首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Haploinsufficiency of the human 5q35 region spanning the NSD1 gene results in a rare genomic disorder known as Sotos syndrome (Sotos), with patients displaying a variety of clinical features, including pre- and postnatal overgrowth, intellectual disability, and urinary/renal abnormalities. We used chromosome engineering to generate a segmental monosomy, i.e., mice carrying a heterozygous 1.5-Mb deletion of 36 genes on mouse chromosome 13 (4732471D19Rik-B4galt7), syntenic with 5q35.2?Cq35.3 in humans (Df(13)Ms2Dja +/? mice). Surprisingly Df(13)Ms2Dja +/? mice were significantly smaller for their gestational age and also showed decreased postnatal growth, in contrast to Sotos patients. Df(13)Ms2Dja +/? mice did, however, display deficits in long-term memory retention and dilation of the pelvicalyceal system, which in part may model the learning difficulties and renal abnormalities observed in Sotos patients. Thus, haploinsufficiency of genes within the mouse 4732471D19Rik?CB4galt7 deletion interval play important roles in growth, memory retention, and the development of the renal pelvicalyceal system.  相似文献   

2.
22q11.2 Deletion Syndrome (22q11DS) arises from an interstitial chromosomal microdeletion encompassing at least 30 genes. This disorder is one of the most significant known cytogenetic risk factors for schizophrenia, and can also cause heart abnormalities, cognitive deficits, hearing difficulties, and a variety of other medical problems. The Df1/+ hemizygous knockout mouse, a model for human 22q11DS, recapitulates many of the deficits observed in the human syndrome including heart defects, impaired memory, and abnormal auditory sensorimotor gating. Here we show that Df1/+ mice, like human 22q11DS patients, have substantial rates of hearing loss arising from chronic middle ear infection. Auditory brainstem response (ABR) measurements revealed significant elevation of click-response thresholds in 48% of Df1/+ mice, often in only one ear. Anatomical and histological analysis of the middle ear demonstrated no gross structural abnormalities, but frequent signs of otitis media (OM, chronic inflammation of the middle ear), including excessive effusion and thickened mucosa. In mice for which both in vivo ABR thresholds and post mortem middle-ear histology were obtained, the severity of signs of OM correlated directly with the level of hearing impairment. These results suggest that abnormal auditory sensorimotor gating previously reported in mouse models of 22q11DS could arise from abnormalities in auditory processing. Furthermore, the findings indicate that Df1/+ mice are an excellent model for increased risk of OM in human 22q11DS patients. Given the frequently monaural nature of OM in Df1/+ mice, these animals could also be a powerful tool for investigating the interplay between genetic and environmental causes of OM.  相似文献   

3.
Bombyx mori is a female-heterogametic organism (female, ZW; male, ZZ) that appears to have a putative feminizing gene (Fem) on the W chromosome. The paternally transmitted mutant W chromosome, Df(p Sa + p W + od )Fem, derived from the translocation-carrying W chromosome (p Sa + p W + od ), is inert as femaleness determinant. Moreover, this Df(p Sa + p W + od )Fem chromosome has been thought to have a female-killing factor because no female larvae having the Df(p Sa + p W + od )Fem chromosome are produced. Initially, to investigate whether the Df(p Sa + p W + od )Fem chromosome contains any region of the W chromosome or not, we analyzed the presence or absence of 12 W-specific RAPD markers. The Df(p Sa + p W + od )Fem chromosome contained 3 of 12 W-specific RAPD markers. These results strongly indicate that the Df(p Sa + p W + od )Fem chromosome contains the region of the W chromosome. Moreover, by using phenotypic and molecular markers, we confirmed that the Df(p Sa + p W + od )Fem chromosome is connected with a partially deleted Z chromosome and that this fused chromosome behaves as a Z chromosome during male meiosis. Furthermore, we demonstrated that the ZZW-type triploid female having the Df(p Sa + p W + od )Fem chromosome is viable. Therefore, we concluded that the Df(p Sa + p W + od )Fem chromosome does not have a female-killing factor but that partial deletion of the Z chromosome causes the death of the ZW-type diploid female having the Df(p Sa + p W + od )Fem chromosome. Additionally, our results of detailed genetic analyses strongly indicate that the female-killing chromosome composed of the Df(p Sa + p W + od )Fem chromosome and deleted Z chromosome was generated by translocation between the Z chromosome and the translocation-carrying W chromosome, p Sa + p W + od .  相似文献   

4.
The 22q11 deletion syndrome (22q11DS; DiGeorge/velo-cardio-facial syndrome) primarily affects the structures comprising the pharyngeal arches and pouches resulting in arch artery, cardiac, parathyroid, thymus, palatal and craniofacial defects. Tbx1 haploinsufficiency is thought to account for the main structural anomalies observed in the 22q11DS. The Df1 deleted mouse provides a model for 22q11DS, the deletion reflecting Tbx1 haploinsufficiency in the context of the deletion of 21 adjacent genes. We examined the expression of genes in Df1 embryos at embryonic day (E) 10.5, a stage when the arch-artery phenotype is fully penetrant. Our aims were threefold, with our primary aim to identify differentially regulated genes. Second, we asked whether any of the genes hemizygous in Df1 were dosage compensated to wild type levels, and third we investigated whether genes immediately adjacent to the deletion were dysregulated secondary to a position effect. Utilisation of oligonulceotide arrays allowed us to achieve our aims with 9 out of 12 Df1 deleted genes passing the stringent statistical filtering applied. Several genes involved in vasculogenesis and cardiogenesis were validated by real time quantitative PCR (RTQPCR), including Connexin 45, a gene required for normal vascular development, and Dnajb9 a gene implicated in microvascular differentiation. There was no evidence of any dosage compensation of deleted genes, suggesting this phenomenon is rare, and no dysregulation of genes mapping immediately adjacent to the deletion was detected. However Crkl, another gene implicated in the 22q11DS phenotype, was found to be downregulated by microarray and RTQPCR.  相似文献   

5.
The membrane-associated mucin (MAM) domain containing glycosylphosphatidylinositol anchor 2 protein single knock-out mice (MDGA2+/−) are models of ASD. We examined the behavioral phenotypes of male and female MDGA2+/− and wildtype mice on C57BL6/NJ and C57BL6/N backgrounds at 2 months of age and measured MDGA2, neuroligin 1 and neuroligin 2 levels at 7 months. Mice on the C57BL6/NJ background performed better than those on the C57BL6/N background in visual ability and in learning and memory performance in the Morris water maze and differed in measures of motor behavior and anxiety. Mice with the MDGA2+/− genotype differed from WT mice in motor, social and repetitive behavior and anxiety, but most of these effects involved interactions between MDGA2+/− genotype and background strain. The background strain also influenced MDGA2 levels and NLGN2 association in MDGA2+/− mice. Our findings emphasize the importance of the background strain used in studies of genetically modified mice.  相似文献   

6.
Angelman syndrome (AS) is a neurobehavioral disorder associated with mental retardation, absence of language development, characteristic electroencephalography (EEG) abnormalities and epilepsy, happy disposition, movement or balance disorders, and autistic behaviors. The molecular defects underlying AS are heterogeneous, including large maternal deletions of chromosome 15q11–q13 (70%), paternal uniparental disomy (UPD) of chromosome 15 (5%), imprinting mutations (rare), and mutations in the E6-AP ubiquitin ligase gene UBE3A (15%). Although patients with UBE3A mutations have a wide spectrum of neurological phenotypes, their features are usually milder than AS patients with deletions of 15q11–q13. Using a chromosomal engineering strategy, we generated mutant mice with a 1.6-Mb chromosomal deletion from Ube3a to Gabrb3, which inactivated the Ube3a and Gabrb3 genes and deleted the Atp10a gene. Homozygous deletion mutant mice died in the perinatal period due to a cleft palate resulting from the null mutation in Gabrb3 gene. Mice with a maternal deletion (m−/p+) were viable and did not have any obvious developmental defects. Expression analysis of the maternal and paternal deletion mice confirmed that the Ube3a gene is maternally expressed in brain, and showed that the Atp10a and Gabrb3 genes are biallelically expressed in all brain sub-regions studied. Maternal (m−/p+), but not paternal (m+/p−), deletion mice had increased spontaneous seizure activity and abnormal EEG. Extensive behavioral analyses revealed significant impairment in motor function, learning and memory tasks, and anxiety-related measures assayed in the light-dark box in maternal deletion but not paternal deletion mice. Ultrasonic vocalization (USV) recording in newborns revealed that maternal deletion pups emitted significantly more USVs than wild-type littermates. The increased USV in maternal deletion mice suggests abnormal signaling behavior between mothers and pups that may reflect abnormal communication behaviors in human AS patients. Thus, mutant mice with a maternal deletion from Ube3a to Gabrb3 provide an AS mouse model that is molecularly more similar to the contiguous gene deletion form of AS in humans than mice with Ube3a mutation alone. These mice will be valuable for future comparative studies to mice with maternal deficiency of Ube3a alone.  相似文献   

7.
Several constitutional chromosomal rearrangements occur on human chromosome 17. Patients who carry constitutional deletions of 17q21.3-q24 exhibit distinct phenotypic features. Within the deletion interval, there is a genomic segment that is bounded by the myeloperoxidase and homeobox B1 genes. This genomic segment is syntenically conserved on mouse chromosome 11 and is bounded by the mouse homologs of the same genes (Mpo and HoxB1). To attain functional information about this syntenic segment in mice, we have generated a 6.9-Mb deletion [Df(11)18], the reciprocal duplication [Dp(11)18] between Mpo and Chad (the chondroadherin gene), and a 1.8-Mb deletion between Chad and HoxB1. Phenotypic analyses of the mutant mouse lines showed that the Dp(11)18/Dp(11)18 genotype was responsible for embryonic or adolescent lethality, whereas the Df(11)18/+ genotype was responsible for heart defects. The cardiovascular phenotype of the Df(11)18/+ fetuses was similar to those of patients who carried the deletions of 17q21.3-q24. Since heart defects were not detectable in Df(11)18/Dp(11)18 mice, the haplo-insufficiency of one or more genes located between Mpo and Chad may be responsible for the abnormal cardiovascular phenotype. Therefore, we have identified a new dosage-sensitive genomic region that may be critical for normal heart development in both mice and humans.  相似文献   

8.
Down syndrome (DS) results from one extra copy of human chromosome 21 and leads to several alterations including intellectual disabilities and locomotor defects. The transchromosomic Tc1 mouse model carrying an extra freely-segregating copy of human chromosome 21 was developed to better characterize the relation between genotype and phenotype in DS. The Tc1 mouse exhibits several locomotor and cognitive deficits related to DS. In this report we analyzed the contribution of the genetic dosage of 13 conserved mouse genes located between Abcg1 and U2af1, in the telomeric part of Hsa21. We used the Ms2Yah model carrying a deletion of the corresponding interval in the mouse genome to rescue gene dosage in the Tc1/Ms2Yah compound mice to determine how the different behavioral phenotypes are affected. We detected subtle changes with the Tc1/Ms2Yah mice performing better than the Tc1 individuals in the reversal paradigm of the Morris water maze. We also found that Tc1/Ms2Yah compound mutants performed better in the rotarod than the Tc1 mice. This data support the impact of genes from the Abcg1-U2af1 region as modifiers of Tc1-dependent memory and locomotor phenotypes. Our results emphasize the complex interactions between triplicated genes inducing DS features.  相似文献   

9.
Clinical features of the 13q deletion syndrome are difficult to define and include retinoblastoma, mental and growth retardation, craniofacial abnormalities, brain, gastrointestinal, renal and heart malformations, anal atresia and limb and digit malformations. The critical region for development of major organ systems has been defined in 13q32 between the proximal marker 13S132 and distal marker D13S147. We report a severely mentally retarded male patient with a deletion of the distal part of chromosome 13 (13q32.3-->qter) without major organ malformations.  相似文献   

10.
The trisomy of human chromosome 21 (Hsa21), which causes Down syndrome (DS), is the most common viable human aneuploidy. In contrast to trisomy, the complete monosomy (M21) of Hsa21 is lethal, and only partial monosomy or mosaic monosomy of Hsa21 is seen. Both conditions lead to variable physiological abnormalities with constant intellectual disability, locomotor deficits, and altered muscle tone. To search for dosage-sensitive genes involved in DS and M21 phenotypes, we created two new mouse models: the Ts3Yah carrying a tandem duplication and the Ms3Yah carrying a deletion of the Hspa13-App interval syntenic with 21q11.2-q21.3. Here we report that the trisomy and the monosomy of this region alter locomotion, muscle strength, mass, and energetic balance. The expression profiling of skeletal muscles revealed global changes in the regulation of genes implicated in energetic metabolism, mitochondrial activity, and biogenesis. These genes are downregulated in Ts3Yah mice and upregulated in Ms3Yah mice. The shift in skeletal muscle metabolism correlates with a change in mitochondrial proliferation without an alteration in the respiratory function. However, the reactive oxygen species (ROS) production from mitochondrial complex I decreased in Ms3Yah mice, while the membrane permeability of Ts3Yah mitochondria slightly increased. Thus, we demonstrated how the Hspa13-App interval controls metabolic and mitochondrial phenotypes in muscles certainly as a consequence of change in dose of Gabpa, Nrip1, and Atp5j. Our results indicate that the copy number variation in the Hspa13-App region has a peripheral impact on locomotor activity by altering muscle function.  相似文献   

11.
Summary Prader-Willi syndrome (PWS) is a sporadic disorder in which about half of cases have a 15q12 deletion. Although a small number of cases have other rearrangements involving 15q12, the rest of the cases appear to have normal chromosomes. Clinical similarities among all these patients regardless of the karyotype strongly suggests a common etiology. To investigate the nature of this common etiology, we analyzed sister chromatid exchange (SCE) at the 15q11-13 region in 10 PWS patients with the chromosome deletion, 12 PWS patients with normal chromosomes, and 11 normal control individuals. While SCE at the q11-13 region was absent on the 15q12 deleted chromosome, the percentage of SCE on chromosome 15 at q11 was statistically higher for PWS with normal chromosomes (10.1%) compared to that for normal controls (1.9%) and the normal homologue (2.2%) in deleted patients (2=7.7982, df=2, P<0.025). The data suggest relative instability of DNA at the 15q11 region in PWS patients.  相似文献   

12.
Haploinsufficiency of part of human chromosome 21 results in a rare condition known as Monosomy 21. This disease displays a variety of clinical phenotypes, including intellectual disability, craniofacial dysmorphology, skeletal and cardiac abnormalities, and respiratory complications. To search for dosage-sensitive genes involved in this disorder, we used chromosome engineering to generate a mouse model carrying a deletion of the Lipi-Usp25 interval, syntenic with 21q11.2-q21.1 in humans. Haploinsufficiency for the 6 genes in this interval resulted in no gross morphological defects and behavioral analysis performed using an open field test, a test of anxiety, and tests for social interaction were normal in monosomic mice. Monosomic mice did, however, display impaired memory retention compared to control animals. Moreover, when fed a high-fat diet (HFD) monosomic mice exhibited a significant increase in fat mass/fat percentage estimate compared with controls, severe fatty changes in their livers, and thickened subcutaneous fat. Thus, genes within the Lipi-Usp25 interval may participate in memory retention and in the regulation of fat deposition.  相似文献   

13.
Analysis of the skeletal phenotypes caused by the genetic inactivation of individual Bmps, along with the study of their expression patterns, suggest possible functional redundancy of these molecules. To investigate the effect on skeleton development of the combined absence of some Bmp genes expressed in the same areas, we have intercrossed heterozygous Bmp7 mice with Bmp2+/−, Bmp4+/−, or Bmp5+/− animals. Bmp2/7 and Bmp5/7 double heterozygous animals do not present with any abnormalities. In contrast, Bmp4/7 double heterozygotes develop minor defects in two restricted areas of the skeleton, the rib cage, and the distal part of the limbs. In the ribs, Bmp4 and Bmp7 seem to act in the same pathway to assure proper guidance of mesenchymal condensations of the ribs extending toward the sternum. In the limbs, these molecules appear to play a similar role in controlling digit number, possibly through induction of apoptosis in the interdigital and anterior mesenchyme. Dev. Genet. 22:340–348, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

14.
15.
Summary We have initiated a cytogenetic analysis of chromosome region 89A of Drosophila melanogaster by isolating a set of radiation-induced mutations causing loss of function of P[(w)B]1-1, a transposon bearing the white locus inserted in 89A. Complementation tests and cytological examination of these chromosomes identified four new deficiencies (Df(3R)Po 2, Df(3R)Po 3, Df(3R)Po 4 and Df(3R)c(3)G 2 ). The new deficiencies and three previously identified deficiencies (Df(3R)sbd 26, Df(3R)sbd 45 and Df(3R)sbd 105) were tested for the ability to complement mutations in the enzyme loci Po and Aldox-1, the indirect flight muscle genes Tm2 and act88F, the morphological mutations jvl, sbd 2 and Sb, the vital loci srp, pnr and mor, and a newly described vital locus l(3)89Aa. We also used linkage analysis to determine the order and relative positions of P[(w)B]1-1 and an independent transposon insertion, P[w+]21, with respect to cv-c, Po, Aldox-1 and sbd 2. Cytological examination of the deficiencies and analysis of the transformed lines by in situ hybridization permits the correlation of genetically defined regions with specific polytene chromosome bands. A revised cytogenetic map of the 8817–8913 region is presented.  相似文献   

16.
About 160 kb of DNA were cloned from the 2B region of the X chromosome, where the early ecdysone puff develops and the ecs locus is located. On the physical map of this sequence the positions of 13 chromosome rearrangement breakpoints interfering with both puff development and the ecs locus proximally and distally, were plotted by means of in situ hybridization. The maximal size of the ecs locus is about 100 kb (between the breakpoint of In(1)Hw 49c and the proximal end of Df(1)St472) The DNA sequences essential for normal puffing are located within the ecs locus between the In(1)br lt103 and Df(1)St472 breakpoints and comprise about 65 kb. Thus the puff develops as a result of ecs activation. Since Df(1)P154, which reduces the puff size and removes the proximal part of the ecs locus, does not prevent puff induction by ecdysone, while removing the distal part of the locus by Df(1)St469 completely stops development of the puff, we conclude that the regulatory zone of the locus, which reacts to hormone is located in the distal parts of both the puff and the locus, proximal to the breakpoint of In(1)br lt103 .Since In(1)br lt103 , Df(1)pn7b and Df(1)br R1 damage ecs but do not prevent puffing it is proposed that there is a second regulatory zone for this locus with a minimal size of 15–20 kb (between the breakpoints of Df(1)br R1 and In(1)br lt103). After cytogenetic and electron microscopic analysis of 2B puff formation it seems very likely that the site of puff formation is situated in the proximal part of 2B3-4 and after enhancement of ecs expression by hormone it spreads proximally to the 2B6 band which does not puff. When the puff regresses at puff stages (PS)10-11 its material does not condense completely and a zone of residual puffing joins the condensed material located distal to it. This material can give the impression of a separate band, designated 2B5 in Bridges' map. For convenience we propose to call the site giving rise to the puff as 2B3-5.  相似文献   

17.
The Prader-Willi syndrome (PWS) and the Angelman syndrome (AS) are distinct genetic disorders that are caused by a deletion of chromosome region 15q11-13 or by uniparental disomy for chromosome 15. Whereas PWS results from the absence of a paternal copy of 15q11-13, the absence of a maternal copy of 15q11-13 leads to AS. We have found that an MspI/HpaII restriction site at the D15S63 locus in 15q11-13 is methylated on the maternally derived chromosome, but unmethylated on the paternally derived chromosome. Based on this difference, we have devised a rapid diagnostic test for patients suspected of having PWS and AS.  相似文献   

18.
Angelman syndrome (AS) is characterized by severe mental retardation, absent speech, puppet-like movements, inappropriate laughter, epilepsy, and abnormal electroencephalogram. The majority of AS patients ( 65%) have a maternal deficiency within chromosomal region 15q11–q13, caused by maternal deletion or paternal uniparental disomy (UPD). Approximately 35% of AS patients exhibit neither detectable deletion nor UPD, but a subset of these patients have abnormal methylation at several loci in the 15q11–q13 interval. We describe here three patients with Angelman syndrome belonging to an extended inbred family. High resolution chromosome analysis combined with DNA analysis using 14 marker loci from the 15q11-q13 region failed to detect a deletion in any of the three patients. Paternal UPD of chromosome 15 was detected in one case, while the other two patients have abnormal methylation atD15S9, D15S63, andSNRPN. Although the three patients are distantly related, the chromosome 15q11-q13 haplotypes are different, suggesting that independent mutations gave rise to AS in this family.  相似文献   

19.

Background  

Chromosomal abnormalities affecting human chromosome 15q11-q13 underlie multiple genomic disorders caused by deletion, duplication and triplication of intervals in this region. These events are mediated by highly homologous segments of DNA, or duplicons, that facilitate mispairing and unequal cross-over in meiosis. The gene encoding an amyloid precursor protein-binding protein (APBA2) was previously mapped to the distal portion of the interval commonly deleted in Prader-Willi and Angelman syndromes and duplicated in cases of autism.  相似文献   

20.
Chromosome elimination through chromosome loss and partial deletion is known to be one of the causes of embryonic inviability in some salmonid interspecific hybrids. Using fluorescence in situ hybridization and related techniques, including whole chromosome painting and comparative genomic hybridization, parental origin of eliminated chromosomes was identified in the inviable hybrids between masu salmon (Ms, Oncorhynchus masou) female and rainbow trout (Rb, O. mykiss) male at the early embryonic stage prior to death. In these hybrids, the haploid Rb chromosome number decreased to nearly half, whereas the Ms chromosomes were retained as one or occasionally two full haploid complements. The Rb chromosomes were also involved in the frequently observed fragments and micronuclei. Whereas the occurrence of fragments was constant throughout the observed period, chromosome loss occurred mainly from just after fertilization to the blastulae stage. In tissue sections and cell spreads of late blastula, some Rb chromosomes were trapped in the midzone from ana- to telophase, resulting in micronuclei at the subsequent interphase. Micronuclei and mitotic abnormalities were also observed in the androgenetic haploid hybrids. However, such abnormalities were seldom or never observed in the viable reciprocal hybrids. The present findings suggest that the paternal Rb chromosomes in the inviable hybrids are preferentially eliminated through mitotic abnormalities during early embryogenesis, owing to a possible incompatibility between the maternal Ms cytoplasm and paternal Rb genome. Received: 22 August 1996; in revised form: 14 November 1996 / Accepted: 20 November 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号