首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite the important contribution of self-transmissible plasmids to bacterial evolution, little is understood about the range of hosts in which these plasmids have evolved. Our goal was to infer this so-called evolutionary host range. The nucleotide composition, or genomic signature, of plasmids is often similar to that of the chromosome of their current host, suggesting that plasmids acquire their hosts’ signature over time. Therefore, we examined whether the evolutionary host range of plasmids could be inferred by comparing their trinucleotide composition to that of all completely sequenced bacterial chromosomes. The diversity of candidate hosts was determined using taxonomic classification and genetic distance. The method was first tested using plasmids from six incompatibility (Inc) groups whose host ranges are generally thought to be narrow (IncF, IncH, and IncI) or broad (IncN, IncP, and IncW) and then applied to other plasmid groups. The evolutionary host range was found to be broad for IncP plasmids, narrow for IncF and IncI plasmids, and intermediate for IncH and IncN plasmids, which corresponds with their known host range. The IncW plasmids as well as several plasmids from the IncA/C, IncP, IncQ, IncU, and PromA groups have signatures that were not similar to any of the chromosomal signatures, raising the hypothesis that these plasmids have not been ameliorated in any host due to their promiscuous nature. The inferred evolutionary host range of IncA/C, IncP-9, and IncL/M plasmids requires further investigation. In this era of high-throughput sequencing, this genomic signature method is a useful tool for predicting the host range of novel mobile elements.Comparative genomics has clearly shown that bacterial evolution occurs not only through genetic changes that are vertically inherited but also by extensive horizontal gene transfer between closely and distantly related bacteria (9). Mobile genetic elements such as plasmids and phages serve as important agents of horizontal gene transfer that can exchange genetic material between chromosomes (26). Plasmids also play a critical role in rapid bacterial adaptation to local environmental changes, as best exemplified by the alarmingly rapid spread of plasmid-encoded multidrug resistance in human pathogens (44, 66). In spite of this, very little is understood about the range of bacterial hosts in which these plasmids may have resided and evolved in natural or clinical environments over time, i.e., their potential “evolutionary host range.” Understanding the evolutionary history of virulence, catabolic, and other plasmids may help us to reconstruct the plasmid transfer network among microorganisms and track the pathways of gene dissemination.A plasmid''s host range can be defined in different ways, but it is typically understood as the range of hosts in which a plasmid can replicate (replication host range, or from here on simply called “host range”). This host range is often narrower than the range of hosts to which the plasmid can transfer by conjugation (transfer host range) (32, 72) but wider than the range in which it can be stably maintained (long-term host range) (16). The host range of a plasmid is often determined by mating assays, wherein that plasmid is transferred into a set of recipient strains followed by selection for transconjugant clones that can express one of the traits encoded by the plasmid (40, 47). Ideally, the physical presence of the plasmids is then verified to confirm independent replication. Sometimes the host range is also inferred from the observed natural range of hosts in which a plasmid is found in various habitats (24, 72). The plasmid host range is known to be highly variable among plasmids, and the terms “narrow host range” and “broad host range” are used as qualitative indicators (18, 49, 62). For example, it has been generally considered that incompatibility (Inc) groups IncF, IncH, and IncI contain self-transmissible narrow-host-range plasmids, while IncN, IncP, and IncW plasmids transfer and replicate in a broad range of hosts (13, 49, 62). This oldest system of plasmid classification into Inc groups is based on the inability of plasmids from the same group to be maintained in the same host due to similarity in replication or partitioning systems (11, 53). We note that IncP plasmids are also called IncP-1 in the Pseudomonas classification system, but they are here referred to as IncP. The entire range of hosts, including ancestral forms and extant bacteria, in which a plasmid has replicated at some point during its evolutionary history is of course unknown but expected to be narrower than its replication range. Here, we designate this range the “evolutionary host range.”To understand the contributions of plasmids to horizontal gene transfer and bacterial evolution, it is not sufficient to know the hosts in which plasmids can potentially replicate and be maintained when tested in the laboratory or the field. While very valid, such experiments (13, 17, 40, 47, 56, 72) do not allow us to evaluate which plasmids have in fact spread among the widest range of hosts in the past and therefore contributed most so far to horizontal gene transfer across distantly related bacteria. We also need to gain insight into the range of hosts in which they have actually resided over evolutionary time—their evolutionary host range. This insight into the evolutionary history of plasmids will also shed light on the reservoirs of the many unwanted drug resistance and virulence plasmids (65). Previous studies have shown that the dinucleotide composition (2-mer genomic signatures) of plasmids tend to be similar to those of the chromosomes of their known host, suggesting that the plasmids acquire the host''s genomic signature (7, 67). It has previously been suggested that host-specific mutational biases homogenize the nucleotide compositions of genetic elements that are being replicated in the same host (plasmids, phages, and DNA fragments inserted in the chromosome); this phenomenon has been designated “genome amelioration” (7, 43). In addition, due to the potential DNA exchange between chromosomes and plasmids by recombination and transposition (8, 42), acquisition of large sections of chromosomal DNA by plasmids may also result in similar signatures between plasmids and their evolutionary hosts. It thus follows that a similar genomic signature between a plasmid and a host''s chromosome may indicate residence of the plasmid in that or a closely related host during its evolutionary history. Therefore, it should be possible to infer the evolutionary host range for plasmids whose genome sequences have been determined, based on the similarity in genomic signature with that of completely sequenced bacterial chromosomes.The goal of this study was to infer the evolutionary host range of various plasmids based on their genomic signatures. Specifically, we postulate (i) that known broad-host-range plasmids from Proteobacteria have evolved in a wider range of hosts than narrow-host-range plasmids and (ii) that our genomic signature approach can be used to assess the promiscuity of sequenced but uncharacterized plasmids and other mobile elements. To develop our approach, we chose self-transmissible plasmids belonging to six incompatibility groups, whose host ranges have been studied intensively and are thought to be narrow (IncF, IncH, and IncI) or broad (IncN, IncP, and IncW). To propose candidate evolutionary hosts of these plasmids, we compared the genomic signature of each plasmid with those of 817 chromosomes of prokaryotes for which complete sequences were available. Our results suggest that the evolutionary host range is broad for IncP plasmids, narrow for IncF and IncI plasmids, and intermediate for IncH and IncN plasmids. The lack of hosts with signatures similar to the IncW plasmids raises the hypothesis that they have not been ameliorated for any host due to their promiscuity. We then used the same method to infer the evolutionary host range of additional plasmid groups, such as IncA/C (also called IncP-3), IncL/M, IncP-9, IncQ (IncP-4), IncU, and PromA and plasmids Ri and Ti from Agrobacterium sp. (designated Ri/Ti). The similarities and discrepancies between our findings and previous knowledge on plasmid host range are discussed.  相似文献   

2.
Since the food-borne pathogen Listeria monocytogenes is common in dairy farm environments, it is likely that phages infecting this bacterium (“listeriaphages”) are abundant on dairy farms. To better understand the ecology and diversity of listeriaphages on dairy farms and to develop a diverse phage collection for further studies, silage samples collected on two dairy farms were screened for L. monocytogenes and listeriaphages. While only 4.5% of silage samples tested positive for L. monocytogenes, 47.8% of samples were positive for listeriaphages, containing up to >1.5 × 104 PFU/g. Host range characterization of the 114 phage isolates obtained, with a reference set of 13 L. monocytogenes strains representing the nine major serotypes and four lineages, revealed considerable host range diversity; phage isolates were classified into nine lysis groups. While one serotype 3c strain was not lysed by any phage isolates, serotype 4 strains were highly susceptible to phages and were lysed by 63.2 to 88.6% of phages tested. Overall, 12.3% of phage isolates showed a narrow host range (lysing 1 to 5 strains), while 28.9% of phages represented broad host range (lysing ≥11 strains). Genome sizes of the phage isolates were estimated to range from approximately 26 to 140 kb. The extensive host range and genomic diversity of phages observed here suggest an important role of phages in the ecology of L. monocytogenes on dairy farms. In addition, the phage collection developed here has the potential to facilitate further development of phage-based biocontrol strategies (e.g., in silage) and other phage-based tools.  相似文献   

3.
Knopf P. M. and Soliman M. 1980. Effects of host endocrine gland removal on the permissive status of laboratory rodents to infection by Schistosoma mansoni. International Journal for Parasitology, 10: 197–204. The capacity of Schistosoma mansoni to complete its life cycle was compared in CD-1 mice (permissive hosts) and Sprague-Dawley rats (nonpermissive hosts) from which the pituitary gland had been removed prior to infection with cercariae. Except for a modest decrease in egg burden, none of the parameters of worm life cycle assessed were affected in hypophysectomized mice. In contrast, all these parameters were affected in hypophysectomized rats, e.g. onset of adult worm elimination was delayed, worm development improved, oviposition increased and miracidia developed. Effects of removal from rats of the thyroid/parathyroid glands on the parasite life cycle were similar to hypophysectomy; adrenalectomy or gonadectomy were without affect. Differences between thyroidectomized and thymectomized rats are discussed. It is concluded that host hormones contribute to the nonpermissive status of rats to Schistosoma mansoni infections.  相似文献   

4.
The survival, growth, and egg-laying capacity of young adult Angiostrongylus cantonensis, surgically transferred from intracranial sites into pulmonary arteries, were studied. A variety of experimental animals (rats, guinea pigs, mice, and mastomys) were chosen as donor animals and as recipient hosts (rats, guinea pigs, and rabbits). These species were specifically chosen to span the spectrum of host permissiveness relative to worm development in an attempt to understand the mechanisms which underlie species-dependent resistance. Recipient animals were monitored not only for the development of parasites per se but also for antibody production and histopathologic changes. The results indicated that these procedures were technically feasible, with good worm development following intra-rat transfers, as early as 15 days after initial exposure. Studies were performed to analyze the constraints of development both on initial, i.e., prelung and subsequent i.e., postlung development. When worms were obtained from permissive species such as rat or mastomys, transfer into rats resulted in good growth and development; however, worms which developed initially in exposed mice or guinea pigs developed less well in the rat. Conversely, worms which developed initially in permissive host such as the rat, when transferred into a variety of less permissive hosts such as the guinea pig and rabbit, apparently did not survive and caused significant morbidity and mortality within the nonpermissive host. Histopathologic evaluation revealed a strong eosinophilic perivascular and peribronchiolar infiltration as well as granulomatous reactions surrounding the worms in the lungs of recipient guinea pigs and rabbits, changes not observed in the lungs of permissive rat recipients. As reaginic antibody responses were also more prominent in nonpermissive than in permissive animals, it is possible that IgE responses may be more directly related to the phenomenon of morbidity and/or permissiveness than are other aspects of immune response. In support of this contention was the finding of nearly equivalent hemagglutinating antibody production between permissive rats and nonpermissive guinea pigs and rabbits.  相似文献   

5.
Brucella species include important zoonotic pathogens that have a substantial impact on both agriculture and human health throughout the world. Brucellae are thought of as “stealth pathogens” that escape recognition by the host innate immune response, modulate the acquired immune response, and evade intracellular destruction. We analyzed the genome sequences of members of the family Brucellaceae to assess its evolutionary history from likely free-living soil-based progenitors into highly successful intracellular pathogens. Phylogenetic analysis split the genus into two groups: recently identified and early-dividing “atypical” strains and a highly conserved “classical” core clade containing the major pathogenic species. Lateral gene transfer events brought unique genomic regions into Brucella that differentiated them from Ochrobactrum and allowed the stepwise acquisition of virulence factors that include a type IV secretion system, a perosamine-based O antigen, and systems for sequestering metal ions that are absent in progenitors. Subsequent radiation within the core Brucella resulted in lineages that appear to have evolved within their preferred mammalian hosts, restricting their virulence to become stealth pathogens capable of causing long-term chronic infections.  相似文献   

6.
Angiostrongylus cantonensis (AC) is well-documented that parasitizes the host brain and causes eosinophilic meningitis. The migration route of AC in permissive hosts is well demonstrated, while in nonpermissive hosts, it remains to be fully defined. In the present study, we exploited live imaging technology, morphological and pathological configuration analysis, and molecular biological technologies to explore the migration route of AC and the accompanying tissue damage in nonpermissive and permissive hosts. Our data indicated that, in nonpermissive host mouse, AC larvae migrated from intestinal wall to liver at 2 hours post-infection (hpi), from liver to lung at 4 hpi and then from lung to brain at 8 hpi. AC larval migration caused fatal lung injury (pneumonia) during acute and early infection phases, along with significant activation of Stat3/IL-6 signaling. In addition, AC induce sustained interstitial pneumonia in mouse and rat and pulmonary fibrosis only in rat during late infection phase. Moreover, during the early and late infection phases, Th2 cytokine expression and Stat3 and IL-6 signaling were persistently enhanced and myeloid macrophage cells were notably enriched in host lung, and administration of Stat3 and IL-6 inhibitors (C188-9 and LMT-28) attenuated AC infection-induced acute pneumonia in mice. Overall, we are the first to provide direct and systemic laboratory evidence of AC migration route in a nonpermissive host and report that infection with a high dose of AC larvae could result in acute and fatal pneumonia through Stat3/IL-6 signaling in mice. These findings may present a feasible to rational strategy to minimize the pathogenesis induced by AC.  相似文献   

7.
The chlamydiae are obligate intracellular parasites that have evolved specific interactions with their various hosts and host cell types to ensure their successful survival and consequential pathogenesis. The species Chlamydia pneumoniae is ubiquitous, with serological studies showing that most humans are infected at some stage in their lifetime. While most human infections are asymptomatic, C. pneumoniae can cause more-severe respiratory disease and pneumonia and has been linked to chronic diseases such as asthma, atherosclerosis, and even Alzheimer''s disease. The widely dispersed animal-adapted C. pneumoniae strains cause an equally wide range of diseases in their hosts. It is emerging that the ability of C. pneumoniae to survive inside its target cells, including evasion of the host''s immune attack mechanisms, is linked to the acquisition of key metabolites. Tryptophan and arginine are key checkpoint compounds in this host-parasite battle. Interestingly, the animal strains of C. pneumoniae have a slightly larger genome, enabling them to cope better with metabolite restrictions. It therefore appears that as the evolutionarily more ancient animal strains have evolved to infect humans, they have selectively become more “susceptible” to the levels of key metabolites, such as tryptophan. While this might initially appear to be a weakness, it allows these human C. pneumoniae strains to exquisitely sense host immune attack and respond by rapidly reverting to a persistent phase. During persistence, they reduce their metabolic levels, halting progression of their developmental cycle, waiting until the hostile external conditions have passed before they reemerge.  相似文献   

8.
The oceanic cyanobacteria Prochlorococcus are globally important, ecologically diverse primary producers. It is thought that their viruses (phages) mediate population sizes and affect the evolutionary trajectories of their hosts. Here we present an analysis of genomes from three Prochlorococcus phages: a podovirus and two myoviruses. The morphology, overall genome features, and gene content of these phages suggest that they are quite similar to T7-like (P-SSP7) and T4-like (P-SSM2 and P-SSM4) phages. Using the existing phage taxonomic framework as a guideline, we examined genome sequences to establish “core” genes for each phage group. We found the podovirus contained 15 of 26 core T7-like genes and the two myoviruses contained 43 and 42 of 75 core T4-like genes. In addition to these core genes, each genome contains a significant number of “cyanobacterial” genes, i.e., genes with significant best BLAST hits to genes found in cyanobacteria. Some of these, we speculate, represent “signature” cyanophage genes. For example, all three phage genomes contain photosynthetic genes (psbA, hliP) that are thought to help maintain host photosynthetic activity during infection, as well as an aldolase family gene (talC) that could facilitate alternative routes of carbon metabolism during infection. The podovirus genome also contains an integrase gene (int) and other features that suggest it is capable of integrating into its host. If indeed it is, this would be unprecedented among cultured T7-like phages or marine cyanophages and would have significant evolutionary and ecological implications for phage and host. Further, both myoviruses contain phosphate-inducible genes (phoH and pstS) that are likely to be important for phage and host responses to phosphate stress, a commonly limiting nutrient in marine systems. Thus, these marine cyanophages appear to be variations of two well-known phages—T7 and T4—but contain genes that, if functional, reflect adaptations for infection of photosynthetic hosts in low-nutrient oceanic environments.  相似文献   

9.
Many parasites are motile and exhibit behavioural preferences for certain host species. Because hosts can vary in their susceptibility to infections, parasites might benefit from preferentially detecting and infecting the most susceptible host, but this mechanistic hypothesis for host-choice has rarely been tested. We evaluated whether cercariae (larval trematode parasites) prefer the most susceptible host species by simultaneously presenting cercariae with four species of tadpole hosts. Cercariae consistently preferred hosts in the following order: Anaxyrus ( = Bufo) terrestris (southern toad), Hyla squirella (squirrel tree frog), Lithobates ( = Rana) sphenocephala (southern leopard frog), and Osteopilus septentrionalis (Cuban tree frog). These host species varied in susceptibility to cercariae in an order similar to their attractiveness with a correlation that approached significance. Host attractiveness to parasites also varied consistently and significantly among individuals within a host species. If heritable, this individual-level host variation would represent the raw material upon which selection could act, which could promote a Red Queen “arms race” between host cues and parasite detection of those cues. If, in general, motile parasites prefer to infect the most susceptible host species, this phenomenon could explain aggregated distributions of parasites among hosts and contribute to parasite transmission rates and the evolution of virulence. Parasite preferences for hosts belie the common assumption of disease models that parasites seek and infect hosts at random.  相似文献   

10.
Novel methodology is presented for indexing the relative potential of hosts to function as resources. A Host Potential Index (HPI) was developed as a practical framework to express relative host potential based on combining results from one or more independent studies, such as those examining host selection, utilization, and physiological development of the organism resourcing the host. Several aspects of the HPI are addressed including: 1) model derivation; 2) influence of experimental design on establishing host rankings for a study type (no choice, two-choice, and multiple-choice); and, 3) variable selection and weighting associated with combining multiple studies. To demonstrate application of the HPI, results from the interactions of spotted wing drosophila (SWD), Drosophila suzukii Matsumura (Diptera: Drosophilidae), with seven “reported” hosts (blackberries, blueberries, sweet cherries, table grapes, peaches, raspberries, and strawberries) in a postharvest scenario were analyzed. Four aspects of SWD-host interaction were examined: attraction to host volatiles; population-level oviposition performance; individual-level oviposition performance; and key developmental factors. Application of HPI methodology indicated that raspberries (meanHPIvaried = 301.9±8.39; rank 1 of 7) have the greatest potential to serve as a postharvest host for SWD relative to the other fruit hosts, with grapes (meanHPIvaried = 232.4±3.21; rank 7 of 7) having the least potential.  相似文献   

11.
Plasmids are ubiquitous mobile elements that serve as a pool of many host beneficial traits such as antibiotic resistance in bacterial communities. To understand the importance of plasmids in horizontal gene transfer, we need to gain insight into the ‘evolutionary history’ of these plasmids, i.e. the range of hosts in which they have evolved. Since extensive data support the proposal that foreign DNA acquires the host's nucleotide composition during long-term residence, comparison of nucleotide composition of plasmids and chromosomes could shed light on a plasmid's evolutionary history. The average absolute dinucleotide relative abundance difference, termed δ-distance, has been commonly used to measure differences in dinucleotide composition, or ‘genomic signature’, between bacterial chromosomes and plasmids. Here, we introduce the Mahalanobis distance, which takes into account the variance–covariance structure of the chromosome signatures. We demonstrate that the Mahalanobis distance is better than the δ-distance at measuring genomic signature differences between plasmids and chromosomes of potential hosts. We illustrate the usefulness of this metric for proposing candidate long-term hosts for plasmids, focusing on the virulence plasmids pXO1 from Bacillus anthracis, and pO157 from Escherichia coli O157:H7, as well as the broad host range multi-drug resistance plasmid pB10 from an unknown host.  相似文献   

12.
Viruses that infect phytoplankton are an important component of aquatic ecosystems, yet in lakes they remain largely unstudied. In order to investigate viruses (Phycodnaviridae) infecting eukaryotic phytoplankton in lakes and to estimate the number of potential host species, samples were collected from four lakes at the Experimental Lakes Area in Ontario, Canada, during the ice-free period (mid-May to mid-October) of 2004. From each lake, Phycodnaviridae DNA polymerase (pol) gene fragments were amplified using algal-virus-specific primers and separated by denaturing gradient gel electrophoresis; 20 bands were extracted from the gels and sequenced. Phylogenetic analysis indicated that freshwater environmental phycodnavirus sequences belong to distinct phylogenetic groups. An analysis of the genetic distances “within” and “between” monophyletic groups of phycodnavirus isolates indicated that DNA pol sequences that differed by more than 7% at the inferred amino acid level were from viruses that infect different host species. Application of this threshold to phylogenies of environmental sequences indicated that the DNA pol sequences from these lakes came from viruses that infect at least nine different phytoplankton species. A multivariate statistical analysis suggested that potential freshwater hosts included Mallomonas sp., Monoraphidium sp., and Cyclotella sp. This approach should help to unravel the relationships between viruses in the environment and the phytoplankton hosts they infect.  相似文献   

13.
The complete and accurate duplication of genomic information is vital to maintain genome stability in all domains of life. In Escherichia coli, replication termination, the final stage of the duplication process, is confined to the “replication fork trap” region by multiple unidirectional fork barriers formed by the binding of Tus protein to genomic ter sites. Termination typically occurs away from Tus-ter complexes, but they become part of the fork fusion process when a delay to one replisome allows the second replisome to travel more than halfway around the chromosome. In this instance, replisome progression is blocked at the nonpermissive interface of the Tus-ter complex, termination then occurs when a converging replisome meets the permissive interface. To investigate the consequences of replication fork fusion at Tus-ter complexes, we established a plasmid-based replication system where we could mimic the termination process at Tus-ter complexes in vitro. We developed a termination mapping assay to measure leading strand replication fork progression and demonstrate that the DNA template is under-replicated by 15 to 24 bases when replication forks fuse at Tus-ter complexes. This gap could not be closed by the addition of lagging strand processing enzymes or by the inclusion of several helicases that promote DNA replication. Our results indicate that accurate fork fusion at Tus-ter barriers requires further enzymatic processing, highlighting large gaps that still exist in our understanding of the final stages of chromosome duplication and the evolutionary advantage of having a replication fork trap.  相似文献   

14.
A bacteriophage of a certain Staphylococcus (a strain of Staphylococcus lactis) employed in the manufacture of dry sausage has been characterized. The host range of this bacteriophage is wide. In addition to the original host, 15 other strains (out of 40 strains tested) were found to support reproduction of the phage. The sensitive strains represented Staphylococcus saprophyticus and different types of S. lactis.

The growth rate of the bacterial host did not influence the rates of phage adsorption, nor the maximal reproduction rate of new particles. With increasing bacterial growth rate, the “lag” observed before phage reproduction started was distinctly decreased. This phase was shorter with the original host strain than with other sensitive strains.

Resistant cultures of the original host strain were easily obtained. These cultures grew as rapidly and gave as good yields of cell mass as the original phage-sensitive host. However, phage resistance was frequently lost.

  相似文献   

15.
With the increasing appreciation for the crucial roles that microbial symbionts play in the development and fitness of plant and animal hosts, there has been a recent push to interpret evolution through the lens of the “hologenome”—the collective genomic content of a host and its microbiome. But how symbionts evolve and, particularly, whether they undergo natural selection to benefit hosts are complex issues that are associated with several misconceptions about evolutionary processes in host-associated microbial communities. Microorganisms can have intimate, ancient, and/or mutualistic associations with hosts without having undergone natural selection to benefit hosts. Likewise, observing host-specific microbial community composition or greater community similarity among more closely related hosts does not imply that symbionts have coevolved with hosts, let alone that they have evolved for the benefit of the host. Although selection at the level of the symbiotic community, or hologenome, occurs in some cases, it should not be accepted as the null hypothesis for explaining features of host–symbiont associations.The ubiquity and importance of microorganisms in the lives of plants and animals are ever more apparent, and increasingly investigated by biologists. Suddenly, we have the aspiration and tools to open up a new, complicated world, and we must confront the realization that almost everything about larger organisms has been shaped by their history of evolving from, then with, microorganisms [1]. This development represents a dramatic shift in perspective—arguably a revolution—in modern biology.Do we need to revamp basic tenets of evolutionary theory to understand how hosts evolve with associated microorganisms? Some scientists have suggested that we do [2], and the recently introduced terms “holobiont” and “hologenome” encapsulate what has been described as an “emerging postmodern synthesis” [3]. Holobiont was initially used to refer to a host and a single inherited symbiont [4] but was later extended to a host and its community of associated microorganisms, specifically for the case of corals [5]. The idea of the holobiont is that a host and its associated microorganisms must be considered as an integrated unit in order to understand many biological and ecological features.The later introduction of the term hologenome [2,6,7] sought to describe a holobiont by its genetic composition. The term has been used in different ways by different authors, but in most contexts a hologenome is considered a genetic unit that represents the combined genomes of a host and its associated microorganisms [8]. This non-controversial definition of hologenome is linked to the idea that this entity has a role in evolution. For example, Gordon et al. [1,9] state, "The genome of a holobiont, termed the hologenome, is the sum of the genomes of all constituents, all of which can evolve within that context." That last phrase is sufficiently general that it can be interpreted in any number of ways. Like physical conditions, associated organisms can be considered as part of the environment and thus can be sources of natural selection, affecting evolution in each lineage.But a more sweeping and problematic proposal is given by originators of the term, which is that "the holobiont with its hologenome should be considered as the unit of natural selection in evolution" [2,7] or by others, that “an organism’s genetics and fitness are inclusive of its microbiome” [3,4]. The implication is that differential success of holobionts influences evolution of participating organisms, such that their observed features cannot be fully understood without considering selection at the holobiont level. Another formulation of this concept is the proposal that the evolution of host–microbe systems is “most easily understood by equating a gene in the nuclear genome to a microbe in the microbiome” [8]. Under this view, interactions between host and microbial genotypes should be considered as genetic epistasis (interactions among alleles at different loci in a genome) rather than as interactions between the host’s genotype and its environment.While biologists would agree that microorganisms have important roles in host evolution, this statement is a far cry from the claim that they are fused with hosts to form the primary units of selection, or that hosts and microorganisms provide different portions of a unified genome. Broadly, the hologenome concept contends, first, that participating lineages within a holobiont affect each other’s evolution, and, second, that that the holobiont is a primary unit of selection. Our aim in this essay is to clarify what kinds of evidence are needed for each of these claims and to argue that neither should be assumed without evidence. We point out that some observations that superficially appear to support the concept of the hologenome have spawned confusion about real biological issues (Box 1).

Box 1. Misconceptions Related to the Hologenome Concept

Misconception #1: Similarities in microbiomes between related host species result from codiversification. Reality: Related species tend to be similar in most traits. Because microbiome composition is a trait that involves living organisms, it is tempting to assume that these similarities reflect a shared evolutionary history of host and symbionts. This has been shown to be the case for some symbioses (e.g., ancient maternally inherited endosymbionts in insects). But for many interactions (e.g., gut microbiota), related hosts may have similar effects on community assembly without any history of codiversification between the host and individual microbial species (Fig 1B).Open in a separate windowFig 1Alternative evolutionary processes can result in related host species harboring similar symbiont communities.Left panel: Individual symbiont lineages retain fidelity to evolving host lineages, through co-inheritance or other mechanisms, with some gain and loss of symbiont lineages over evolutionary time. Right panel: As host lineages evolve, they shift their selectivity of environmental microbes, which are not evolving in response and which may not even have been present during host diversification. In both cases, measures of community divergence will likely be smaller for more closely related hosts, but they reflect processes with very different implications for hologenome evolution. Image credit: Nancy Moran and Kim Hammond, University of Texas at Austin. Misconception #2: Parallel phylogenies of host and symbiont, or intimacy of host and symbiont associations, reflect coevolution. Reality: Coevolution is defined by a history of reciprocal selection between parties. While coevolution can generate parallel phylogenies or intimate associations, these can also result from many other mechanisms. Misconception #3: Highly intimate associations of host and symbionts, involving exchange of cellular metabolites and specific patterns of colonization, result from a history of selection favoring mutualistic traits. Reality: The adaptive basis of a specific trait is difficult to infer even when the trait involves a single lineage, and it is even more daunting when multiple lineages contribute. But complexity or intimacy of an interaction does not always imply a long history of coevolution nor does it imply that the nature of the interaction involves mutual benefit. Misconception #4: The essential roles that microbial species/communities play in host development are adaptations resulting from selection on the symbionts to contribute to holobiont function. Reality: Hosts may adapt to the reliable presence of symbionts in the same way that they adapt to abiotic components of the environment, and little or no selection on symbiont populations need be involved. Misconception #5: Because of the extreme importance of symbionts in essential functions of their hosts, the integrated holobiont represents the primary unit of selection. Reality: The strength of natural selection at different levels of biological organization is a central issue in evolutionary biology and the focus of much empirical and theoretical research. But insofar as there is a primary unit of selection common to diverse biological systems, it is unlikely to be at the level of the holobiont. In particular cases, evolutionary interests of host and symbionts can be sufficiently aligned such that the predominant effect of natural selection on genetic variation in each party is to increase the reproductive success of the holobiont. But in most host–symbiont relationships, contrasting modes of genetic transmission will decouple selection pressures.  相似文献   

16.
Experimental transfer of the lung stage worms of Angiostrongylus cantonensis was performed between permissive hosts (rats) and between permissive (rat) and nonpermissive hosts (guinea pigs and rabbits). These worms from rats were rejected when implanted into nonpermissive hosts. Unexpectedly, similar worms did not survive well even in permissive hosts; the majority of recipient rats did not have first-stage larvae (L1) in their stools and, even when positive for L1, the number of the larvae shed was few. These findings contrast with the successful pulmonary arterial transfer of younger, intracranial-stage worms. It was shown that differences in rat strain between donor and recipient had no significant effect on the subsequent worm survival in recipient hosts. The alteration of maintaining conditions of the intrapulmonary worms, prior to transfer, in terms of temperature, media, and maintaining period, also showed no profound effect on the subsequent worm survival. The kinetics of precipitating and reaginic antibody levels in rats implanted with the intrapulmonary worms were analogous to those in rats with intracranial-stage worms. The findings indicate that some qualitative differences may exist between the worms obtained from two different sites.  相似文献   

17.
Diverse Phage-Encoded Toxins in a Protective Insect Endosymbiont   总被引:1,自引:0,他引:1       下载免费PDF全文
The lysogenic bacteriophage APSE infects “Candidatus Hamiltonella defensa,” a facultative endosymbiont of aphids and other sap-feeding insects. This endosymbiont has established a beneficial association with aphids, increasing survivorship following attack by parasitoid wasps. Although APSE and “Ca. Hamiltonella defensa” are effectively maternally transmitted between aphid generations, they can also be horizontally transferred among insect hosts, which results in genetically distinct “Ca. Hamiltonella defensa” strains infecting the same aphid species and sporadic distributions of both APSE and “Ca. Hamiltonella defensa” among hosts. Aphids infected only with “Ca. Hamiltonella defensa” have significantly less protection than those infected with both “Ca. Hamiltonella defensa” and APSE. This protection has been proposed to be connected to eukaryote-targeted toxins previously discovered in the genomes of two characterized APSE strains. In this study, we have sequenced partial genomes from seven additional APSE strains to address the evolution and extent of toxin variation in this phage. The APSE lysis region has been a hot spot for nonhomologous recombination of novel virulence cassettes. We identified four new toxins from three protein families, Shiga-like toxin, cytolethal distending toxin, and YD-repeat toxins. These recombination events have also resulted in reassortment of the downstream lysozyme and holin genes. Analysis of the conserved APSE genes flanking the variable toxin cassettes reveals a close phylogenetic association with phage sequences from two other facultative endosymbionts of insects. Thus, phage may act as a conduit for ongoing gene exchange among heritable endosymbionts.  相似文献   

18.
The majority of recently emerging infectious diseases in humans is due to cross-species pathogen transmissions from animals. To establish a productive infection in new host species, viruses must overcome barriers to replication mediated by diverse and rapidly evolving host restriction factors such as protein kinase R (PKR). Many viral antagonists of these restriction factors are species specific. For example, the rhesus cytomegalovirus PKR antagonist, RhTRS1, inhibits PKR in some African green monkey (AGM) cells, but does not inhibit human or rhesus macaque PKR. To model the evolutionary changes necessary for cross-species transmission, we generated a recombinant vaccinia virus that expresses RhTRS1 in a strain that lacks PKR inhibitors E3L and K3L (VVΔEΔK+RhTRS1). Serially passaging VVΔEΔK+RhTRS1 in minimally-permissive AGM cells increased viral replication 10- to 100-fold. Notably, adaptation in these AGM cells also improved virus replication 1000- to 10,000-fold in human and rhesus cells. Genetic analyses including deep sequencing revealed amplification of the rhtrs1 locus in the adapted viruses. Supplying additional rhtrs1 in trans confirmed that amplification alone was sufficient to improve VVΔEΔK+RhTRS1 replication. Viruses with amplified rhtrs1 completely blocked AGM PKR, but only partially blocked human PKR, consistent with the replication properties of these viruses in AGM and human cells. Finally, in contrast to AGM-adapted viruses, which could be serially propagated in human cells, VVΔEΔK+RhTRS1 yielded no progeny virus after only three passages in human cells. Thus, rhtrs1 amplification in a minimally permissive intermediate host was a necessary step, enabling expansion of the virus range to previously nonpermissive hosts. These data support the hypothesis that amplification of a weak viral antagonist may be a general evolutionary mechanism to permit replication in otherwise resistant host species, providing a molecular foothold that could enable further adaptations necessary for efficient replication in the new host.  相似文献   

19.
The appearance of lytic bacteriophage against newly introduced starter strains used during commercial cheese manufacture occurs rapidly, and their origin is not well understood. In this study, members of the group N streptococci were examined for the presence of bacteriophage restriction and modification systems. Two streptococcal phages from Streptococcus cremoris TR and Streptococcus lactis C2 (phage designations tr and c2) showed restricted lytic development on S. cremoris 799 and KH, respectively. Efficiency of plaquing was 1.9 × 10−7 for tr plaqued on 799 and 2.1 × 10−7 for c2 plaqued on KH. After passage through the restrictive hosts, these phages demonstrated high lytic ability for formerly restrictive hosts. Stress of the restrictive host strains at temperatures of 40 to 50°C resulted in a significant increase in the efficiency of plaquing of restricted bacteriophages. Elevated temperatures are encountered during commercial cheese manufacture. The results suggested that the temporary loss of host restriction activity with the resulting modification of nonspecific bacteriophage may contribute directly to the appearance of lytic phage against new starter strains.  相似文献   

20.
Vector‐borne parasites often manipulate hosts to attract uninfected vectors. For example, parasites causing malaria alter host odor to attract mosquitoes. Here, we discuss the ecology and evolution of fruit‐colonizing yeast in a tripartite symbiosis—the so‐called “killer yeast” system. “Killer yeast” consists of Saccharomyces cerevisiae yeast hosting two double‐stranded RNA viruses (M satellite dsRNAs, L‐A dsRNA helper virus). When both dsRNA viruses occur in a yeast cell, the yeast converts to lethal toxin‑producing “killer yeast” phenotype that kills uninfected yeasts. Yeasts on ephemeral fruits attract insect vectors to colonize new habitats. As the viruses have no extracellular stage, they depend on the same insect vectors as yeast for their dispersal. Viruses also benefit from yeast dispersal as this promotes yeast to reproduce sexually, which is how viruses can transmit to uninfected yeast strains. We tested whether insect vectors are more attracted to killer yeasts than to non‑killer yeasts. In our field experiment, we found that killer yeasts were more attractive to Drosophila than non‐killer yeasts. This suggests that vectors foraging on yeast are more likely to transmit yeast with a killer phenotype, allowing the viruses to colonize those uninfected yeast strains that engage in sexual reproduction with the killer yeast. Beyond insights into the basic ecology of the killer yeast system, our results suggest that viruses could increase transmission success by manipulating the insect vectors of their host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号