首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Worldwide, fungal richness peaks in tropical forest biomes where they are the primary drivers of decomposition. Understanding how environmental and anthropogenic factors influence tropical macrofungal fruiting patterns should provide insight as to how, for example, climate change and deforestation may impact their long‐term demographic stability and evolutionary potential. However, in Amazonia no studies have yet to disentangle the effects of substrate, seasonality and forest history on phenology. Here, we quantitate spatial and temporal variation in community structure of fruiting macrofungi in relation to these factors at a long‐term forest management research site in central Amazonia: the Biomass and Nutrients of Tropical Rain Forest (BIONTE's). Basidiome surveys of four substrate classes (leaves, soil, branches and trunks) were conducted along 250 m2 transects in primary and secondary (managed) forests, between 2012–13. From the 669 basidiomes collected, 290 taxa were identified of which 44 percent were restricted to primary and 36 percent to secondary forests. Although species‐accumulation curves did not asymptote, rarefaction analyses and Fisher's alpha indicate contrasting differences in richness among forests in relation to substrate type. For example, leaf litter basidiome richness was higher in secondary forests, whereas the contrary was observed for soil communities, suggesting that variation in fruiting patterns in relation to disturbance is substrate‐dependent possibly due to differences in necromass quality and/or understory micro‐climates. Furthermore, secondary forests harbored significantly lower basidiome richness and abundance in dry months, suggesting synergistic impacts of seasonality and management history on fruiting regimes.  相似文献   

2.
Gradient analysis is rarely used in studies of fungal communities. Data on macromycetes from eight sites along an elevation gradient in central Veracruz, Mexico, were used to demonstrate methods for gradient analysis that can be applied to studies of communities of fungi. Selected sites from 100 to 3,500?m altitude represent tropical dry forest, tropical montane cloud forest, conifer forest, and their ecotones. From May to October 2010, macromycetes were collected monthly within ten 10?×?10?m permanent plots per site. In total, 672 individuals of 213 species of macromycetes were recorded. Models for richness and diversity for all macromycete and ectomycorrhizal communities displayed peaks in the mid-part of the gradient, and a tendency to increase with elevation, whereas xylophagous fungi displayed a peak in the mid-lower part but tended to decrease with elevation. Cluster and Maximum Likelihood analyses distinguished four communities for both macromycetes and trees, but plant and fungal communities were only partly concordant. Canonical correspondence analysis indicated that macromycete distribution along the gradient is related to slope, relative humidity, soil temperature, soil water content, canopy openness, and litter depth. Spearman’s correlation and regression trees suggested that air and soil temperature, relative humidity, soil water content, canopy openness, vegetation structure and tree species richness were most strongly related to macrofungal functional groups, but these environmental variables were often correlated to the forest type and may not be causal. Variation in the environment along the elevation gradient differentially affected macromycete functional groups. Results from the different methods used in this work were concordant and showed significant patterns.  相似文献   

3.
杨浩  史加勉  郑勇 《生态学报》2024,44(7):2734-2744
森林生态系统在全球碳(C)储量中占据极为重要的地位。菌根真菌广泛存在于森林生态系统中,在森林生态系统C循环过程中发挥重要的作用。阐述了不同菌根类型真菌在森林生态系统C循环过程中的功能,对比了温带/北方森林与热带/亚热带森林中菌根真菌介导的C循环研究方面新近取得的研究结果。发现温带和北方森林的外生菌根(EcM)植物对地上生物量C的贡献相对较小,然而是地下C储量的主要贡献者;以丛枝菌根(AM)共生为主的热带/亚热带森林地表生物量占比较高,表明AM植被对热带/亚热带森林地上生物量C的贡献相对较大。我们还就全球变化背景下,菌根真菌及其介导的森林生态系统C汇功能,以及不同菌根类型树种影响C循环的机制等进行了总结。菌根真菌通过影响凋落物分解、土壤有机质形成及地下根系生物量,进而影响整个森林生态系统的C循环功能。菌根介导的森林C循环过程很大程度上取决于(优势)树木的菌根类型和森林土壤中菌根真菌的群落结构。最后指出了当前研究存在的主要问题以及未来研究展望。本文旨在明确菌根真菌在森林生态系统C循环转化过程中的重要生态功能,有助于准确地评估森林生态系统C汇现状,为应对全球变化等提供重要的依据。  相似文献   

4.
The Neotropics are among the least explored regions from a mycological perspective. A few recent molecular studies in South America have shown high fungal diversity as well as numerous groups of mostly undescribed taxa. Through soil metabarcoding analysis we compared richness and species composition among macrofungal communities, belonging to Agaricales, Russulales, Boletales and Phallomycetidae groups, in three elevational forests types in the subtropical Yungas of Northwestern Argentina (Piedmont forest; Montane forest, Montane cloud forest). The aims of this study were to assess richness of taxonomic and functional groups along the elevation gradient and to assess the relationships between environmental variables and species composition in the studied fungal communities. The results have shown rich Agaricomycetes communities, diversely structured among forests habitats. The elevation gradient differentially affected the richness and distribution of Agaricales, Russulales, Boletales and Phallomycetidae. Based on fungal trophic modes and guilds, the gradient also affected the ectomycorrhizal taxa distribution. When considering the basidiomata growth forms (agaricoid, boletoid, gasteroid, etc.), only the secotioid type showed significant elevational differences. Additional analyses indicated that saprotrophic nutritional mode was dominant along the entire gradient, being partially replaced by biotrophic modes at higher elevations. Fungal communities in the Montane cloud forests are most dissimilar when compared with communities at the Piedmont forest and Montane forest, which is consistent with the different biogeographic origins of these forests. DNA metabarcoding sequence analysis provided detailed information on the diversity and taxonomic and functional composition of macrofungal communities.  相似文献   

5.
In the present study, conducted in a secondary dry-seasonal forest in the pacific lowlands of southwestern Panama over 2 years, fungal diversity is linked to plant phenology, litter, and climatic data. Agaricales fungi showed maximum species richness at the beginning of rainy seasons, probably due to the important litter accumulation during the dry season and the increase in humidity favoring fungal growth. Species richness declined during the wet season possibly due to torrential rains, moulds, and decreasing availability of nutrients. Occurrence of foliar pathogenic microfungi correlated negatively with flushing of new leaves at the beginning of the rainy season. Their incidence increased during the wet season and remained high during the dry season. Synchronization of leaf shedding in most tree species significantly reduced the yearly incidence of foliar pathogenic fungi causing an annual turn-over of fungal pathogens that probably contributes to maintain a high diversity of plant pathogenic species.  相似文献   

6.
Abstract The biodiversity of macrofungi in mature and young regrowth Tasmanian wet forests is described at the species level and at the community level. The macrofungal communities studied were much more species‐rich than their vascular plant counterparts, with the total number of macrofungal taxa outnumbering vascular plants by four to one. This ratio applied in both mature and young regrowth forest sites. Some 242 taxa of macrofungi were recorded, of which 132 were identified to species level, the remainder to species groups or higher taxa. Distinct communities could be discerned from multivariate analysis (ordination and classification) of vascular plant and macrofungal data from the mature and regrowth sites. The two vascular plant communities had different fire histories, and this difference is also assumed to account for the separation of the macrofungal communities of the two forest types. There was generally a high level of congruence between the vascular plant and the macrofungal communities. However, one young regrowth site, which was relatively close to the mature sites in the ordination space for the analysis of vascular plants, was distant from the mature forest sites for the analysis of macrofungi. Another regrowth site, which had experienced wildfire rather than silvicultural regeneration, clustered with mature sites for some analyses of the macrofungal assemblage. Variation in the macrofungal communities was correlated with a different set of the measured environmental variables than was variation in the vascular plant communities. Mature and young regrowth forests were found to have distinctly different macrofungal floras, with approximately 40% of the taxa in each forest type being restricted to that type of site. Suitable indicator taxa (restricted or preferential to particular forest types) for use in further studies are suggested.  相似文献   

7.
Widely documented for temperate and cold forests in both hemispheres, variations in tree growth responses to climate along environmental gradients have rarely been investigated in the tropics. Seven tree‐ring chronologies of Centrolobium microchaete (Fabaceae) in the Cerrado tropical forests of Bolivia are used to determine the growth responses to climate along a precipitation gradient. Chronologies are distributed from the humid Guarayos forests (annual precipitation > 1600 mm) in the transition to the Amazonia to the dry‐mesic Chiquitos forests (annual precipitation < 1200 mm) in the proximity to the dry Chaco. On a large spatial scale, radial growth is positively influenced by rainfall and negatively by temperature at the end of the dry season. However, this regional pattern in climate‐tree growth relationship shows differences along the precipitation gradient. Relationships with climate are highly significant and extend over longer periods of the year in sites with low rainfall and extremely severe dry seasons. At wet sites, larger water soil capacity and endogenous forest dynamics partially mask the direct influence of climate on tree growth. Stronger similarities in tree‐growth responses to climate occur between sites in the dry Central Chiquitos and in the transition to the Guarayos forests. In contrast, the relationships show fewer similarities between sites in the humid Guarayos. We conclude that growth responses to climate in the tropics are more similar between sites with limited rainfall and severe and prolonged dry seasons. Our study points to a convergence in the patterns of growth responses of tropical trees to climate, modulated by scarce rainfall and marked seasonality. The negative impact of water deficits on tree physiological processes induces not only the documented reduction in forest species richness, but also a convergence in tree‐growth responses to climate in dry tropical forests.  相似文献   

8.
* Here, the diversity of arbuscular mycorrhizal (AM) fungi was determined in a boreal herb-rich coniferous forest in relation to environmental variables. * Root samples of five plant species (Fragaria vesca, Galeobdolon luteum, Hepatica nobilis, Oxalis acetosella and Trifolium pratense) were analysed from stands differing in age and forest management intensity. * Thirty-four Glomeromycota taxa (small-subunit ribosomal RNA gene (SSU rDNA) sequence groups) were detected from 90 root samples (911 clones), including eight new taxa. Sequence groups related to Glomus intraradices were most common (MO-G3 and MO-G13). Samples of H. nobilis were colonized by more AM fungal taxa (3.68 +/- 0.31) than those of O. acetosella (2.69 +/- 0.34), but did not differ significantly in this respect from those of F. vesca (3.15 +/- 0.38). Effects of forest management, host plant species (except above) or season on the number or composition of fungal taxa in root samples were not detected, and neither were they explained by environmental variables (vegetation, soil and light conditions). * This is the most taxon-rich habitat described to date in terms of root-colonizing Glomeromycota. The data demonstrate the importance of temperate coniferous forests as habitats for AM fungi and plants. Lack of obvious fungal community patterns suggests more complex effects of biotic and abiotic factors, and possibly no adverse effect of common forest management practices on AM fungal diversity.  相似文献   

9.
西双版纳热带雨林中丛枝菌根真菌的初步研究*   总被引:9,自引:0,他引:9  
对西双版纳热带雨林中30个科的42种植物根系的丛枝菌根真菌定居情况进行了调查,并从这些植物的根际土壤中分离鉴定了分属于无梗囊霉属(Acaulospora)、球囊霉属(Glomus)和硬囊霉属(Sclerocystis)的25种丛枝菌根真菌。对热带雨林土壤中丛枝菌根真菌的孢子密度(spore density)、物种丰富度(species richness)以及已鉴定种的出现频率进行统计分析发现:热带雨林土壤中丛枝菌根真菌的孢子密度在每100g土壤116~1560个之间,平均478个;物种丰富度在2~7之间,平均为4.5;无梗囊霉属和球囊霉属真菌是热带雨林土壤中丛枝菌根真菌的优势类群。  相似文献   

10.
Large forest areas of South-East Asia, are dominated by the Dipterocarpaceae tree family, which contains many important timber species. Unlike many other tropical trees, Dipterocarpaceae rely on ectomycorrhizal (ECM) root symbiosis for their mineral nutrition. This study aims to document the richness and community composition of ECM fungi in a dry deciduous forest in Thailand. Combining morphological and molecular identification methods revealed 69 species of ECM fungi that belong to 17 phylogenetic lineages. The /russula-lactarius, /tomentella-thelephora, /sordariales, /sebacina and /cantharellus lineages were the most species-rich. The fungal richness is comparable to other tropical rain forest sites, but the phylogenetic community structure has elements of both tropical and temperate ecosystems. Unlike tropical rain forests, the Cenococcum geophilum complex was one of the most frequent fungal taxa that had a relatively high ITS genetic diversity over the small sampling area. This study provides the first snapshot insight into the fungal community of dry dipterocarp forests. However, it is necessary to broaden the spatial and temporal scales of sampling to improve our understanding of the below-ground relations of dry and humid tropical forests.  相似文献   

11.
Surveys of the macrofungi associated with eight different vegetation types in the Laojun Mountain region of southwestern China yielded approximately 520 species belonging to 175 genera. Species richness and diversity were highest in mixed conifer and broadleaf forests and deciduous broadleaf forests. In typical forests of temperate regions of the world, there are five dominant genera of ectomycorrhizal macrofungi. The distribution patterns of species in these genera for the different vegetation types indicate that they are able to associate with a wide variety of different trees. Analysis of data for common macrofungal species and taxonomic similarity of the communities present in the eight vegetation types suggest that the greater the differences in the plant species that comprise the vegetation, the less similar are the common macrofungal species associated with the most common host plants. These same data also show that some species of macrofungi occur only in one or two vegetation types. There were 156 species of edible fungi recorded from the different vegetation types, and these fungi appear to be abundant in the Laojun Mountain region. At different positions along the elevation gradient, positive correlations existed with respect to the relationship between species richness and diversity, and the general trend was for macrofungal species richness and diversity to decrease with increasing elevation, with the numbers of species recorded being significantly lower at the very highest elevation. The relative dominance of certain taxa in the assemblage of species present was found to increase with increasing elevation, and variation in the evenness component of diversity was slight. As such, the differences in dominance and evenness were also not significant (P > 0.05). Macrofungal species richness was slightly more diverse on shaded slopes than on more exposed (sunny) slopes, and the differences in species diversity, dominance and evenness were relatively minor. This suggests that slope aspect may only weakly influence the distribution of macrofungal species in the Laojun Mountain region.  相似文献   

12.
Policies to mitigate climate change and biodiversity loss often assume that protecting carbon‐rich forests provides co‐benefits in terms of biodiversity, due to the spatial congruence of carbon stocks and biodiversity at biogeographic scales. However, it remains unclear whether this holds at the scales relevant for management, and particularly large knowledge gaps exist for temperate forests and for taxa other than trees. We built a comprehensive dataset of Central European temperate forest structure and multi‐taxonomic diversity (beetles, birds, bryophytes, fungi, lichens, and plants) across 352 plots. We used Boosted Regression Trees (BRTs) to assess the relationship between above‐ground live carbon stocks and (a) taxon‐specific richness, (b) a unified multidiversity index. We used Threshold Indicator Taxa ANalysis to explore individual species’ responses to changing above‐ground carbon stocks and to detect change‐points in species composition along the carbon‐stock gradient. Our results reveal an overall weak and highly variable relationship between richness and carbon stock at the stand scale, both for individual taxonomic groups and for multidiversity. Similarly, the proportion of win‐win and trade‐off species (i.e., species favored or disadvantaged by increasing carbon stock, respectively) varied substantially across taxa. Win‐win species gradually replaced trade‐off species with increasing carbon, without clear thresholds along the above‐ground carbon gradient, suggesting that community‐level surrogates (e.g., richness) might fail to detect critical changes in biodiversity. Collectively, our analyses highlight that leveraging co‐benefits between carbon and biodiversity in temperate forest may require stand‐scale management that prioritizes either biodiversity or carbon in order to maximize co‐benefits at broader scales. Importantly, this contrasts with tropical forests, where climate and biodiversity objectives can be integrated at the stand scale, thus highlighting the need for context‐specificity when managing for multiple objectives. Accounting for critical change‐points of target taxa can help to deal with this specificity, by defining a safe operating space to manipulate carbon while avoiding biodiversity losses.  相似文献   

13.
Abstract Following a wildfire in 17–25‐year‐old regrowth karri (Eucalyptus diversicolor) forest in the southwest of Western Australia, plots were established in burnt and similarly aged unburnt forest to monitor the fruiting of macrofungi. Thirty‐six plots on 10 sites (five burnt, five unburnt) were surveyed over a 5‐year period. Plots were surveyed every 2 weeks in the macrofungal fruiting season (April to October) and monthly for the remainder of each year. A total of 332 species were recorded. Fire did not impact significantly on mean species richness. However, a distinct mycoflora was recorded on burnt sites, and species composition on burnt sites changed substantially for each year following the fire and after 5 years was still different from that on unburnt sites. Nineteen percent of species recorded were regarded as being present as a direct result of the fire. The study also demonstrated the variable nature of macrofungal sporophore production in the absence of disturbance and the importance of regular sampling. Five distinct succession groups of post‐fire fungi were recognized. The adaptive traits of post‐fire fungi in relation to fire and the management of fire for macrofungal diversity are discussed.  相似文献   

14.
Abstract. Patterns of mortality, recruitment, and forest turnover were investigated using permanent plot data from temperate forests in 14 localities throughout New Zealand. Tree mortality and recruitment rates were calculated from tagged trees ≥ 10 cm diameter at 1.4 m on individual 400 m2 plots, and turnover rates were calculated as the mean of mortality and recruitment rates. Turnover rates (1.4% per year) were very similar to those recorded for tropical forests (i.e. 1.5% per year). As was shown in tropical forests, we also found significant relationships between forest turnover and species richness. In New Zealand forests there was also a decrease in species richness and turnover rates with increasing latitude. Although species richness is well known to decline with latitude, our study provides support for a possible link between seasonality and disturbance with tree turnover and species diversity. While tree mortality and recruitment rates were approximately in balance at some localities, in others there were imbalances between mortality and recruitment rates.  相似文献   

15.
We conducted line route censuses of fungal fruiting bodies from August to September in 2005 and 2006 along ridges and valleys and compared the differences in the encounter rates of fungal fruiting bodies (= fruiting bodies seen per census kilometer) between types of topography and between fungal functional groups (i.e., ectomycorrhizal and saprobic fungi) in warm temperate evergreen broad-leaved forests on Yakushima Island, Japan. We found 251 fungal fruiting bodies (26 families, 50 genera, and 65 species) in total, including 51 bodies from Tricholomataceae, 41 from Russulaceae, 25 from Boletaceae, and 19 from Amanitaceae. The encounter rate of ectomycorrhizal fungi was greater at the ridge route (26.7 unit/km) than at the valley route (8.7 unit/km) and that of saprobic fungi was greater at the valley route (25.0 unit/km) than at the ridge route (12.5 unit/km). In addition, we conducted 7-year intermittent sampling and identified 40 families, 96 genera, and 142 species. The topography-specific emergence pattern of the intermittent sampling method was similar to that of the line census method. The fungal species composition in this study was possibly affected by a topographic gradient for both fungal functional groups through soil moisture, nutrient availability, and host tree distribution.  相似文献   

16.
贺兰山不同海拔典型植被带土壤微生物多样性   总被引:26,自引:14,他引:26  
刘秉儒  张秀珍  胡天华  李文金 《生态学报》2013,33(22):7211-7220
土壤微生物多样性在海拔梯度的分布格局研究近年来受到和植物动物一样的重视程度,但是干旱风沙区微生物多样性在海拔梯度上的多样性分布规律尚未揭示。本研究以处于干旱风沙区的贺兰山不同海拔的六个典型植被带(荒漠草原带、山地旱生灌丛带、温性针叶林带、针阔混交林带、寒温性针叶林带和亚高山草甸带)土壤为研究对象,利用Biolog微平板法和磷脂脂肪酸甲酯法(FAMEs)系统研究微生物多样性群落特征以及在不同植被带分布规律。结果表明:土壤微生物功能多样性随海拔增加发生变化,且微生物群落结构存在显著差异。Biolog分析显示土壤微生物群落代谢活性依次是:亚高山草甸>寒温性针叶林>针阔混交林>温性针叶林>山地旱生灌丛>荒漠草原,随海拔的升高土壤微生物群落物种丰富度指数(H)和均匀度指数(E)总体上均表现出增大的趋势,差异显著(P<0.05);FAMEs分析表明不同海拔的微生物区系发生了一定程度的变化,寒温性针叶林土壤微生物磷酸脂肪酸生物标记的数量和种类均最高,且细菌、真菌特征脂肪酸相对含量也最高;土壤微生物群落结构多样性次序是:寒温性针叶林带>针阔混交林带>温性针叶林带>亚高山草甸>山地旱生灌丛>荒漠草原。本研究结果表明贺兰山海拔梯度的微生物多样性分布规律不同于已有的植物多样性“中部膨胀”研究结果,这说明在高海拔地区有更多的适合该生境的微生物存在,这对维持干旱风沙区的生态系统功能稳定性具有重要意义。  相似文献   

17.
外生菌根是木本植物根系与真菌形成的共生结构,外生菌根真菌在红松等外生菌根树种的定植与森林生态系统的保持方面起到至关重要的作用。明确菌根系统内外生菌根真菌群落组成是揭示菌根共生机制的前提条件。本研究利用Illumina Hiseq测序平台对生长季内红松纯林内根围土壤及菌根样品ITS2区进行高通量测序,分析其外生菌根真菌群落结构随季节的变化规律,同时通过统计学的方法分析了红松根系微生态中外生菌根真菌群落结构组成变化与其他生物因素、非生物因素的相关性。结果如下:(1)从6月份到10月份,5个月的菌根样品测序共得到741个真菌OTUs,利用FUNGuild数据库分析,其中85个OTUs归类为外生菌根真菌,优势属(相对丰度>5)为蜡壳菌属Sebacina、乳牛肝菌属SuillusMeliniomyces、红菇属Russula、棉革菌属Tomentella、须腹菌属Rhizopogon和缘腺革菌属Amphinema。6月份菌根中外生菌根真菌的多样性最大,显著高于其他月份。(2)红松林外生菌根真菌群落组成受到土壤pH、有效磷含量、有效钾含量和土壤有效氮含量的影响,它们与外生菌根真菌优势属相对丰度呈现正相关或负相关。(3)根围土壤内真菌是影响红松根系外生菌根真菌相对丰度的另一重要因素,其中,包括普可尼亚属Pochonia、产丝齿菌属Hyphodontia、镰刀菌属FusariumCollembolispora、枝穗霉属ClonostachysApodus、鹅膏属Amanita在内的土壤真菌与根内外生菌根真菌的相对丰度呈线性关系。同时,超过85%的根内外生菌根真菌与同一取样地的土壤共有,可以认为侵染和扩散是红松根内外生菌根真菌群落形成的主要方式,同时兼有植物根系的选择,因为根内并不包括所有土壤中存在的外生菌根真菌,其机制需要进一步人工模拟试验验证。  相似文献   

18.
Plant diversity is considered one factor structuring soil fungal communities because the diversity of compounds in leaf litter might determine the extent of resource heterogeneity for decomposer communities. Lowland tropical rain forests have the highest plant diversity per area of any biome. Since fungi are responsible for much of the decomposition occurring in forest soils, understanding the factors that structure fungi in tropical forests may provide valuable insight for predicting changes in global carbon and nitrogen fluxes. To test the role of plant diversity in shaping fungal community structure and function, soil (0-20?cm) and leaf litter (O horizons) were collected from six established 1-ha forest census plots across a natural plant diversity gradient on the Isthmus of Panama. We used 454 pyrosequencing and phospholipid fatty acid analysis to evaluate correlations between microbial community composition, precipitation, soil nutrients, and plant richness. In soil, the number of fungal taxa increased significantly with increasing mean annual precipitation, but not with plant richness. There were no correlations between fungal communities in leaf litter and plant diversity or precipitation, and fungal communities were found to be compositionally distinct between soil and leaf litter. To directly test for effects of plant species richness on fungal diversity and function, we experimentally re-created litter diversity gradients in litter bags with 1, 25, and 50 species of litter. After 6?months, we found a significant effect of litter diversity on decomposition rate between one and 25 species of leaf litter. However, fungal richness did not track plant species richness. Although studies in a broader range of sites is required, these results suggest that precipitation may be a more important factor than plant diversity or soil nutrient status in structuring tropical forest soil fungal communities.  相似文献   

19.
Mid-domain effect (MDE) models predict that the random placement of species'' ranges within a bounded geographical area leads to increased range overlap and species richness in the center of the bounded area. These models are frequently applied to study species-richness patterns of macroorganisms, but the MDE in relation to microorganisms is poorly understood. In this study, we examined the characteristics of the MDE in richness patterns of ectomycorrhizal (EM) fungi, an ecologically important group of soil symbionts. We conducted intensive soil sampling to investigate overlap among species ranges and the applicability of the MDE to EM fungi in four temperate forest stands along an elevation gradient on Mount Fuji, Japan. Molecular analyses using direct sequencing revealed 302 EM fungal species. Of 73 EM fungal species found in multiple stands, 72 inhabited a continuous range along the elevation gradient. The maximum overlap in species range and the highest species richness occurred at elevations in the middle of the gradient. The observed richness pattern also fit within the 95% confidence interval of the mid-domain null model, supporting the role of the MDE in EM fungal richness. Deviation in observed richness from the mean of the mid-domain null estimation was negatively correlated with some environmental factors, including precipitation and soil C/N, indicating that unexplained richness patterns could be driven by these environmental factors. Our results clearly support the existence of microbial species'' ranges along environmental gradients and the potential applicability of the MDE to better understand microbial diversity patterns.  相似文献   

20.
The Sierra Madre de Oaxaca region, located in the Northern state of Oaxaca, Mexico, is an area of forest ecosystems subject to high exploitation rates, although in some areas its temperate forests are conserved by indigenous community initiatives that live there. We analyzed the diet of white tailed-deer (Odocoileus virginianus) in the localities of Santa Catarina Lachatao and San Miguel Amatlán from June 1998 to August 1999. Sampling was done during both the wet and dry seasons, and included the observation of browsing traces (238 observations), microhistological analysis of deer feces (28 deer pellet-groups), and two stomach content analysis. The annual diet of white-tailed deer was composed of 42 species from 23 botanical families. The most represented families in the diet of this deer were Fagaceae, Asteraceae, Ericaceae and Fabaceae. There were significant differences in the alpha diversity of the diet during the wet and dry seasons (H'=2.957 and H'=1.832, respectively). The similarity percentage between seasons was 56%. Differences in plant species frequency were significantly higher during the wet season. Herbaceous plants made up the greatest percentage of all the species consumed. The preferred species throughout the year were Senecio sp. (shrub), Sedum dendroideum (herbaceous), Arctostaphylos pungens (shrub) and Satureja macrostema (shrub). Diet species richness was found to be lower than that observed in a tropical forest (Venezuela), tropical dry forest (Mexico) and temperate deciduous and mixed forest (Mexico), but similar to the diet species richness observed in a tropical dry forest (Costa Rica) and temperate coniferous and deciduous forests (USA).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号