首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The encounter between APC and T cells is crucial for initiating immune responses to infectious microorganisms. In the spleen, interaction between dendritic cells (DC) and T cells occurs in the periarteriolar lymphoid sheath (PALS) into which DC and T cells migrate from the marginal zone (MZ) along chemokine gradients. However, the importance of DC migration from the MZ into the PALS for immune responses and host resistance to microbial infection has not yet been elucidated. In this study, we report that following Leishmania donovani infection of mice, the migration of splenic DC is regulated by the CCR7 ligands CCL19/CCL21. DC in plt/plt mutant mice that lack these chemokines are less activated and produce less IL-12, compared with those in wild-type mice. Similar findings are seen when mice are treated with pertussis toxin, which blocks chemokine signaling in vivo. plt/plt mice had increased susceptibility to L. donovani infection compared with wild-type mice, as determined by spleen and liver parasite burden. Analysis of splenic cytokine profiles at day 14 postinfection demonstrated that IFN-gamma and IL-4 mRNA accumulation was comparable in wild-type and plt/plt mice. In contrast, accumulation of mRNA for IL-10 was elevated in plt/plt mice. In addition, plt/plt mice mounted a delayed hepatic granulomatous response and fewer effector T cells migrated into the liver. Taken together, we conclude that DC migration from the MZ to the PALS is necessary for full activation of DC and the optimal induction of protective immunity against L. donovani.  相似文献   

2.
ICOS contributes to T cell expansion in CTLA-4 deficient mice   总被引:2,自引:0,他引:2  
Both CD28 and ICOS are important costimulatory molecules that promote Ag-specific cellular and humoral immune reactions. Whereas CD28 is generally thought to be the most important molecule in the initiation of a T cell response, ICOS is considered to act during the effector phase. We have investigated the contribution of ICOS to T cell responses in the absence of CTLA-4-mediated inhibition. Mice lacking CTLA-4, which show spontaneous CD28-mediated CD4(+) T cell activation, expansion and differentiation, were treated with antagonistic alphaICOS antibodies. Blocking the interaction between ICOS and its ligand B7RP-1 significantly reduced this aberrant T cell activation and caused a reduction in T cell numbers. In vitro analysis of CD4(+) T cells from treated mice revealed that ICOS blockade significantly reduced Th1 differentiation, while Th2 differentiation was only moderately inhibited. Further in vitro stimulation experiments demonstrated that ICOS is able to induce proliferation of murine CD4(+) and CD8(+) T cells but only in the presence of IL-2. These results indicate that ICOS is not only important for T cell effector function but also contributes to the expansion phase of a T cell response in the presence of CD28 signaling.  相似文献   

3.
Schistosomiasis is caused by parasitic flatworms known as schistosomes and affects over 200 million people worldwide. Prevention of T cell exhaustion by blockade of PD-1 results in clinical benefits to cancer patients and clearance of viral infections, however it remains largely unknown whether loss of PD-1 could prevent or cure schistosomiasis in susceptible mice. In this study, we found that S. japonicum infection dramatically induced PD-1 expression in T cells of the liver where the parasites chronically inhabit and elicit deadly inflammation. Even in mice infected by non-egg-producing unisex parasites, we still observed potent induction of PD-1 in liver T cells of C57BL/6 mice following S. japonicum infection. To determine the function of PD-1 in schistosomiasis, we generated PD-1-deficient mice by CRISPR/Cas9 and found that loss of PD-1 markedly increased T cell count in the liver and spleen of infected mice. IL-4 secreting Th2 cells were significantly decreased in the infected PD-1-deficient mice whereas IFN-γ secreting CD4+ and CD8+ T cells were markedly increased. Surprisingly, such beneficial changes of T cell response did not result in eradication of parasites or in lowering the pathogen burden. In further experiments, we found that loss of PD-1 resulted in both beneficial T cell responses and amplification of regulatory T cells that prevented PD-1-deficient T cells from unleashing anti-parasite activity. Moreover, such PD-1-deficient Tregs exert excessive immunosuppression and express larger amounts of adenosine receptors CD39 and CD73 that are crucial for Treg-mediated immunosuppression. Our experimental results have elucidated the function of PD-1 in schistosomiasis and provide novel insights into prevention and treatment of schistosomiasis on the basis of modulating host adaptive immunity.  相似文献   

4.
The T lymphocytes that expand with age in the peripheral lymphoid organs of autoimmune disease-prone mice homozygous for the lpr mutation display deficient activation and proliferation in response to mitogenic lectins or antigen. In the present study, an attempt was made to correlate the deficient agonist-induced proliferation of these lpr T cells with early transmembrane signaling events mediated by receptor-coupled phosphoinositide hydrolysis. lpr T cells were capable of binding the agonistic lectin, phytohemagglutinin, in a normal manner. In addition, they expressed on their surface the antigen-specific T cell receptor-CD3 complex, which is required for T cell activation, albeit at a lower density than that found on congenic +/+ T cells. Furthermore, lpr T cells contained normal levels of the Ca2+- and phospholipid-dependent enzyme, protein kinase C, and the enzyme was translocated from the cytosol to the particulate fraction upon phorbol ester treatment. On the other hand, the lpr T cells displayed a markedly deficient agonist-induced phosphoinositide hydrolysis in comparison with their congenic +/+ counterparts, as indicated by the minimal accumulation of the phosphoinositide-derived second messengers, inositol phosphates and diacylglycerol. The defective step(s) in transmembrane signaling was bypassed by a combination of phorbol ester plus Ca2+ ionophore, which reconstituted proliferative responses of lpr T cells to normal levels, suggesting that: (a) the phosphoinositide signaling pathway plays an obligatory role in T cell activation; and (b) signaling events subsequent to phosphoinositide hydrolysis are, for the most part, intact in lpr T cells. The deficient step(s) in lpr T cell activation precedes, therefore, the generation of phosphoinositide-derived second messengers and could be due to defective function of the T cell receptor-CD3 complex, GTP-binding proteins, and/or phosphoinositide-specific phosphodiesterase. It remains to be determined whether the deficient signaling event(s) in lpr T cells is a direct pathologic consequence of the lpr gene, or rather, reflects the immature status of a normally minor thymic subset that is aberrantly exported and expanded in lpr mice.  相似文献   

5.
动脉粥样硬化发生发展与免疫细胞参与的免疫反应密切相关,其中自然杀伤细胞主要是通过释放IFN-γ、穿孔素和颗粒酶等方式发挥生物学作用,自然杀伤T细胞通过释放多种细胞因子影响动脉粥样硬化形成,但其具体机制未明。本文就自然杀伤细胞和自然杀伤T细胞对动脉粥样硬化的影响做一综述,为动脉粥样硬化及其相关疾病的防治研究提供新的思路。  相似文献   

6.
7.
自然杀伤(natural killer,NK)细胞和自然杀伤T(natural killer T,NKT)细胞是参与机体抗病毒免疫和肿瘤免疫的两群淋巴细胞亚群,是介导先天性免疫(innate immunity)应答和调节适应性免疫(adaptive immunity)应答的重要效应细胞。近年来,随着对NK细胞和NKT细胞及其转录调控因子研究的不断深入,NK细胞和NKT细胞的发育机制逐步被阐明,这将为提高NK细胞和NKT细胞的抗病毒和肿瘤免疫疗效提供新的策略。  相似文献   

8.
The trophoblast, the outermost layer of the human placenta, lacks expression of the classical human leukocyte antigen (HLA) class I molecules. This prevents allorecognition by T cells but raises the question of what protects the trophoblast from natural killer (NK) cells. In a previous study, we have shown that choriocarcinoma cell (CC) resistance to NK lysis was mainly independent of HLA class I molecules. In the present study, we postulated that CC may prevent activation of NK cells by failing to stimulate their triggering receptors (TR). To test this hypothesis, we evaluated the lysis of JAR and JEG-3 CC after effective cross-linking and activation of NK cells by means of lectins or antibodies. Our results show that NK-resistant CC were sensitive to lysis by unstimulated peripheral blood lymphocytes in the presence of phytohemagglutin (PHA), to antibody-dependent cell cytotoxicity in presence of anti-Tja antibodies, and to monoclonal antibody redirected killing using anti-TR antibodies anti-CD16 and anti-CD244/2B4. Finally, CC fail to express CD48, the ligand for CD244/2B4. These results indicate that the resistance of CC to lysis results primarily from defective NK cell activation, at least partially due to the lack of expression of ligands, such as CD48, involved in the triggering of NK cells.  相似文献   

9.
Mouse L-cell lines (B-82, tk-) were obtained using the stepwise selection method, their aminopterin (AP) resistance being 10(3)-5 X 10(4) times higher than that of parental cells. This resistance increase results from dihydrofolate reductase (DHFR) gene amplification which was determined from the 15-120-fold rise of the enzyme activity and with the cytogenetical techniques. The development and loss of AP resistance have been studied and karyological analysis of the lines obtained carried out. Two types of karyological changes were found in stable DM and HSR cells which correspond to extrachromosomal and intrachromosomal forms of the amplified material organization. Localization of the DHFR gene in HSR was proved using the in situ hybridization technique. Extrachromosomal localization of the amplified genes in DM providing unstable AP resistance is dominant at the early stages of the development of resistance and for a long time. It was demonstrated that DM and HSR can exist in one cell during the prolonged period. DHFR gene copy number in such cells is regulated by a change in the DM number, whereas the HSR size and localization are highly stable. HSR covers 1.7-1.9% of the genome length and 38-40% of the marker chromosome length. The genes localized in HSR provide stable AP resistance. Evidence on some intermediate, relative stabilization of the resistance has been obtained. This stabilization is mediated by temporary integration of DHFR copies into other chromosomal sites, in addition to HSR.  相似文献   

10.
Abstract Mycobacteria show a high degree of intrinsic resistance to most antibiotics and chemotherapeutic agents. The low permeability of the mycobacterial cell wall, with its unusual structure, is now known to be a major factor in this resistance. Thus hydrophilic agents cross the cell wall slowly because the myobacterial porin is inefficient in allowing the permeation of solutes and exists in low concentration. Lipophilic agents are presumably slowed down by the lipid bilayer which is of unusually low fluidity and abnormal thickness. Nevertheless, the cell wall barrier alone cannot produce significant levels of drug resistance, which requires synergistic contribution from a second factor, such as the enzymatic inactivation of drugs.  相似文献   

11.
Fifty-one common mergansers were captured on Douglas Lake (Cheboygan County, Michigan) and their avian schistosome loads were determined by fecal examination. Each bird was given a single dose of 0, 40, or 200 mg/kg of body weight of praziquantel and released. All birds were recaptured within 10 days of drug administration to determine posttreatment schistosome loads. Only the highest dose of praziquantel was found to significantly reduce avian schistosome loads. The potential use of praziquantel in swimmer's itch control programs is discussed.  相似文献   

12.
Evidence from correlative studies and Winn-type assays in syngeneic murine models has suggested that natural antibodies contribute to resistance against tumors in vivo. The B cell deficit associated with the X-linked immunodeficiency of CBA/N strain mice provided a genetic model in which to further test this question. RI-28, a radiation-induced T cell leukemia of the CBA/H strain acquired reduced levels of fluorescence-detected natural antibodies from the serum of X-linked immunodeficiency-bearing CBA/N and male (CBA/N x CBA/J) F1 mice compared with the serum from normals. Threshold s.c. inocula of the RI-28 appeared sooner and produced higher tumor frequencies in the X-linked immunodeficiency-bearing animals. This data coupled with the lack of correlating deficiencies in natural killer cell or activated macrophage activity provide the first genetic evidence for the hypothesis.  相似文献   

13.
14.
Supernatants of Con A-stimulated rat spleen cell cultures contain a factor that induces relative resistance to NK cell-mediated cytotoxicity in the YAC cell line, a line that is otherwise highly susceptible to murine NK cell-mediated lysis. This NK-lysis resistance-inducing factor (LRIF) has a Mr of 12,600 Da, as determined by gel filtration chromatography, and an isoelectric pH of 4.8. NK-LRIF is heat labile and is de-activated by treatment with proteolytic enzymes. Unlike immune-IFN (IFN-gamma), NK-LRIF is not inactivated by pH 2 treatment, and antibodies capable of neutralizing IFN-alpha and IFN-gamma do not abrogate the effect of NK-LRIF. Highly purified IL-2 preparations lack NK-LRIF activity. NK-LRIF does not induce a general resistance to lysis in YAC cells, because control and NK-LRIF-treated YAC cells were equally susceptible to alloimmune cytotoxic T cells. YAC cells treated with NK-LRIF showed a marked enhancement (5- to 10-fold) in the expression of class I MHC Ag. This observation supports the proposition that the NK susceptibility of target cells could be inversely related to the expression of class I MHC Ag.  相似文献   

15.
16.
17.
18.
Human autoimmune diseases are characterized by systemic T cell dysfunction, resulting in chronically activated Th1 and Th17 cells that are inadequately suppressed by regulatory T cells (Tregs). IL-6, which is overexpressed in tissue and serum of patients with autoimmune diseases, inhibits human Treg function. We sought to determine the mechanism for the antitolerogenic properties of IL-6 by examining the signaling pathways downstream of IL-6R in primary human T cells. Inhibition of Stat3 signaling in MLCs containing IL-6 restores Treg-mediated suppression, demonstrating that IL-6-mediated loss of Treg suppression requires phosphorylation of Stat3. Cultures in which either effector T cells (Teffs) or Tregs were pretreated with Stat3 inhibitors indicate that phosphorylated (p)Stat3 is required in both T cell populations for IL-6-mediated reversal of Treg function. IL-21, which signals preferentially through pStat3, also reverses Treg suppression, in contrast to IL-27 and IFN-γ, which signal preferentially through Stat1 and do not inhibit Treg function. Interestingly, both Teffs and Tregs respond to IL-6 stimulation through strong Stat3 phosphorylation with minimal MAPK/Erk activation and moderate Stat1 phosphorylation. Finally, Teffs stimulated strongly through the TCR are also resistant to suppression by Tregs and show concurrent Stat3 phosphorylation. In these cultures, inhibition of pStat3 restores functional suppression by Tregs. Taken together, our findings suggest that an early dominance of Stat3 signaling, prior to subsequent T cell activation, is required for the loss of functional Treg suppression and that kinase-specific inhibitors may hold therapeutic promise in the treatment of autoimmune and chronic inflammatory diseases.  相似文献   

19.
Schistosomes are the causative agents of schistosomiasis, a neglected tropical disease affecting hundreds of millions worldwide and a major global health burden. Current control of schistosomiasis depends largely on a single drug, praziquantel (PZQ). One potential physiological target for new antischistosomal drugs is the parasite's excretory system, which removes wastes and xenobiotics. Multidrug resistance (MDR) transporters that are members of the ATP-binding cassette (ABC) superfamily of proteins are ATP-dependent efflux pumps involved in removal of toxins and xenobiotics from cells. They mediate the phenomenon of multidrug resistance, in which cells resistant to one drug show cross-resistance to a broad range of other agents, and are also associated with reduced drug susceptibility in parasitic helminths. In this review, we survey the different types of ABC transporter genes present within the schistosome genome, and examine recent evidence indicating that at least some of these transporters may play a role in fine-tuning susceptibility of schistosomes to PZQ. Disruption of their function may therefore provide a strategy for enhancing drug action or overcoming or attenuating drug resistance. Furthermore, dissection of the roles these transporters may play in normal schistosome physiology could potentially lead to identification of highly "druggable" targets for new antischistosomals.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号