首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Cerrado (Brazilian savanna) is a biodiversity hotspot with a history of fire that goes back as far as 10 million years. Fire has influenced the evolution of several aspects of the vegetation, including reproduction and life cycles. This study tested how fire by‐products such as heat and smoke affect the germination of six species common to two Cerrado open physiognomies: wet grasslands and the campo sujo (grassland with scattered shrubs and dwarf trees). We subjected seeds collected in northern Brazil to heat shock and smoke treatments, both separately and combined, using different temperatures, exposure times, and smoke concentrations in aqueous solutions. High temperatures and smoke did not break seed dormancy nor stimulate germination of the Cerrado study species. However, seeds were not killed by high temperatures, indicating that they are fire‐tolerant. Our findings differed from those of other fire‐prone ecosystems (mostly of Mediterranean vegetation), where fire stimulates germination. Moreover, we provide important information regarding germination strategies of non‐woody Cerrado plants, showing the importance of considering the tolerance of seeds to high temperatures when evaluating fire‐related traits in fire‐prone ecosystems.  相似文献   

2.
 自然火干扰是森林生态系统的正常行为, 是决定森林物种构成、群落结构和生物多样性的主要因素。该研究将新疆喀纳斯旅游区作为研究对象, 把自然火干扰和树种结构作为不可分割的整体, 就喀纳斯旅游区树种结构对自然火干扰的响应进行了分析。结果表明, 受自然火干扰林分和长期未受干扰林分的树种结构之间存在明显的差异, 自然火干扰对阔叶针叶树种比、树种丰富度(Ma)和Shannon-Wiener多样性指数(H′)存在极显著的影响, 受自然火干扰后, 三者均表现出增大的特征。此外, 所调查范围内曾发生8次自然火干扰事件, 并且不同时期发生的自然火干扰对以阔叶针叶树种比为特质的季相结构和树种丰富度存在极显著的影响。自然火干扰是影响新疆喀纳斯旅游区季相结构和组成结构的主要因素之一。  相似文献   

3.
Questions: How does woody vegetation abundance and diversity differ after natural disturbances causing different levels of mortality? Location: Abies balsamea–Betula papyrifera boreal mixed‐wood stands of southeast Quebec, Canada. Methods: Woody vegetation abundance and diversity were quantified and compared among three disturbance‐caused mortality classes, canopy gap, moderate‐severity disturbances, and catastrophic fire, using redundancy analysis, a constrained linear ordination technique, and diversity indices. Results: Substantial changes in canopy tree species abundance and diversity only occurred after catastrophic fire. Shade‐tolerant, late‐successional conifer species remained dominant after canopy gap and moderate‐severity disturbances, whereas shade‐intolerant, early‐successional colonizers dominated canopy tree regeneration after catastrophic fire. Density and diversity of mid‐tolerant and shade‐intolerant understory tree and shrub species increased as the impact of disturbance increased. Highest species richness estimates were observed after catastrophic fire, with several species establishing exclusively under these conditions. Relative abundance of canopy tree regeneration was most similar after canopy gap and moderate‐severity disturbances. For the sub‐canopy tree and shrub community, relative species abundances were most similar after moderate‐severity disturbances and catastrophic fire. Vegetation responses to moderate‐severity disturbances thus had commonalities with both extremes of the disturbance‐caused mortality gradient, but for different regeneration layers. Conclusions: Current spatio‐temporal parameters of natural disturbances causing varying degrees of mortality promote the development of a complex, multi‐cohort forest condition throughout the landscape. The projected increase in time intervals between catastrophic fires may lead to reduced diversity within the system.  相似文献   

4.
火干扰与生态系统的碳循环   总被引:18,自引:0,他引:18  
吕爱锋  田汉勤  刘永强 《生态学报》2005,25(10):2734-2743
火干扰是陆地生态系统碳循环的重要影响因子。它改变着整个系统的碳循环过程与碳分布格局。正确评估火干扰在碳循环过程中的作用,对推进全球碳循环研究有着重要的意义。从4个方面系统的回顾了火干扰对碳循环的影响过程及其研究方法:(1)火烧过程中含碳痕量气体排放的估算;(2)火烧迹地恢复过程中净第一性生产力(NPP)与土壤呼吸的变化;(3)火干扰对生态系统碳源/汇的影响;(4)模型方法在火干扰与生态系统碳循环研究中的应用。目前火灾碳排量的估算方法业已成熟,但进行更精确的估算必须基于对受干扰生态系统的性质以及火势的时空变异性质的准确理解;相比之下,对于间接的、更为重要的影响,即对火烧迹地恢复过程中碳循环变化的研究则显不足。由于数据缺乏,现有研究大多限于对碳循环某一方面的观测与定量描述,缺乏全面的机理性分析。对此,实地观测、模型模拟与遥感观测的跨尺度集成将成为未来火干扰研究的一个主要方向。  相似文献   

5.
Fire has a major impact on the structure and function of many ecosystems globally. Pyrodiversity, the diversity of fires within a region (where diversity is based on fire characteristics such as extent, severity, and frequency), has been hypothesized to promote biodiversity, but changing climate and land management practices have eroded pyrodiversity. To assess whether changes in pyrodiversity will have impacts on ecological communities, we must first understand the mechanisms that might enable pyrodiversity to sustain biodiversity, and how such changes might interact with other disturbances such as drought. Focusing on plant–pollinator communities in mixed‐conifer forest with frequent fire in Yosemite National Park, California, we examine how pyrodiversity, combined with drought intensity, influences those communities. We find that pyrodiversity is positively related to the richness of the pollinators, flowering plants, and plant–pollinator interactions. On average, a 5% increase in pyrodiversity led to the gain of approximately one pollinator and one flowering plant species and nearly two interactions. We also find that a diversity of fire characteristics contributes to the spatial heterogeneity (β‐diversity) of plant and pollinator communities. Lastly, we find evidence that fire diversity buffers pollinator communities against the effects of drought‐induced floral resource scarcity. Fire diversity is thus important for the maintenance of flowering plant and pollinator diversity and predicted shifts in fire regimes to include less pyrodiversity compounded with increasing drought occurrence will negatively influence the richness of these communities in this and other forested ecosystems. In addition, lower heterogeneity of fire severity may act to reduce spatial turnover of plant–pollinator communities. The heterogeneity of community composition is a primary determinant of the total species diversity present in a landscape, and thus, lower pyrodiversity may negatively affect the richness of plant–pollinator communities across large spatial scales.  相似文献   

6.
Abstract Fire and herbivory are known to modify plant community structure. Many studies have suggested that fire ashes may increase soil nutrients in dystrophic soils. Herbivores may also change plant community structure through direct effects of herbivory and affecting nutrient cycling. Leaf‐cutting ants were traditionally viewed as herbivores, although their role may be more complex, because their nests affect both chemical and physical soil properties, thus affecting plants indirectly. We investigated the effects of frequent burning and of leaf‐cutting ants on the nutrient status of an herbaceous and a shrub species occurring in the Brazilian Cerrado, a habitat that is characterized by natural burnings. The proximity of ant nests resulted in an increase of nutrients in the leaves of both vegetation strata, whereas burning sometimes resulted in a decrease of nutrients. Our results do not lead to a possible positive effect of fire on plant nutrient content. On the other hand, ant nests may represent an important source of nutrients for plants on the nutrient‐depleted Cerrado soils and may accelerate vegetation recovery after burning.  相似文献   

7.
Recent increases in the frequency and size of desert wildfires bring into question the impacts of fire on desert invertebrate communities. Furthermore, consumer communities can strongly impact invertebrates through predation and top‐down effects on plant community assembly. We experimentally applied burn and rodent exclusion treatments in a full factorial design at sites in both the Mojave and Great Basin deserts to examine the impact that fire and rodent consumers have on invertebrate communities. Pitfall traps were used to survey invertebrates from April through September 2016 to determine changes in abundance, richness, and diversity of invertebrate communities in response to fire and rodent treatments. Generally speaking, rodent exclusion had very little effect on invertebrate abundance or ant abundance, richness or diversity. The one exception was ant abundance, which was higher in rodent access plots than in rodent exclusion plots in June 2016, but only at the Great Basin site. Fire had little effect on the abundances of invertebrate groups at either desert site, with the exception of a negative effect on flying‐forager abundance at our Great Basin site. However, fire reduced ant species richness and Shannon's diversity at both desert sites. Fire did appear to indirectly affect ant community composition by altering plant community composition. Structural equation models suggest that fire increased invasive plant cover, which negatively impacted ant species richness and Shannon's diversity, a pattern that was consistent at both desert sites. These results suggest that invertebrate communities demonstrate some resilience to fire and invasions but increasing fire and spread of invasive due to invasive grass fire cycles may put increasing pressure on the stability of invertebrate communities.  相似文献   

8.
Fire severity is thought to be an important determinant of landscape patterns of post‐fire regeneration, yet there have been few studies of the effects of variation in fire severity at landscape scales on floristic diversity and composition, and none within alpine vegetation. Understanding how fire severity affects alpine vegetation is important because fire is relatively infrequent in alpine environments. Globally, alpine ecosystems are at risk from climate change, which, in addition to warming, is likely to increase the severity and frequency of fire in south‐eastern Australia. Here we examine the effects of variation in fire severity on plant diversity and vegetation composition, 5 years after the widespread fires of 2003. We used floristic data from two wide‐spread vegetation types on the Bogong High Plains: open heathland and closed heathland. Three alternative models were tested relating variation in plant community attributes (e.g. diversity, ground cover of dominant species, amount of bare ground) to variation in fire severity. The models were (i) ‘linear’, attributes vary linearly with fire severity; (ii) ‘intermediate disturbance’, attributes are highest at intermediate fire severity and lowest at both low‐ and high‐severity; and (iii) ‘null’, attributes are unaffected by fire severity. In both heathlands, there were few differences in floristic diversity, cover of dominant species and community composition, across the strong fire severity gradient. The null model was most supported in the vast majority of cases, with only limited support for either the linear and intermediate disturbance models. Our data indicate that in both heathlands, vegetation attributes in burnt vegetation were converging towards that of the unburnt state. We conclude that fire severity had little impact on post‐fire regeneration, and that both closed and open alpine heathlands are resilient to variation in fire severity during landscape scale fires.  相似文献   

9.
Abstract Fire is an important ecological factor in Cerrado vegetation of central Brazil, and in other savanna ecosystems. The effect of fire on the abundance of some Xenarthran mammal species Priodontes maximus Kerr, 1792 (giant armadillo), Euphractus sexcinctus Linnaeus, 1758 (yellow armadillo) and Myrmecophaga tridactyla Linnaeus, 1758 (giant anteater)) was studied at Reserva Xavante do Rio das Mortes, a 329 000 ha Xavante Indian reserve in the Cerrado of Mato Grosso, Brazil. Track counts were used to compare the abundance of these mammals along seven burned and seven unburned transects, on seven occasions between August 1995 and August 1996. The number of tracks in burned and unburned areas did not differ. Xenarthrans probably use burned areas to obtain food resources, basically termites and ants. Xavante traditional fire hunts may reduce fuel accumulation and function as a mechanism to prevent more destructive fires. Fire management at Reserva Xavante is recommended because the burning system of Brazilian farmers is already influencing the Xavante community. Xavante traditional knowledge about fire could be an important instrument for this management.  相似文献   

10.
Abstract 1. This correlational study examines the relationship between the red imported fire ant (Solenopsis invicta) and native ants in a longleaf pine savanna. Fire ants are frequently associated with a decline in native ants throughout the invaded range, but fire ant invasion is often coupled with habitat disturbance. Invasion of fire ants into the longleaf pine savanna provides an opportunity to examine the structure of the ant community in the absence of habitat disturbance. 2. Pitfall trapping was conducted within the longleaf pine savanna as well as across a naturally occurring soil moisture gradient, in plots that had been artificially watered. 3. Species richness did not vary as a function of fire ant density. There was an inverse relationship between native ant density and fire ant density, but this abundance pattern does not necessarily imply a causal link between fire ant invasion and native ant decline. For individual species, fire ant densities were negatively correlated with the densities of only two native ant species, including Solenopsis carolinensis, a native species that potentially limits the invasion of fire ants. Additionally, fire ants and native ants respond differently to soil moisture, with native ants favouring drier conditions than fire ants. 4. The possible exclusion of fire ants by some native ants, as well as differences in habitat preferences, provide alternative explanations for the frequently observed negative correlation between fire ants and native ants.  相似文献   

11.
After rainfall and soils, fire and herbivory are two of the main determinants of savanna ecosystems. Although the interactive effects of fire and herbivores on soil and vegetation are widely acknowledged few studies have addressed these two factors in concert, and none of the studies has focused on the Kalahari sand system. We experimentally studied how annual late dry season fires and grazing affect herbaceous plant species composition, above- and belowground biomass, and soil and grass nutrient concentrations in the nutrient-poor semi-arid Kalahari system in northern Botswana. Four treatments (fire, grazing, fire + grazing, and no-fire–no-grazing) were applied for two consecutive years in the late dry season. Plant species composition was affected by treatment and year. The no-fire–no-grazing treatment was distinctly different from all the other treatments in terms of species composition. Beta diversity was lower on the fire treatment and grazing treatment, but not where fire and grazing were combined. Fire and grazing alone or in combination did not have a substantial effect on biomass, soil and plant nutrients or plant species alpha diversity. Plant nitrogen was the only element that differed between treatments, with high concentrations on all the grazed treatments in the first year and low levels on the fire-alone treatment during the second year. The results show that fire and grazing mainly affect species composition and large-scale biodiversity patterns as indicated by the no-fire–no-grazing treatment being distinctly different from other treatments, suggesting the evolutionary adaptation of this dystrophic Kalahari sand system to herbivory and fire.  相似文献   

12.
Extrafloral nectar of plants and honeydew of hemipterans is a food source extensively explored by ants. Although basically a sugary liquid food, nectar and honeydew are composed of different nutrients and offered in distinct ways; thus, ants must interact differently with plants and hemipterans. In this study we assessed the availability and dominance of nectar of extrafloral nectaries and honeydew of sap-sucking hemipterans (i.e., sugar-based resources) as mechanisms regulating interaction frequency and structuring ant-plant-hemipteran networks. We studied 12 plant species (240 shrubs, 20 per species) and 12 hemipteran species (240 aggregations, 20 per species) that interacted with 26 ant species in an area of Rupestrian Fields (Rocky Montane Savannah), Brazil. We observed that the 7 ant species that collected honeydew were a subset of the 25 ant species feeding on nectar, but the highly interacted species Camponotus crassus was the same for both subnetworks. The ant-plant subnetwork exhibited a nested pattern of interaction with a low degree of specialization, while the ant-hemipteran subnetwork exhibited lower nestedness but higher specialization. We found a positive relationship between the offer of EFNs and the number of interactions with ants, probably resulting from reduced competition in plants with high availability of EFNs. However, hemipteran species that were most abundant did not interact with more species of ants, probably because of the numerical dominance of the species tending all hemipteran aggregations, regardless of size. However, segregation between ant species was higher than expected by chance for both plants and hemipterans, confirming a deterministic factor (i.e., competition between ant species) regulating the frequency of interactions. In summary, the availability of ENFs seems to be an important mechanism regulating ant-plant interactions, while numerical dominance seems to be an important mechanism structuring ant-hemipteran interactions.  相似文献   

13.
Fire is an important component of many natural ecosystems affecting plant communities and arthropods by mortality during combustion and/or indirectly through the modification of the habitat. The Iberá Natural Reserve (INR) is one of the most diverse ecosystems in northern Argentina; it is dominated by grasslands commonly affected by disturbances, such as grazing and fire. The objective of this work was to study the response of ground-foraging ant assemblages, particular species, and functional groups to an extended fire of high intensity in four natural INR habitats with >5 years of cattle exclusion (strict conservation area). A total of 12,798 ant workers of 67 species were captured in 39 sampling stations. The ant fauna was less abundant in burned sites only a few days after the fire; 6 months later, no effect was detected. Richness and abundance of ants differed among unburned habitats. However, fire effect on species richness and composition remained unclear. The rapid recovery of the ant fauna made these insects poor indicators of long-term fire-promoted changes on biodiversity in open habitats dominated by grassland, though some ant species showed a high level of habitat fidelity mainly in unburned habitats. These results agree with those from other areas of the world, indicating that ants are particularly unreliable biodiversity indicators, with the exception of severe disturbance with long-term habitat restoration. Management decisions at the INR should be oriented to preserve the closed savanna, one of the most diverse and threatened habitat of Argentina.  相似文献   

14.
干扰对植物群落物种组成及多样性的影响   总被引:37,自引:6,他引:37  
毛志宏  朱教君 《生态学报》2006,26(8):2695-2701
在介绍了干扰的概念及其性质和干扰对物种多样性影响的有关假说基础上,以森林干扰为主要对象,探讨了干扰对植物群落物种组成的影响,并从干扰类型、干扰强度和干扰频率等几个方面阐述了干扰对植物群落物种多样性的影响;另外,还分析了重要的小尺度干扰——林隙在该方面的影响。分析总结出干扰对植物群落的影响差异主要与干扰特征、植物群落特征及植物的生物学特性和受干扰地点的资源条件有关。最后,总结分析了国内外在该方面研究存在的问题,并对今后研究提出一些建议,为相关工作提供参考。  相似文献   

15.
Banner-tailed kangaroo rats (Dipodomys spectabilis) are prominent ecosystem engineers that build large mounds that influence the spatial structuring of fungi, plants, and some ground-dwelling animals. Ants are diverse and functionally important components of arid ecosystems; some species are also ecosystem engineers. We investigated the effects of patch disturbances created by D. spectabilis mounds on ant assemblages in a Chihuahuan Desert grassland in southern New Mexico by using pitfall traps in a paired design (mound vs. matrix). Although the disturbances did not alter species richness or harbor unique ant communities relative to the matrix, they did alter species composition; the abundances of 6 of 26 species were affected. The disturbances might also act to disrupt spatial patterning of ants caused by other environmental gradients. In contrast to previous investigations of larger-scale disturbances, we detected no effects of the disturbances on ants at the functional-group level. Whether ant communities respond to disturbance at a functional-group or within-functional-group level may depend on the size and intensity of the disturbance. Useful functional-group schemes also may be scale-dependent, however, or species may respond idiosyncratically. Interactions between disturbance-generating mammals and ants may produce a nested spatial structure of patches. Received: 11 October 1999 / Accepted: 11 March 2000  相似文献   

16.
The effects of fire season on forb diversity patterns, density, and composition were determined for a northern Mixed Prairie site, USA. Repeated spring burns (dormant season), summer burns, fall burns (dormant season), and unburned treatments were compared over a 3-yr period characterized by wet and dry moisture conditions. Alpha and beta diversity were highest on unburned and summer burn treatments, while landscape mosaic diversity was highest on fall burns. Forb density was highest on fall and spring burn sites. Nine forb species comprised 82% of total densities and were significantly affected by fire season and year to year variations in moisture. Forb composition for unburned and spring burn treatments was similar, but both treatments were different from the summer burn and fall burn treatments which were similar to each other. Fire alone did not appear to be an intense enough disturbance to initiate drastic changes in the forb component of vegetation patches. Specific fire seasons did appear to either mask or enhance forb structure arising from other disturbance(s). Fire season also affected the scales of forb organization in the landscape. Contrasting spatial characteristics of the forb component of prairie plant communities may provide a diagnostic technique for exposing the interaction of disturbances at different temporal and spatial scales.  相似文献   

17.
The disturbance activities of many small mammals, including building burrows, mounds, trails and tunnels, and herbivory, can have significant impacts on their ecosystems, both through trophic and non‐trophic interactions. Some species have large enough impacts through their disturbances to be classed as ecosystem engineers and/or keystone species. Others have negative or null effects. However, at present it is difficult to predict whether the disturbances created by a given species will have significant effects on common measures of ecosystem response such as species richness, diversity and biomass. We ask whether variables characterizing disturbance type, responding species, disturbance‐making species and the environment can predict changes in magnitude and direction of effects on biomass, richness and diversity. We test these predictions with a meta‐analysis of 106 data entries in a database derived from 63 papers, representing 40 small mammal species. We find that small mammal disturbances in general increase biomass, and both increase and decrease richness and diversity. We also identify individual environmental, disturbance‐related, and species‐related variables associated with these changes in magnitude and direction. We discuss the likely interactions between these variables, and how current proxy measures of disturbance impact could be replaced by more accurate direct measures. We recommend that future studies focus on conditions characterized by combinations of variables we identify as significant, in order to understand how these variable interactions (which cannot be analysed through meta‐analysis) affect disturbance outcomes. Based on the gaps in our database and results, we also recommend that future studies directly measure disturbance impact, measure disturbance effects on animal and well as plant taxa, and take measurements on multiple scales.  相似文献   

18.
Ants are a dominant group in tropical savannas and here we examined the responses of the arboreal and ground‐dwelling ant fauna to a fire in a Neotropical savanna (cerrado) reserve in Central Brazil. Ants were collected using pitfall traps and baits placed in trees and on the ground beneath each tree. Of the 36 trees marked along two transects, half (from each transect) were burned and half not. The same trees were sampled 1 wk before and again 3 and 12 mo after the fire. Rarefaction curves and ordination analyses using data from all trees from each side of each transect indicated that overall ant species richness and composition did not change after fire. Fire, however, reduced the mean number of ant species per tree, and increased the mean number of species on the ground. Fire increased the average abundance of specialist predators, Camponotini, and opportunistic species, and decreased that of arboreal specialists. Changes in the ground‐dwelling fauna were only detected 12 mo after the fire, while those in the arboreal fauna occurred earlier and were no longer apparent 12 mo after the fire. We suggest that these contrasting results represent mainly an indirect response of the ant communities to fire‐induced changes in vegetation. Given the temporary and small scale nature of the effects detected and the overall resilience of the ant fauna, our results indicate that a single fire in the cerrado vegetation does not greatly impact the structure of ant communities in the short term.  相似文献   

19.
1. The fire ant, Solenopsis invicta, is a globally distributed invasive ant that is largely restricted to disturbed habitats in its introduced range. For more than half a century, biologists have believed its success results from superior competitive abilities relative to native ant species, as well as an escape from their natural enemies. 2. We used large volumes of hot water to kill fire ant colonies, and only fire ant colonies, on experimental plots in pastures, and found that populations and diversity of co-occurring ants did not subsequently increase. 3. These results are contrary to classical predictions and indicate that S. invicta is not a superior competitor that suppresses native ants, and that the low diversity and abundance of native ants in degraded ecosystems does not result from interaction with fire ants. Instead, other factors such as prior disturbance and recruitment limitation may be the primary limiting factors for native species in these habitats.  相似文献   

20.
In the boreal forest, fire, insects, and logging all affect spatial patterns in forest age and species composition. In turn, spatial legacies in age and composition can facilitate or constrain further disturbances and have important consequences for forest spatial structure and sustainability. However, the complex three-way interactions among fire, insects, and logging and their combined effects on forest spatial structure have seldom been investigated. We used a spatially explicit landscape simulation model to examine these interactions. Specifically, we investigated how the amount and the spatial scale of logging (cutblock size) in combination with succession, fire, and spruce budworm outbreaks affect area burned and area defoliated. Simulations included 30 replicates of 300 years for each of 19 different disturbance scenarios. More disturbances increased both the fragmentation and the proportion of coniferous species and imposed additional constraints on the extent of each disturbance. We also found that harvesting legacies affect fire and budworm differently due to differences in forest types consumed by each disturbance. Contrary to expectation, budworm defoliation did not affect area burned at the temporal scales studied and neither amount of logging nor cutblock size influenced defoliation extent. Logging increased fire size through conversion of more of the landscape to early seral, highly flammable forest types. Although logging increased the amount of budworm host species, spruce budworm caused mortality was reduced due to reductions in forest age. In general, we found that spatial legacies do not influence all disturbances equally and the duration of a spatial legacy is limited when multiple disturbances are present. Further information on post-disturbance succession is still needed to refine our understanding of long-term disturbance interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号