首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The recessive mutation oligotriche (olt) affects the coat and male fertility in the mouse. In homozygous (olt/olt) mutants, the coat is sparse, most notably in the inguinal and medial femoral region. In these regions, almost all hair shafts are bent and distorted in their course through the dermis and rarely penetrate the epidermis because the hair cortex is not fully keratinized. During hair follicle morphogenesis, mutant hair follicles exit from anagen one day before those of normal littermates and show a prolongation of the catagen stage. The oligotriche (olt) locus was mapped to distal chromosome 9 within a 5-Mbp interval distal to D9Mit279. Analysis of candidate gene expression revealed that olt/olt mutant mice do not express functional phospholipase C delta 1 (Plcd1) mRNA. This deficiency is the consequence of a 234-kbp deletion involving not only the Plcd1 locus but also the chromosomal segment harboring the genes Vill (villin-like), Dlec1 (deleted in lung and esophageal cancer 1), Acaa1b (acetyl-Coenzyme A acyltransferase 1B, synonym thiolase B), and parts of the genes Ctdspl (carboxy-terminal domain RNA polymerase II polypeptide A small phosphatase-like) and Slc22a14 (solute carrier family 22 member 14). Offspring of olt/olt females, mated with Plcd1 ?/? knockout males, exhibit coat defects similar to those observed in homozygous olt/olt mutant mice but the spermiogenesis in male offspring is normal. We conclude that the 234-kbp deletion from chromosome 9 harbors a gene involved in spermiogenesis and we propose that the oligotriche mutant be used as a model for the study of the putative tumor suppressor genes Dlec1, Ctdspl, and Vill. We also suggest that the oligotriche locus be named Del(9Ctdspl-Slc22a14)1Pas.  相似文献   

2.
In the course of a reverse genetic screen in the Belgian Blue cattle breed, we uncovered a 10‐bp deletion (c.87_96del) in the first coding exon of the melanophilin gene (MLPH), which introduces a premature stop codon (p.Glu32Aspfs*1) in the same exon, truncating 94% of the protein. Recessive damaging mutations in the MLPH gene are well known to cause skin, hair, coat or plumage color dilution phenotypes in numerous species, including human, mice, dog, cat, mink, rabbit, chicken and quail. Large‐scale array genotyping undertaken to identify p.Glu32Aspfs*1 homozygous mutant animals revealed a mutation frequency of 5% in the breed and allowed for the identification of 10 homozygous mutants. As expression of a colored coat requires at least one wild‐type allele at the co‐dominant Roan locus encoded by the KIT ligand gene (KITLG), homozygous mutants for p.Ala227Asp corresponding with the missense mutation were excluded. The six remaining colored calves displayed a distinctive dilution phenotype as anticipated. This new coat color was named ‘cool gray’. It is the first damaging mutation in the MLPH gene described in cattle and extends the already long list of species with diluted color due to recessive mutations in MLPH and broadens the color palette of gray in this breed.  相似文献   

3.
The type of pigment synthesized in mammalian hair, yellow–red pheomelanin or black–brown eumelanin, depends on the interaction between Agouti protein and the Melanocortin 1 receptor. Although the genetics of pigmentation is broadly conserved across most mammalian species, pigment type-switching in domestic dogs is unusual because a yellow–tan coat with variable amounts of dark hair is thought to be caused by an allele of the Agouti locus referred to as fawn or sable (ay). In a large survey covering thirty seven breeds, we identified an Agouti allele with two missense alterations, A82S and R83H, which was present (heterozygous or homozygous) in 41 dogs (22 breeds) with a fawn or sable coat, but was absent from 16 dogs (8 breeds) with a black-and-tan or tricolor phenotype. In an additional 33 dogs (14 breeds) with a eumelanic coat, 8 (German Shepherd Dogs, Groenendaels, Schipperkes, or Shetland Sheepdogs) were homozygous for a previously reported mutation, non-agouti R96C; the remainder are likely to have carried dominant black, which is independent of and epistatic to Agouti. This work resolves some of the complexity in dog coat color genetics and provides diagnostic opportunities and practical guidelines for breeders.  相似文献   

4.
Major characteristics of coat variation in dogs can be explained by variants in only a few genes. Until now, only one missense variant in the KRT71 gene, p.Arg151Trp, has been reported to cause curly hair in dogs. However, this variant does not explain the curly coat in all breeds as the mutant 151Trp allele, for example, is absent in Curly Coated Retrievers. We sequenced the genome of a Curly Coated Retriever at 22× coverage and searched for variants in the KRT71 gene. Only one protein‐changing variant was present in a homozygous state in the Curly Coated Retriever and absent or present in a heterozygous state in 221 control dogs from different dog breeds. This variant, NM_001197029.1:c.1266_1273delinsACA, was an indel variant in exon 7 that caused a frameshift and an altered and probably extended C‐terminus of the KRT71 protein NP_001183958.1:p.(Ser422ArgfsTer?). Using Sanger sequencing, we found that the variant was fixed in a cohort of 125 Curly Coated Retrievers and segregating in five of 14 additionally tested breeds with a curly or wavy coat. KRT71 variants cause curly hair in humans, mice, rats, cats and dogs. Specific KRT71 variants were further shown to cause alopecia. Based on this knowledge from other species and the predicted molecular consequence of the newly identified canine KRT71 variant, it is a compelling candidate causing a second curly hair allele in dogs. It might cause a slightly different coat phenotype than the previously published p.Arg151Trp variant and could potentially be associated with follicular dysplasia in dogs.  相似文献   

5.
A glabrous, yellow-seeded doubled haploid (DH) line and a hairy, black-seeded DH line in Chinese cabbage (B. rapa) were used as parents to develop a DH line population that segregated for both hairiness and seed coat color traits. The data showed that both traits completely co-segregated each other, suggesting that one Mendelian locus controlled both hairiness and seed coat color in this population. A fine genetic map was constructed and a SNP marker that was located inside a Brassica ortholog of TRANSPARENT TESTA GLABRA 1 (TTG1) in Arabidopsis showed complete linkage to both the hairiness and seed coat color gene, suggesting that the Brassica TTG1 ortholog shared the same gene function as its Arabidopsis counterpart. Further sequence analysis of the alleles from hairless, yellow-seeded and hairy, black-seeded DH lines in B. rapa showed that a 94-base deletion was found in the hairless, yellow-seeded DH lines. A nonfunctional truncated protein in the hairless, yellow-seeded DH lines in B. rapa was suggested by the coding sequence of the TTG1 ortholog. Both of the TTG1 homologs from the black and yellow seeded B. rapa lines were used to transform an Arabidopsis ttg1 mutant and the results showed that the TTG1 homolog from the black seeded B. rapa recovered the Arabidopsis ttg1 mutant, while the yellow seeded homolog did not, suggesting that the deletion in the Brassica TTG1 homolog had led to the yellow seeded natural mutant. This was the first identified gene in Brassica species that simultaneously controlled both hairiness and seed coat color traits.  相似文献   

6.
Oca2p-cas (oculocutaneous albinism II; pink-eyed dilution castaneus) is a coat color mutant gene on mouse chromosome 7 that arose spontaneously in wild Mus musculus castaneus mice. Mice homozygous for Oca2p-cas usually exhibit pink eyes and gray coat hair on the non-agouti genetic background, and this ordinary phenotype remains unchanged throughout life. During breeding of a mixed strain carrying this gene on the C57BL/6J background, we discovered a novel spontaneous mutation that causes darkening of the eyes and coat hair with aging. In this study, we developed a novel mouse model showing this unique phenotype. Gross observations revealed that the pink eyes and gray coat hair of the novel mutant young mice became progressively darker in color by approximately 3 months after birth. Light and transmission-electron microscopic observations revealed a marked increase in melanin pigmentation of coat hair shafts and choroid of the eye in the novel mice compared to that in the ordinary mice. Sequence analysis of Oca2p-cas revealed a 4.1-kb deletion involving exons 15 and 16 of its wild-type gene. However, there was no sequence difference between the two types of mutant mice. Mating experiments suggested that the novel mutant phenotype was not inherited in a simple fashion, due to incomplete penetrance. The novel spontaneous mutant mouse is the first example of progressive hair darkening animals and is an essential animal model for understanding of the regulation mechanisms of melanin biosynthesis with aging.  相似文献   

7.
T. Fujii  Y. Banno  H. Abe  S. Katsuma  T. Shimada 《Genetica》2012,140(10-12):463-468
Normally, many granules containing uric acid accumulate in the larval integument of the silkworm, Bombyx mori. These uric acid granules cause the wild-type larval integument to be white or opaque, and the absence of these granules results in a translucent integument. Although about 30 B. mori loci governing larval translucency have been mapped, most have not been molecularly identified yet. Here, based on a structural analysis of a deletion of chromosome 14 that included the oa (aojyuku translucent) locus, we concluded that the BmHPS5 encoding a Bombyx homolog of the HPS5 subunit of biogenesis of lysosome-related organelles complex-2 is the candidate for the oa locus. Nucleotide sequence analyses of cDNAs and genomic DNAs in three mutant strains, each of which were homozygous for the respective allele of the oa locus (oa, oa 2 , and oa v ), revealed that each mutant strain has a frame shift or a premature stop codon (caused by deletion or nonsense mutation, respectively) in the BmHPS5 gene. Our findings indicate that some genes that cause the translucent phenotype in Bombyx, some HPS-associated genes in humans, and some genes that cause mutant eye color phenotypes in Drosophila are homologous and participate in an evolutionarily conserved mechanism that leads to biogenesis of lysosome-related organelles.  相似文献   

8.
The mutant genewellhaarig(we) controls the formation of the waved coat in mice, which is most pronounced in homozygotes at 10 to 21 days of postnatal development. Abnormal hair growth and structure in the we/we mutant mice results from defective cell differentiation in the inner root sheath of a hair follicle. To localize the site of the we gene action, we obtained ten chimeric mice by aggregation of the early C57BL/6-2we/we and BALB/c embryos. The chimera coat was waved, shaggy, or almost normal depending on the percentage of the mutant component. In the we/we +/+ chimeric animals of the first generation (G1) aged 21 days, both mutant and normal hair phenotypes were observed, which was especially discernible in zigzag hair. Note that none of the chimeras exhibited the alternating patterns of transversely oriented stripes or patches of either mutant or normal hair; i.e., they had a mixed parental hair phenotype. We also did not observe the animals with an intermediate phenotype, which suggests a discontinuous hair formation in chimeras according to the all or nothing principle. The data obtained indicate that the dermal papilla cells of a hair follicle are the sites for the we gene action. During the embryonic development, dermal cells are strongly mixed, which accounts for the lack of the clear-cut transverse stripes of either mutant or normal hair. The mutant genewe is probably responsible for a disrupted induction signal from the dermal papilla towards ectodermal cells of a hair follicle.  相似文献   

9.
ADAMTS9 is the most conserved member of a large family of secreted metalloproteases having diverse functions. Adamts9 null mice die before gastrulation, precluding investigations of its roles later in embryogenesis, in adult mice or disease models. We therefore generated a floxed Adamts9 allele to bypass embryonic lethality. In this mutant, unidirectional loxP sites flank exons 5–8, which encode the catalytic domain, including the protease active site. Mice homozygous for the floxed allele were viable, lacked an overt phenotype, and were fertile. Conversely, mice homozygous for a germ‐line deletion produced from the floxed allele by Cre‐lox recombination did not survive past gastrulation. Hemizygosity of the deleted Adamts9 in combination with mutant Adamts20 led to cleft palate and severe white spotting as previously described. Previously, Adamts9 haploinsufficiency combined with either Adamts20 or Adamts5 nullizygosity suggested a cooperative role in interdigital web regression, but the outcome of deletion of Adamts9 alone remained unknown. Here, Adamts9 was conditionally deleted in limb mesoderm using Prx1‐Cre mice. Unlike other ADAMTS single knockouts, limb‐specific Adamts9 deletion resulted in soft‐tissue syndactyly (STS) with 100% penetrance and concurrent deletion of Adamts5 increased the severity of STS. Thus, Adamts9 has both non‐redundant and cooperative roles in ensuring interdigital web regression. This new allele will be useful for investigating other biological functions of ADAMTS9. genesis 52:702–712, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

10.
To determine chromosome positions for 10 mouse phospholipase C (PLC) genes, we typed the progeny of two sets of genetic crosses for inheritance of restriction enzyme polymorphisms of each PLC. Four mouse chromosomes, Chr 1, 11, 12, and 19, contained single PLC genes. Four PLC loci, Plcb1, Plcb2, Plcb4, and Plcg1, mapped to three sites on distal mouse Chr 2. Two PLC genes, Plcd1 and Plcg2, mapped to distinct sites on Chr 8. We mapped the human homologs of eight of these genes to six chromosomes by analysis of human × rodent somatic cell hybrids. The map locations of seven of these genes were consistent with previously defined regions of conserved synteny; Plcd1 defines a new region of homology between human Chr 3 and mouse Chr 8. Received: 24 January 1996 / Accepted: 2 April 1996  相似文献   

11.
We describe a 3.5-year-old Iranian female child and her affected 10-month-old brother with a maternally inherited derivative chromosome 9 [der(9)]. The postnatally detected rearrangement was finely characterized by aCGH analysis, which revealed a 15.056 Mb deletion of 9p22.3-p24.3p22.3 encompassing 14 OMIM morbid genes such as DOCK8, KANK1, DMRT1 and SMARCA2, and a gain of 3.309 Mb on 18p11.31-p11.32 encompassing USP14, THOC1, COLEC12, SMCHD1 and LPIN2. We aligned the genes affected by detected CNVs to clinical and functional phenotypic features using PhenogramViz. In this regard, the patient's phenotype and CNVs data were entered into PhenogramViz. For the 9p deletion CNV, 53 affected genes were identified and 17 of them were matched to 24 HPO terms describing the patient's phenotypes. Also, for CNV of 18p duplication, 22 affected genes were identified and six of them were matched to 13 phenotypes. Moreover, we used DECIPHER for in-depth characterization of involved genes in detected CNVs and also comparison of patient phenotypes with 9p and 18p genomic imbalances. Based on our filtration strategy, in the 9p22.3-p24.3 region, approximately 80 pathogenic/likely pathogenic/uncertain overlapping CNVs were in DECIPHER. The size of these CNVs ranged from 12.01 kb to 18.45 Mb and 52 CNVs were smaller than 1 Mb in size affecting 10 OMIM morbid genes. The 18p11.31-p11.32 region overlapped 19 CNVs in the DECIPHER database with the size ranging from 23.42 kb to 1.82 Mb. These CNVs affect eight haploinsufficient genes.  相似文献   

12.
The autosomal recessive gene hairless (hr) is responsible for the complete hairlessness in mice homozygous for this gene. Hair shedding that begins at the age of 10 days is caused by an abnormal cycle of hair follicle development disturbed at the catagen stage. This results in enhanced programmed cell death (apoptosis) and ultimately leads to the complete hair follicle destruction and shedding of all hairs by the age of three weeks. To study the phenotypic expression of the hr gene in a chimeric organism, we have obtained 12 chimeric mice hr/hr +/+ by means of aggregation of early embryos hr/hr and +/+. In chimeric mice, the hair shedding has begun two days later than in the hr/hr mice. By day 23 of postnatal development, hairless areas were present on the coat of chimeric mice or the latter were completely hairless depending on the percentage of the hr/hr mutant component. In four chimeras with high content of the mutant component (68–76%), the hair shedding process was similar to that in the hr/hr mice, though it was accomplished two days later. In three chimeras with 48–51% of the mutant component, alternating hairless and hair-covered bands were observed. These data suggest that the hr gene acts in epidermal cells of a hair follicle, because epidermal cell clones in embryonic skin migrate in the lateral–ventral direction coherently and without mixing. However, some chimeras displayed a pattern which was not so clear-cut: the band borders were illegible and hairs partly covered the hairless areas. In some chimeras, the uniform thinning of the coat was observed. Analysis of the effects of the hr mutant gene in chimeric mice differing in the ratio between mutant (hr/hr) and normal (+/+) components in tissues suggests that the hrgene acts in the epidermal cells of the hair follicle. The interactions between cells have an essential effect on the mode and degree of the hr gene expression, which leads to distortion of the ectodermal coat pattern in chimeras.  相似文献   

13.
Summary Eight near-isogenic lines of pea representing all the homozygous combinations of three genes af, st and tl, which modify leaf shape and size, were crossed in all possible ways excepting reciprocals. An analysis of the resulting 36 families has shown that homozygous mutant alleles at the tl locus acting with homozygous mutant alleles at the af and st loci increase both seed weight and plant haulm weight. The mutant alleles at the af and st loci seem, when homozygous, to have little effect by themselves upon seed weight but they do increase or decrease haulm weight, respectively. There is clear evidence of heterotic effects resulting from heterozygosity at each one of the three loci which modify seed weight, haulm weight and basal branching. The implications of such heterotic effects in pea breeding programmes are discussed.  相似文献   

14.
In this paper we describe the production and analysis of mice carrying a 110-kb transgene that encompasses the wild-type Foxn1 genomic locus. Mutations in Foxn1 cause the nude phenotype. We show that in the hair follicles, transgenic mice with increased Foxn1 gene dosage exhibited increased Foxn1 expression that was restricted correctly to the nascent, post-mitotic cells of the differentiating hair cortex and hair cuticle lineages. We also demonstrate for the first time that a Foxn1 transgene rescues completely both the hair follicle and the thymus defects in animals that are also homozygous for the nude mutation at the endogenous Foxn1 locus, causing the development of a full coat of hair and a normal population of peripheral blood T lymphocytes. We conclude that sufficient cis-acting regulatory information resides within this 110-kb transgene to direct reliable and appropriate tissue-specific expression of the Foxn1 gene.  相似文献   

15.
16.
Summary Mutations at a locus on chromosome II of D. melanogaster suppressing position-effect variegation mutations have been identified which display recessive butyrate sensitivity. Survival of homozygous mutant flies is significantly reduced on medium containing sodium n-butyrate. The butyrate sensitive suppressor mutations are further characterized by recessive female sterility and reduced survival of homozygotes. Complementation analysis showed their allelism. The locus of these mutations, Su-var (2) 1, has been localized to 40.5±0.2 and, by using interstitial duplications, to region 31CD on the cytogenetic map. Moreover, the mutant alleles of the Su-var (2) 1 locus display a lethal interaction with the heterochromatic Y chromosome. The presence or absence of a Y chromosome in males or females has a strong influence on the viability of homozygous or transheterozygous suppressor flies. All the genetic properties of Su-var (2) 1 mutants suggest strongly that this locus affects chromosome condensation.  相似文献   

17.
Summary The clonedntrA (rpoN) gene andntrA mutants ofRhizobium meliloti were used to isolate the homologous gene from the broad-host rangeRhizobium sp. NGR234 by hybridization and interspecies complementation. The NGR234 locus was analyzed by deletion and insertional mutagenesis. A site-directedntrA mutant, NGR234rn1, was made with an interposon, GmI, and its phenotype was examined ex planta and in symbiosis. NGR234rn1 formed Fix nodules on six genera tested from among its legume hosts, including both indeterminate and determinate nodule-type plants. Formation of nodules onMacroptilium was delayed, and expression of anR. meliloti nodABC-lacZ fusion was reduced by the mutant allele.  相似文献   

18.
Six solid colors occur in Highland cattle: black, dun, silver dun and red, yellow, and white. These six coat colors are explained by a non‐epistatic interaction of the genotypes at the MC1R and PMEL genes. A three base pair deletion in the PMEL gene leading to the deletion of a leucine from the signal peptide is observed in dilute‐colored Highland cattle (c.50_52delTTC, p.Leu18del). The mutant PMEL allele acts in a semi‐dominant manner. Dun Galloway cattle also have one copy of the deletion allele, and silver dun Galloway cattle have two copies. The presence of two adjacent leucine residues at the site of this deletion is highly conserved in human, horse, mouse and chicken as well as in cattle with undiluted coat colors. Highland and Galloway cattle thus exhibit a similar dose‐dependent dilution effect based on the number of PMEL :c.50_51delTTC alleles, as Charolais cattle with PMEL :c.64G>A alleles. The PMEL :c.64G>A allele was not found in Highland or Galloway cattle.  相似文献   

19.
20.
Seed coat color inheritance in Brassica napus was studied in F1, F2, F3 and backcross progenies from crosses of five black seeded varieties/lines to three pure breeding yellow seeded lines. Maternal inheritance was observed for seed coat color in B. napus, but a pollen effect was also found when yellow seeded lines were used as the female parent. Seed coat color segregated from black to dark brown, light brown, dark yellow, light yellow, and yellow. Seed coat color was found to be controlled by three genes, the first two genes were responsible for black/brown seed coat color and the third gene was responsible for dark/light yellow seed coat color in B. napus. All three seed coat color alleles were dominant over yellow color alleles at all three loci. Sequence related amplified polymorphism (SRAP) was used for the development of molecular markers co-segregating with the seed coat color genes. A SRAP marker (SA12BG18388) tightly linked to one of the black/brown seed coat color genes was identified in the F2 and backcross populations. This marker was found to be anchored on linkage group A9/N9 of the A-genome of B. napus. This SRAP marker was converted into sequence-characterized amplification region (SCAR) markers using chromosome-walking technology. A second SRAP marker (SA7BG29245), very close to another black/brown seed coat color gene, was identified from a high density genetic map developed in our laboratory using primer walking from an anchoring marker. The marker was located on linkage group C3/N13 of the C-genome of B. napus. This marker also co-segregated with the black/brown seed coat color gene in B. rapa. Based on the sequence information of the flanking sequences, 24 single nucleotide polymorphisms (SNPs) were identified between the yellow seeded and black/brown seeded lines. SNP detection and genotyping clearly differentiated the black/brown seeded plants from dark/light/yellow-seeded plants and also differentiated between homozygous (Y2Y2) and heterozygous (Y2y2) black/brown seeded plants. A total of 768 SRAP primer pair combinations were screened in dark/light yellow seed coat color plants and a close marker (DC1GA27197) linked to the dark/light yellow seed coat color gene was developed. These three markers linked to the three different yellow seed coat color genes in B. napus can be used to screen for yellow seeded lines in canola/rapeseed breeding programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号