliferation and anti‐migration effects by targeting antagonistically N‐cadherin. Also, these data suggest that Telmisartan as a less expensive alternative to ADH‐1 could potentiate Docetaxel anticancer effects.  相似文献   

11.
This study is to investigate the inhibitory effects and mechanisms of DEK‐targeting aptamer (DTA‐64) on epithelial mesenchymaltransition (EMT)‐mediated airway remodelling in mice and human bronchial epithelial cell line BEAS‐2B. In the ovalbumin (OVA)‐induced asthmatic mice, DTA‐64 significantly reduced the infiltration of eosinophils and neutrophils in lung tissue, attenuated the airway resistance and the proliferation of goblet cells. In addition, DTA‐64 reduced collagen deposition, transforming growth factor 1 (TGF‐β1) level in BALF and IgE levels in serum, balanced Th1/Th2/Th17 ratio, and decreased mesenchymal proteins (vimentin and α‐SMA), as well as weekend matrix metalloproteinases (MMP‐2 and MMP‐9) and NF‐κB p65 activity. In the in vitro experiments, we used TGF‐β1 to induce EMT in the human epithelial cell line BEAS‐2B. DEK overexpression (ovDEK) or silencing (shDEK) up‐regulated or down‐regulated TGF‐β1 expression, respectively, on the contrary, TGF‐β1 exposure had no effect on DEK expression. Furthermore, ovDEK and TGF‐β1 synergistically promoted EMT, whereas shDEK significantly reduced mesenchymal markers and increased epithelial markers, thus inhibiting EMT. Additionally, shDEK inhibited key proteins in TGF‐β1‐mediated signalling pathways, including Smad2/3, Smad4, p38 MAPK, ERK1/2, JNK and PI3K/AKT/mTOR. In conclusion, the effects of DTA‐64 against EMT of asthmatic mice and BEAS‐2B might partially be achieved through suppressing TGF‐β1/Smad, MAPK and PI3K signalling pathways. DTA‐64 may be a new therapeutic option for the management of airway remodelling in asthma patients.  相似文献   

12.
Compelling evidence showed that both nucleotide‐binding oligomerization domain‐like receptor family, pyrin domain‐containing protein 3 (NLRP3) inflammasomes and the immunoproteasome participate in neuroinflammatory responses in cerebral ischaemia injury. Moreover, inhibition of either NLRP3 inflammasomes or the immunoproteasome attenuates both neuroinflammation and neurological deterioration during ischaemic stroke. However, the underlying mechanism between the immunoproteasome and NLRP3 inflammasomes under ischaemic stroke conditions remains to be established. In this study, using both in vitro and in vivo ischaemic models, we demonstrated that the immunoproteasome inhibition reduced the expressions of NLRP3 inflammasome‐associated proteins, including NLRP3, apoptosis‐associated speck‐like protein (ASC), caspase‐1 and mature cytokines (interleukin [IL]‐1β and IL‐18). It also downregulated the levels of nuclear factor (NF)‐κB and pyroptotic‐ and apoptotic‐related proteins, and improved cell viability. In addition, inhibition of NF‐κB by the small molecule inhibitor Bay‐11‐7082 led to lower levels of NLRP3 inflammasomes and cleaved caspase‐1 proteins in BV2 cells after oxygen‐glucose deprivation and reoxygenation. Together, these findings suggest that the immunoproteasome may be responsible for inducing the expression and activation of NLRP3 inflammasomes via the NF‐κB pathway. Therapeutic interventions that target activation of the immunoproteasome/NF‐κB/NLRP3 inflammasome pathway may provide novel prospects for the future treatment of ischaemic stroke.  相似文献   

13.
ObjectivesEvidences demonstrate that sorafenib alleviates liver fibrosis via inhibiting HSC activation and ECM accumulation. The underlying mechanism remains unclear. Ferroptosis, a novel programmed cell death, regulates diverse physiological/pathological processes. In this study, we aim to investigate the functional role of HSC ferroptosis in the anti‐fibrotic effect of sorafenib.Materials and MethodsThe effects of sorafenib on HSC ferroptosis and ECM expression were assessed in mouse model of liver fibrosis induced by CCl4. In vitro, Fer‐1 and DFO were used to block ferroptosis and then explored the anti‐fibrotic effect of sorafenib by detecting α‐SMA, COL1α1 and fibronectin proteins. Finally, HIF‐1α siRNA, plasmid and stabilizers were applied to assess related signalling pathway.ResultsSorafenib attenuated liver injury and ECM accumulation in CCl4‐induced fibrotic livers, accompanied by reduction of SLC7A11 and GPX4 proteins. In sorafenib‐treated HSC‐T6 cells, ferroptotic events (depletion of SLC7A11, GPX4 and GSH; accumulation iron, ROS and MDA) were discovered. Intriguingly, these ferroptotic events were not appeared in hepatocytes or macrophages. Sorafenib‐elicited HSC ferroptosis and ECM reduction were abrogated by Fer‐1 and DFO. Additionally, both HIF‐1α and SLC7A11 proteins were reduced in sorafenib‐treated HSC‐T6 cells. SLC7A11 was positively regulated by HIF‐1α, inactivation of HIF‐1α/SLC7A11 pathway was required for sorafenib‐induced HSC ferroptosis, and elevation of HIF‐1α could inhibit ferroptosis, ultimately limited the anti‐fibrotic effect.ConclusionsSorafenib triggers HSC ferroptosis via HIF‐1α/SLC7A11 signalling, which in turn attenuates liver injury and fibrosis.  相似文献   

14.
Oxidative stress plays a central role in age‐related macular degeneration (AMD). Iron, a potent generator of hydroxyl radicals through the Fenton reaction, has been implicated in AMD. One easily oxidized molecule is docosahexaenoic acid (DHA), the most abundant polyunsaturated fatty acid in photoreceptor membranes. Oxidation of DHA produces toxic oxidation products including carboxyethylpyrrole (CEP) adducts, which are increased in the retinas of AMD patients. In this study, we hypothesized that deuterium substitution on the bis‐allylic sites of DHA in photoreceptor membranes could prevent iron‐induced retinal degeneration by inhibiting oxidative stress and lipid peroxidation. Mice were fed with either DHA deuterated at the oxidation‐prone positions (D‐DHA) or control natural DHA and then given an intravitreal injection of iron or control saline. Orally administered D‐DHA caused a dose‐dependent increase in D‐DHA levels in the neural retina and retinal pigment epithelium (RPE) as measured by mass spectrometry. At 1 week after iron injection, D‐DHA provided nearly complete protection against iron‐induced retinal autofluorescence and retinal degeneration, as determined by in vivo imaging, electroretinography, and histology. Iron injection resulted in carboxyethylpyrrole conjugate immunoreactivity in photoreceptors and RPE in mice fed with natural DHA but not D‐DHA. Quantitative PCR results were consistent with iron‐induced oxidative stress, inflammation, and retinal cell death in mice fed with natural DHA but not D‐DHA. Taken together, our findings suggest that DHA oxidation is central to the pathogenesis of iron‐induced retinal degeneration. They also provide preclinical evidence that dosing with D‐DHA could be a viable therapeutic strategy for retinal diseases involving oxidative stress.  相似文献   

15.
Towards royal jelly proteome   总被引:4,自引:0,他引:4  
  相似文献   

16.
Extracellular vesicles (EVs) are rounded vesicles enclosed by a lipid bilayer membrane, released by eukaryotic cells and by bacteria. They carry various types of bioactive substances, including nucleic acids, proteins, and lipids. Depending on their cargo, EVs have a variety of well‐studied functions in mammalian systems, including cell‐to‐cell communication, cancer progression, and pathogenesis. In contrast, EVs in plant cells (which have rigid walls) have received very little research attention for many decades. Increasing evidence during the past decade indicates that both plant cells and plant pathogens are able to produce and secrete EVs, and that such EVs play key roles in plant–pathogen interactions. Plant EVs contains small RNAs (sRNAs) and defence‐related proteins, and may be taken up by pathogenic fungi, resulting in reduced virulence. On the other hand, EVs released by gram‐negative bacteria contain a wide variety of effectors and small molecules capable of activating plant immune responses via pattern‐recognition receptor‐ and BRI1‐ASSOCIATED RECEPTOR KINASE‐ and SUPPRESSOR OF BIR1‐mediated signalling pathways, and salicylic acid‐dependent and ‐independent processes. The roles of EVs in plant–pathogen interactions are summarized in this review, with emphasis on important molecules (sRNAs, proteins) present in plant EVs.  相似文献   

17.
Increasing cell‐specific productivities (CSPs) for the production of heterologous proteins in Chinese hamster ovary (CHO) cells is an omnipresent need in the biopharmaceutical industry. The novel additive 5′‐deoxy‐5′‐(methylthio)adenosine (MTA), a chemical degradation product of S‐(5′‐adenosyl)‐ʟ‐methionine (SAM) and intermediate of polyamine biosynthesis, boosts the CSP of IgG1‐producing CHO cells by 50%. Compartment‐specific 13C flux analysis revealed a fundamental reprogramming of the central metabolism after MTA addition accompanied by cell‐cycle arrest and increased cell volumes. Carbon fluxes into the pentose‐phosphate pathway increased 22 fold in MTA‐treated cells compared to that in non‐MTA‐treated reference cells. Most likely, cytosolic ATP inhibition of phosphofructokinase mediated the carbon detour. Mitochondrial shuttle activity of the α‐ketoglurarate/malate antiporter (OGC) reversed, reducing cytosolic malate transport. In summary, NADPH supply in MTA‐treated cells improved three fold compared to that in non‐MTA‐treated cells, which can be regarded as a major factor for explaining the boosted CSPs.  相似文献   

18.
Permeabilization of the outer mitochondrial membrane by pore‐forming Bcl2 proteins is a crucial step for the induction of apoptosis. Despite a large set of data suggesting global conformational changes within pro‐apoptotic Bak during pore formation, high‐resolution structural details in a membrane environment remain sparse. Here, we used NMR and HDX‐MS (Hydrogen deuterium exchange mass spectrometry) in lipid nanodiscs to gain important high‐resolution structural insights into the conformational changes of Bak at the membrane that are dependent on a direct activation by BH3‐only proteins. Furthermore, we determined the first high‐resolution structure of the Bak transmembrane helix. Upon activation, α‐helix 1 in the soluble domain of Bak dissociates from the protein and adopts an unfolded and dynamic potentially membrane‐bound state. In line with this finding, comparative protein folding experiments with Bak and anti‐apoptotic BclxL suggest that α‐helix 1 in Bak is a metastable structural element contributing to its pro‐apoptotic features. Consequently, mutagenesis experiments aimed at stabilizing α‐helix 1 yielded Bak variants with delayed pore‐forming activity. These insights will contribute to a better mechanistic understanding of Bak‐mediated membrane permeabilization.  相似文献   

19.
In the present study, we demonstrate the regulatory effects and mechanism of broussonin A and B, diphenylpropane derivatives isolated from Broussonetia kazinoki, on vascular endothelial growth factor‐A (VEGF‐A)–stimulated endothelial cell responses in vitro and microvessel sprouting ex vivo. Treatment with broussonin A or B suppressed VEGF‐A‐stimulated endothelial cell proliferation by regulating the expression of cell cycle–related proteins and the phosphorylation status of retinoblastoma protein. In addition, treatment with broussonin A or B abrogated VEGF‐A‐stimulated angiogenic responses including endothelial cell migration, invasion, tube formation and microvessel formation from rat aortic rings. These anti‐angiogenic activities of broussonin A and B were mediated through inactivation of VEGF‐A‐stimulated downstream signalling pathways, localization of vascular endothelial‐cadherin at cell‐cell contacts, and down‐regulation of integrin β1 and integrin‐liked kinase. Furthermore, treatment with broussonin A or B inhibited proliferation and invasion of non–small cell lung cancer and ovarian cancer cells. Taken together, our findings suggest the pharmacological potential of broussonin A and B in the regulation of angiogenesis, cancer cell growth and progression.  相似文献   

20.
The N‐degron pathway determines the half‐life of proteins in both prokaryotes and eukaryotes by precisely recognizing the N‐terminal residue (N‐degron) of substrates. ClpS proteins from bacteria bind to substrates containing hydrophobic N‐degrons (Leu, Phe, Tyr, and Trp) and deliver them to the caseinolytic protease system ClpAP. This mechanism is preserved in organelles such as mitochondria and chloroplasts. Bacterial ClpS adaptors bind preferentially to Leu and Phe N‐degrons; however, ClpS1 from Arabidopsis thaliana (AtClpS1) shows a difference in that it binds strongly to Phe and Trp N‐degrons and only weakly to Leu. This difference in behavior cannot be explained without structural information due to the high sequence homology between bacterial and plant ClpS proteins. Here, we report the structure of AtClpS1 at 2.0 Å resolution in the presence of a bound N‐degron. The key determinants for α‐amino group recognition are conserved among all ClpS proteins, but the α3‐helix of eukaryotic AtClpS1 is significantly shortened, and consequently, a loop forming a pocket for the N‐degron is moved slightly outward to enlarge the pocket. In addition, amino acid replacement from Val to Ala causes a reduction in hydrophobic interactions with Leu N‐degron. A combination of the fine‐tuned hydrophobic residues in the pocket and the basic gatekeeper at the entrance of the pocket controls the N‐degron selectivity of the plant ClpS protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号