首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Very little is known about the biodiversity of freshwater autotrophic picoplankton (APP) in the Laurentian Great Lakes, a system comprising 20% of the world's lacustrine freshwater. In this study, the genetic diversity of Lake Superior APP was examined by analyzing 16S rRNA gene and cpcBA PCR amplicons from water samples. By neighbor joining, the majority of 16S rRNA gene sequences clustered within the “picocyanobacterial clade” consisting of freshwater and marine Synechococcus and Prochlorococcus. Two new groups of Synechococcus spp., the pelagic Lake Superior clusters I and II, do not group with any of the known freshwater picocyanobacterial clusters and were the most abundant species (50 to 90% of the sequences) in samples collected from offshore Lake Superior stations. Conversely, at station Portage Deep (PD), located in a nearshore urbanized area, only 4% of the sequences belonged to these clusters and the remaining clones reflected the freshwater Synechococcus diversity described previously at sites throughout the world. Supporting the 16S rRNA gene data, the cpcBA library from nearshore station PD revealed a cosmopolitan diversity, whereas the majority of the cpcBA sequences (97.6%) from pelagic station CD1 fell within a unique Lake Superior cluster. Thus far, these picocyanobacteria have not been cultured, although their phylogenetic assignment suggests that they are phycoerythrin (PE) rich, consistent with the observation that PE-rich APP dominate Lake Superior picoplankton. Lastly, flow cytometry revealed that the summertime APP can exceed 105 cells ml−1 and suggests that the APP shifts from a community of PE and phycocyanin-rich picocyanobacteria and picoeukaryotes in winter to a PE-rich community in summer.  相似文献   

2.
Myoviruses and podoviruses that infect cyanobacteria are the two major groups of marine cyanophages, but little is known of how their phylogenetic lineages are distributed in different habitats. In this study, we analyzed the phylogenetic relationships of cyanopodoviruses and cyanomyoviruses based on the existing genomes. The 28 cyanomyoviruses were classified into four clusters (I to IV), and 19 of the 20 cyanopodoviruses were classified into two clusters, MPP-A and MPP-B, with four subclusters within cluster MPP-B. These genomes were used to recruit cyanophage-like fragments from microbial and viral metagenomes to estimate the relative abundances of these cyanophage lineages. Our results showed that cyanopodoviruses and cyanomyoviruses are both abundant in various marine environments and that clusters MPP-B, II and III appear to be the most dominant lineages. Cyanopodoviruses and cluster I and IV cyanomyoviruses exhibited habitat-related variability in their relative levels of abundance, while cluster II and III cyanomyoviruses appeared to be consistently dominant in various habitats. Multivariate analyses showed that reads that mapped to Synechococcus phages and Prochlorococcus phages had distinct distribution patterns that were significantly correlated to those of Synechococcus and Prochlorococcus, respectively. The Mantel test also revealed a strong correlation between the community compositions of cyanophages and picocyanobacteria. Given that cyanomyoviruses tend to have a broad host range and some can cross-infect Synechococcus and Prochlorococcus, while cyanopodoviruses are commonly host specific, the observation that their community compositions both correlated significantly with that of picocyanobacteria was unexpected. Although cyanomyoviruses and cyanopodoviruses differ in host specificity, their biogeographic distributions are likely both constrained by the picocyanobacterial community.  相似文献   

3.
Picocyanobacteria represented by Prochlorococcus and Synechococcus have an important role in oceanic carbon fixation and nutrient cycling. In this study, we compared the community composition of picocyanobacteria from diverse marine ecosystems ranging from estuary to open oceans, tropical to polar oceans and surface to deep water, based on the sequences of 16S-23S rRNA internal transcribed spacer (ITS). A total of 1339 ITS sequences recovered from 20 samples unveiled diverse and several previously unknown clades of Prochlorococcus and Synechococcus. Six high-light (HL)-adapted Prochlorococcus clades were identified, among which clade HLVI had not been described previously. Prochlorococcus clades HLIII, HLIV and HLV, detected in the Equatorial Pacific samples, could be related to the HNLC clades recently found in the high-nutrient, low-chlorophyll (HNLC), iron-depleted tropical oceans. At least four novel Synechococcus clades (out of six clades in total) in subcluster 5.3 were found in subtropical open oceans and the South China Sea. A niche partitioning with depth was observed in the Synechococcus subcluster 5.3. Members of Synechococcus subcluster 5.2 were dominant in the high-latitude waters (northern Bering Sea and Chukchi Sea), suggesting a possible cold-adaptation of some marine Synechococcus in this subcluster. A distinct shift of the picocyanobacterial community was observed from the Bering Sea to the Chukchi Sea, which reflected the change of water temperature. Our study demonstrates that oceanic systems contain a large pool of diverse picocyanobacteria, and further suggest that new genotypes or ecotypes of picocyanobacteria will continue to emerge, as microbial consortia are explored with advanced sequencing technology.  相似文献   

4.
Summary: Marine picocyanobacteria of the genera Prochlorococcus and Synechococcus numerically dominate the picophytoplankton of the world ocean, making a key contribution to global primary production. Prochlorococcus was isolated around 20 years ago and is probably the most abundant photosynthetic organism on Earth. The genus comprises specific ecotypes which are phylogenetically distinct and differ markedly in their photophysiology, allowing growth over a broad range of light and nutrient conditions within the 45°N to 40°S latitudinal belt that they occupy. Synechococcus and Prochlorococcus are closely related, together forming a discrete picophytoplankton clade, but are distinguishable by their possession of dissimilar light-harvesting apparatuses and differences in cell size and elemental composition. Synechococcus strains have a ubiquitous oceanic distribution compared to that of Prochlorococcus strains and are characterized by phylogenetically discrete lineages with a wide range of pigmentation. In this review, we put our current knowledge of marine picocyanobacterial genomics into an environmental context and present previously unpublished genomic information arising from extensive genomic comparisons in order to provide insights into the adaptations of these marine microbes to their environment and how they are reflected at the genomic level.  相似文献   

5.
Seasonal variation in the phylogenetic composition of Synechococcus assemblages in estuarine and coastal waters of Hong Kong was examined through pyrosequencing of the rpoC1 gene. Sixteen samples were collected in 2009 from two stations representing estuarine and ocean-influenced coastal waters, respectively. Synechococcus abundance in coastal waters gradually increased from 3.6 × 103 cells ml−1 in March, reaching a peak value of 5.7 × 105 cells ml−1 in July, and then gradually decreased to 9.3 × 103 cells ml−1 in December. The changes in Synechococcus abundance in estuarine waters followed a pattern similar to that in coastal waters, whereas its composition shifted from being dominated by phycoerythrin-rich (PE-type) strains in winter to phycocyanin-only (PC-type) strains in summer owing to the increase in freshwater discharge from the Pearl River and higher water temperature. The high abundance of PC-type Synechococcus was composed of subcluster 5.2 marine Synechococcus, freshwater Synechococcus (F-PC), and Cyanobium. The Synechococcus assemblage in the coastal waters, on the other hand, was dominated by marine PE-type Synechococcus, with subcluster 5.1 clades II and VI as the major lineages from April to September, when the summer monsoon prevailed. Besides these two clades, clade III cooccurred with clade V at relatively high abundance in summer. During winter, the Synechococcus assemblage compositions at the two sites were similar and were dominated by subcluster 5.1 clades II and IX and an undescribed clade (represented by Synechococcus sp. strain miyav). Clade IX Synechococcus was a relatively ubiquitous PE-type Synechococcus found at both sites, and our study demonstrates that some strains of the clade have the ability to deal with large variation of salinity in subtropical estuarine environments. Our study suggests that changes in seawater temperature and salinity caused by the seasonal variation of monsoonal forcing are two major determinants of the community composition and abundance of Synechococcus assemblages in Hong Kong waters.  相似文献   

6.
Microcystis aeruginosa is one of the most common bloom-forming cyanobacteria in freshwater ecosystems worldwide. This species produces numerous secondary metabolites, including microcystins, which are harmful to human health. We sequenced the genomes of ten strains of M. aeruginosa in order to explore the genomic basis of their ability to occupy varied environments and proliferate. Our findings show that M. aeruginosa genomes are characterized by having a large open pangenome, and that each genome contains similar proportions of core and flexible genes. By comparing the GC content of each gene to the mean value of the whole genome, we estimated that in each genome, around 11% of the genes seem to result from recent horizontal gene transfer events. Moreover, several large gene clusters resulting from HGT (up to 19 kb) have been found, illustrating the ability of this species to integrate such large DNA molecules. It appeared also that all M. aeruginosa displays a large genomic plasticity, which is characterized by a high proportion of repeat sequences and by low synteny values between the strains. Finally, we identified 13 secondary metabolite gene clusters, including three new putative clusters. When comparing the genomes of Microcystis and Prochlorococcus, one of the dominant picocyanobacteria living in marine ecosystems, our findings show that they are characterized by having almost opposite evolutionary strategies, both of which have led to ecological success in their respective environments.  相似文献   

7.
Thirty-two strains of phycoerythrin-containing marine picocyanobacteria were screened for the capacity to produce cyanophycin, a nitrogen storage compound synthesized by some, but not all, cyanobacteria. We found that one of these strains, Synechococcus sp. strain G2.1 from the Arabian Sea, was able to synthesize cyanophycin. The cyanophycin extracted from the cells was composed of roughly equimolar amounts of arginine and aspartate (29 and 35 mol%, respectively), as well as a small amount of glutamate (15 mol%). Phylogenetic analysis, based on partial 16S ribosomal DNA (rDNA) sequence data, showed that Synechococcus sp. strain G2.1 formed a well-supported clade with several strains of filamentous cyanobacteria. It was not closely related to several other well-studied marine picocyanobacteria, including Synechococcus strains PCC7002, WH7805, and WH8018 and Prochlorococcus sp. strain MIT9312. This is the first report of cyanophycin production in a phycoerythrin-containing strain of marine or halotolerant Synechococcus, and its discovery highlights the diversity of this ecologically important functional group.  相似文献   

8.
Podoviruses are among the major viral groups that infect marine picocyanobacteria Prochlorococcus and Synechococcus. Here, we reported the genome sequences of five Synechococcus podoviruses isolated from the estuarine environment, and performed comparative genomic and phylogenomic analyses based on a total of 20 cyanopodovirus genomes. The genomes of all the known marine cyanopodoviruses are highly syntenic. A pan-genome of 349 clustered orthologous groups was determined, among which 15 were core genes. These core genes make up nearly half of each genome in length, reflecting the high level of genome conservation among this cyanophage type. The whole genome phylogenies based on concatenated core genes and gene content were highly consistent and confirmed the separation of two discrete marine cyanopodovirus clusters MPP-A and MPP-B. The genomes within cluster MPP-B grouped into subclusters mainly corresponding to Prochlorococcus or Synechococcus host types. Auxiliary metabolic genes tend to occur in a specific phylogenetic group of these cyanopodoviruses. All the MPP-B phages analyzed here encode the photosynthesis gene psbA, which are absent in all the MPP-A genomes thus far. Interestingly, all the MPP-B and two MPP-A Synechococcus podoviruses encode the thymidylate synthase gene thyX, while at the same genome locus all the MPP-B Prochlorococcus podoviruses encode the transaldolase gene talC. Both genes are hypothesized to have the potential to facilitate the biosynthesis of deoxynucleotide for phage replication. Inheritance of specific functional genes could be important to the evolution and ecological fitness of certain cyanophage genotypes. Our analyses demonstrate that cyanopodoviruses of estuarine and oceanic origins share a conserved core genome and suggest that accessory genes may be related to environmental adaptation.  相似文献   

9.
Our view of marine microbes is transforming, as culture-independent methods facilitate rapid characterization of microbial diversity. It is difficult to assimilate this information into our understanding of marine microbe ecology and evolution, because their distributions, traits, and genomes are shaped by forces that are complex and dynamic. Here we incorporate diverse forces—physical, biogeochemical, ecological, and mutational—into a global ocean model to study selective pressures on a simple trait in a widely distributed lineage of picophytoplankton: the nitrogen use abilities of Synechococcus and Prochlorococcus cyanobacteria. Some Prochlorococcus ecotypes have lost the ability to use nitrate, whereas their close relatives, marine Synechococcus, typically retain it. We impose mutations for the loss of nitrogen use abilities in modeled picophytoplankton, and ask: in which parts of the ocean are mutants most disadvantaged by losing the ability to use nitrate, and in which parts are they least disadvantaged? Our model predicts that this selective disadvantage is smallest for picophytoplankton that live in tropical regions where Prochlorococcus are abundant in the real ocean. Conversely, the selective disadvantage of losing the ability to use nitrate is larger for modeled picophytoplankton that live at higher latitudes, where Synechococcus are abundant. In regions where we expect Prochlorococcus and Synechococcus populations to cycle seasonally in the real ocean, we find that model ecotypes with seasonal population dynamics similar to Prochlorococcus are less disadvantaged by losing the ability to use nitrate than model ecotypes with seasonal population dynamics similar to Synechococcus. The model predictions for the selective advantage associated with nitrate use are broadly consistent with the distribution of this ability among marine picocyanobacteria, and at finer scales, can provide insights into interactions between temporally varying ocean processes and selective pressures that may be difficult or impossible to study by other means. More generally, and perhaps more importantly, this study introduces an approach for testing hypotheses about the processes that underlie genetic variation among marine microbes, embedded in the dynamic physical, chemical, and biological forces that generate and shape this diversity.  相似文献   

10.
Many cyanophage isolates which infect the marine cyanobacteria Synechococcus spp. and Prochlorococcus spp. contain a gene homologous to psbA, which codes for the D1 protein involved in photosynthesis. In the present study, cyanophage psbA gene fragments were readily amplified from freshwater and marine samples, confirming their widespread occurrence in aquatic communities. Phylogenetic analyses demonstrated that sequences from freshwaters have an evolutionary history that is distinct from that of their marine counterparts. Similarly, sequences from cyanophages infecting Prochlorococcus and Synechococcus spp. were readily discriminated, as were sequences from podoviruses and myoviruses. Viral psbA sequences from the same geographic origins clustered within different clades. For example, cyanophage psbA sequences from the Arctic Ocean fell within the Synechococcus as well as Prochlorococcus phage groups. Moreover, as psbA sequences are not confined to a single family of phages, they provide an additional genetic marker that can be used to explore the diversity and evolutionary history of cyanophages in aquatic environments.  相似文献   

11.
Marine picocyanobacteria, comprised of the genera Synechococcus and Prochlorococcus, are the most abundant and widespread primary producers in the ocean. More than 20 genetically distinct clades of marine Synechococcus have been identified, but their physiology and biogeography are not as thoroughly characterized as those of Prochlorococcus. Using clade-specific qPCR primers, we measured the abundance of 10 Synechococcus clades at 92 locations in surface waters of the Atlantic and Pacific Oceans. We found that Synechococcus partition the ocean into four distinct regimes distinguished by temperature, macronutrients and iron availability. Clades I and IV were prevalent in colder, mesotrophic waters; clades II, III and X dominated in the warm, oligotrophic open ocean; clades CRD1 and CRD2 were restricted to sites with low iron availability; and clades XV and XVI were only found in transitional waters at the edges of the other biomes. Overall, clade II was the most ubiquitous clade investigated and was the dominant clade in the largest biome, the oligotrophic open ocean. Co-occurring clades that occupy the same regime belong to distinct evolutionary lineages within Synechococcus, indicating that multiple ecotypes have evolved independently to occupy similar niches and represent examples of parallel evolution. We speculate that parallel evolution of ecotypes may be a common feature of diverse marine microbial communities that contributes to functional redundancy and the potential for resiliency.  相似文献   

12.
13.
Ni accumulation and utilization were studied in two strains of marine Synechococcus, isolated from both coastal (CC9311; clade I) and open-ocean (WH8102; clade III) environments, for which complete genome sequences are available. Both strains have genes encoding an Ni-containing urease and when grown on urea without Ni become Ni-N colimited. The Ni requirements of these strains also depend upon the genomic complement of genes encoding superoxide dismutase (SOD). WH8102, with a gene encoding only an Ni-SOD, has a novel obligate requirement for Ni, regardless of the N source. Reduced SOD activity in Ni-depleted cultures of WH8102 supports the link of this strain's Ni requirement to Ni-SOD. The genome of CC9311 contains a gene for a Cu/Zn-SOD in addition to a predicted pair of Ni-SODs, yet this strain cannot grow without Ni on NO3 and can grow only slowly on NH4+ without Ni, implying that the Cu/Zn-SOD cannot completely replace Ni-SOD in marine cyanobacteria. CC9311 does have a greater tolerance for Ni starvation. Both strains increase their Ni uptake capabilities and actively bioconcentrate Ni in response to decreasing extracellular and intracellular Ni. The changes in Ni uptake rates were more pronounced in WH8102 than in CC9311 and for growth on urea or nitrate than for growth on ammonia. These results, combined with an analysis of fully sequenced marine cyanobacterial genomes, suggest that the growth of many marine Synechococcus and all Prochlorococcus strains is dependent upon Ni.  相似文献   

14.
The oceanic cyanobacteria Prochlorococcus are globally important, ecologically diverse primary producers. It is thought that their viruses (phages) mediate population sizes and affect the evolutionary trajectories of their hosts. Here we present an analysis of genomes from three Prochlorococcus phages: a podovirus and two myoviruses. The morphology, overall genome features, and gene content of these phages suggest that they are quite similar to T7-like (P-SSP7) and T4-like (P-SSM2 and P-SSM4) phages. Using the existing phage taxonomic framework as a guideline, we examined genome sequences to establish “core” genes for each phage group. We found the podovirus contained 15 of 26 core T7-like genes and the two myoviruses contained 43 and 42 of 75 core T4-like genes. In addition to these core genes, each genome contains a significant number of “cyanobacterial” genes, i.e., genes with significant best BLAST hits to genes found in cyanobacteria. Some of these, we speculate, represent “signature” cyanophage genes. For example, all three phage genomes contain photosynthetic genes (psbA, hliP) that are thought to help maintain host photosynthetic activity during infection, as well as an aldolase family gene (talC) that could facilitate alternative routes of carbon metabolism during infection. The podovirus genome also contains an integrase gene (int) and other features that suggest it is capable of integrating into its host. If indeed it is, this would be unprecedented among cultured T7-like phages or marine cyanophages and would have significant evolutionary and ecological implications for phage and host. Further, both myoviruses contain phosphate-inducible genes (phoH and pstS) that are likely to be important for phage and host responses to phosphate stress, a commonly limiting nutrient in marine systems. Thus, these marine cyanophages appear to be variations of two well-known phages—T7 and T4—but contain genes that, if functional, reflect adaptations for infection of photosynthetic hosts in low-nutrient oceanic environments.  相似文献   

15.
Prochlorococcus is the numerically dominant phototroph in the oligotrophic subtropical ocean and carries out a significant fraction of marine primary productivity. Although field studies have provided evidence for nitrate uptake by Prochlorococcus, little is known about this trait because axenic cultures capable of growth on nitrate have not been available. Additionally, all previously sequenced genomes lacked the genes necessary for nitrate assimilation. Here we introduce three Prochlorococcus strains capable of growth on nitrate and analyze their physiology and genome architecture. We show that the growth of high-light (HL) adapted strains on nitrate is ∼17% slower than their growth on ammonium. By analyzing 41 Prochlorococcus genomes, we find that genes for nitrate assimilation have been gained multiple times during the evolution of this group, and can be found in at least three lineages. In low-light adapted strains, nitrate assimilation genes are located in the same genomic context as in marine Synechococcus. These genes are located elsewhere in HL adapted strains and may often exist as a stable genetic acquisition as suggested by the striking degree of similarity in the order, phylogeny and location of these genes in one HL adapted strain and a consensus assembly of environmental Prochlorococcus metagenome sequences. In another HL adapted strain, nitrate utilization genes may have been independently acquired as indicated by adjacent phage mobility elements; these genes are also duplicated with each copy detected in separate genomic islands. These results provide direct evidence for nitrate utilization by Prochlorococcus and illuminate the complex evolutionary history of this trait.  相似文献   

16.
Chromatic Adaptation in Marine Synechococcus Strains   总被引:3,自引:0,他引:3       下载免费PDF全文
Characterization of two genetically distinct groups of marine Synechococcus sp. strains shows that one, but not the other, increases its phycourobilin/phycoerythrobilin chromophore ratio when growing in blue light. This ability of at least some marine Synechococcus strains to chromatically adapt may help explain their greater abundance in particular ocean environments than cyanobacteria of the genus Prochlorococcus.  相似文献   

17.
18.
Phosphonates (Pn) are diverse organic phosphorus (P) compounds containing C–P bonds and comprise up to 25% of the high-molecular weight dissolved organic P pool in the open ocean. Pn bioavailability was suggested to influence markedly bacterial primary production in low-P areas. Using metagenomic data from the Global Ocean Sampling expedition, we show that the main potential microbial contributor in Pn utilization in oceanic surface water is the globally important marine primary producer Prochlorococcus. Moreover, a number of Prochlorococcus strains contain two distinct putative Pn uptake operons coding for ABC-type Pn transporters. On the basis of microcalorimetric measurements, we find that each of the two different putative Pn-binding protein (PhnD) homologs transcribed from these operons possesses different Pn- as well as inorganic phosphite-binding specificities. Our results suggest that Prochlorococcus adapt to low-P environments by increasing the number of Pn transporters with different specificities towards phosphite and different Pns.  相似文献   

19.
Synechococcus and Prochlorococcus have made great contributions to earth’s photosynthetic biomass. ATP-binding cassette (ABC) protein systems have been characterized to play important roles in various physiological functions, including carbon fixation, phosphate assimilation, and vitamin B12 metabolism. In this study, the repertoire and domain architectures of ABC systems in Synechococcus and Prochlorococcus, as well as their potential evolutionary mechanism, have been surveyed extensively. Comparative analysis revealed an uneven phylogenetic distribution of the ABC systems in these organisms, and in particular that fresh-water Synechococcus strains contain more ABC systems than those of marine ones. Phylogenetic analysis indicated that lineage-specific gene expansion and duplication may be the important forces driving the variability of ABC systems in fresh-water Synechococcus and such an expansion was likely to be relevant to their ecological tolerance. At the domain level, ATP-binding domains in several ABC systems were found to fuse with many additional domains after the divergence from their common ancestor, indicating the versatile functions of ABC systems in cyanobacteria. Subsequently, 19 ABC system families were deduced to be the core set of ABC systems conserved in all marine-living Synechococcus and Prochlorococcus. In conclusion, the comprehensive survey of ABC systems in Synechococcus and Prochlorococcus provides novel insights into their potential evolutionary mechanism and the basis for further investigation of their physiological roles.  相似文献   

20.
Regulatory small RNAs (sRNAs) have crucial roles in the adaptive responses of bacteria to changes in the environment. Thus far, potential regulatory RNAs have been studied mainly in marine picocyanobacteria in genetically intractable Prochlorococcus, rendering their molecular analysis difficult. Synechococcus sp. WH7803 is a model cyanobacterium, representative of the picocyanobacteria from the mesotrophic areas of the ocean. Similar to the closely related Prochlorococcus it possesses a relatively streamlined genome and a small number of genes, but is genetically tractable. Here, a comparative genome analysis was performed for this and four additional marine Synechococcus to identify the suite of possible sRNAs and other RNA elements. Based on the prediction and on complementary microarray profiling, we have identified several known as well as 32 novel sRNAs. Some sRNAs overlap adjacent coding regions, for instance for the central photosynthetic gene psbA. Several of these novel sRNAs responded specifically to environmentally relevant stress conditions. Among them are six sRNAs changing their accumulation level under cold stress, six responding to high light and two to iron limitation. Target predictions suggested genes encoding components of the light-harvesting apparatus as targets of sRNAs originating from genomic islands and that one of the iron-regulated sRNAs might be a functional homolog of RyhB. These data suggest that marine Synechococcus mount adaptive responses to these different stresses involving regulatory sRNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号