首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Most filarial parasite species contain Wolbachia, obligatory bacterial endosymbionts that are crucial for filarial development and reproduction. They are targets for alternative chemotherapy, but their role in the biology of filarial nematodes is not well understood. Light microscopy provides important information on morphology, localization and potential function of these bacteria. Surprisingly, immunohistology and in situ hybridization techniques have not been widely used to monitor Wolbachia distribution during the filarial life cycle.

Methods/Principal Findings

A monoclonal antibody directed against Wolbachia surface protein and in situ hybridization targeting Wolbachia 16S rRNA were used to monitor Wolbachia during the life cycle of B. malayi. In microfilariae and vector stage larvae only a few cells contain Wolbachia. In contrast, large numbers of Wolbachia were detected in the lateral chords of L4 larvae, but no endobacteria were detected in the genital primordium. In young adult worms (5 weeks p.i.), a massive expansion of Wolbachia was observed in the lateral chords adjacent to ovaries or testis, but no endobacteria were detected in the growth zone of the ovaries, uterus, the growth zone of the testis or the vas deferens. Confocal laser scanning and transmission electron microscopy showed that numerous Wolbachia are aligned towards the developing ovaries and single endobacteria were detected in the germline. In inseminated females (8 weeks p.i.) Wolbachia were observed in the ovaries, embryos and in decreasing numbers in the lateral chords. In young males Wolbachia were found in distinct zones of the testis and in large numbers in the lateral chords in the vicinity of testicular tissue but never in mature spermatids or spermatozoa.

Conclusions

Immunohistology and in situ hybridization show distinct tissue and stage specific distribution patterns for Wolbachia in B. malayi. Extensive multiplication of Wolbachia occurs in the lateral chords of L4 and young adults adjacent to germline cells.  相似文献   

2.

Background  

Wolbachia (wBm) is an obligate endosymbiotic bacterium of Brugia malayi, a parasitic filarial nematode of humans and one of the causative agents of lymphatic filariasis. There is a pressing need for new drugs against filarial parasites, such as B. malayi. As wBm is required for B. malayi development and fertility, targeting wBm is a promising approach. However, the lifecycle of neither B. malayi nor wBm can be maintained in vitro. To facilitate selection of potential drug targets we computationally ranked the wBm genome based on confidence that a particular gene is essential for the survival of the bacterium.  相似文献   

3.

Background

Most filarial nematodes contain Wolbachia symbionts. The purpose of this study was to examine the effects of doxycycline on gene expression in Wolbachia and adult female Brugia malayi.

Methods

Brugia malayi infected gerbils were treated with doxycycline for 6-weeks. This treatment largely cleared Wolbachia and arrested worm reproduction. RNA recovered from treated and control female worms was labeled by random priming and hybridized to the Version 2- filarial microarray to obtain expression profiles.

Results and discussion

Results showed significant changes in expression for 200 Wolbachia (29% of Wolbachia genes with expression signals in untreated worms) and 546 B. malayi array elements after treatment. These elements correspond to known genes and also to novel genes with unknown biological functions. Most differentially expressed Wolbachia genes were down-regulated after treatment (98.5%). In contrast, doxycycline had a mixed effect on B. malayi gene expression with many more genes being significantly up-regulated after treatment (85% of differentially expressed genes). Genes and processes involved in reproduction (gender-regulated genes, collagen, amino acid metabolism, ribosomal processes, and cytoskeleton) were down-regulated after doxycycline while up-regulated genes and pathways suggest adaptations for survival in response to stress (energy metabolism, electron transport, anti-oxidants, nutrient transport, bacterial signaling pathways, and immune evasion).

Conclusions

Doxycycline reduced Wolbachia and significantly decreased bacterial gene expression. Wolbachia ribosomes are believed to be the primary biological target for doxycycline in filarial worms. B. malayi genes essential for reproduction, growth and development were also down-regulated; these changes are consistent with doxycycline effects on embryo development and reproduction. On the other hand, many B. malayi genes involved in energy production, electron-transport, metabolism, anti-oxidants, and others with unknown functions had increased expression signals after doxycycline treatment. These results suggest that female worms are able to compensate in part for the loss of Wolbachia so that they can survive, albeit without reproductive capacity. This study of doxycycline induced changes in gene expression has provided new clues regarding the symbiotic relationship between Wolbachia and B. malayi.  相似文献   

4.
Wolbachia endosymbiotic bacteria have been shown to be widespread among filarial worms and could thus play some role in the biology of these nematodes. Indeed, tetracycline has been shown to inhibit both the development of adult worms from third-stage larvae and the development of the microfilaraemia in jirds infected with Brugia pahangi. The possibility that these effects are related to the bacteriostatic activity of tetracycline on Wolbachia symbionts should be considered. Here we show that tetracycline treatment is very effective in blocking embryo development in two filarial nematodes, B. pahangi and Dirofilaria immitis. Embryo degeneration was documented by TEM, while the inhibition of the transovarial transmission of Wolbachia was documented by PCR. Phylogenetic analysis on the ssrDNA sequence of the Wolbachia of B. pahangi confirms that the phylogeny of the bacterial endosymbionts is consistent with that of the host worms. The possibility that tetracycline inhibition of embryo development in B. pahangi and D. immitis is determined by cytoplasmic incompatibility is discussed.  相似文献   

5.
The parasitic nematode, Brugia malayi, causes lymphatic filariasis in humans, which in severe cases leads to the condition known as elephantiasis. The parasite contains an endosymbiotic alpha-proteobacterium of the genus Wolbachia that is required for normal worm development and fecundity and is also implicated in the pathology associated with infections by these filarial nematodes. Bacterial artificial chromosome libraries were constructed from B. malayi DNA and provide over 11-fold coverage of the nematode genome. Wolbachia genomic fragments were simultaneously cloned into the libraries giving over 5-fold coverage of the 1.1 Mb bacterial genome. A physical framework for the Wolbachia genome was developed by construction of a plasmid library enriched for Wolbachia DNA as a source of sequences to hybridise to high-density bacterial artificial chromosome colony filters. Bacterial artificial chromosome end sequencing provided additional Wolbachia probe sequences to facilitate assembly of a contig that spanned the entire genome. The Wolbachia sequences provided a marker approximately every 10 kb. Four rare-cutting restriction endonucleases were used to restriction map the genome to a resolution of approximately 60 kb and demonstrate concordance between the bacterial artificial chromosome clones and native Wolbachia genomic DNA. Comparison of Wolbachia sequences to public databases using BLAST algorithms under stringent conditions allowed confident prediction of 69 Wolbachia peptide functions and two rRNA genes. Comparison to closely related complete genomes revealed that while most sequences had orthologs in the genome of the Wolbachia endosymbiont from Drosophila melanogaster, there was no evidence for long-range synteny. Rather, there were a few cases of short-range conservation of gene order extending over regions of less than 10 kb. The molecular scaffold produced for the genome of the Wolbachia from B. malayi forms the basis of a genomic sequencing effort for this bacterium, circumventing the difficult challenge of purifying sufficient endosymbiont DNA from a tropical parasite for a whole genome shotgun sequencing strategy.  相似文献   

6.
7.
The human filarial parasite Brugia malayi harbors an endosymbiotic bacterium of the genus Wolbachia. The Wolbachia represent an attractive target for the control of filarial induced disease as elimination of the bacteria affects molting, reproduction and survival of the worms. The molecular basis for the symbiotic relationship between Wolbachia and their filarial hosts has yet to be elucidated. To identify proteins involved in this process, we focused on the Wolbachia surface proteins (WSPs), which are known to be involved in bacteria-host interactions in other bacterial systems. Two WSP-like proteins (wBm0152 and wBm0432) were localized to various host tissues of the B. malayi female adult worms and are present in the excretory/secretory products of the worms. We provide evidence that both of these proteins bind specifically to B. malayi crude protein extracts and to individual filarial proteins to create functional complexes. The wBm0432 interacts with several key enzymes involved in the host glycolytic pathway, including aldolase and enolase. The wBm0152 interacts with the host cytoskeletal proteins actin and tubulin. We also show these interactions in vitro and have verified that wBm0432 and B. malayi aldolase, as well as wBm0152 and B. malayi actin, co-localize to the vacuole surrounding Wolbachia. We propose that both WSP protein complexes interact with each other via the aldolase-actin link and/or via the possible interaction between the host''s enolase and the cytoskeleton, and play a role in Wolbachia distribution during worm growth and embryogenesis.  相似文献   

8.
9.
10.
Wolbachia endosymbiotic bacteria are widespread in filarial nematodes and are directly involved in the immune response of the host. In addition, antibiotics which disrupt Wolbachia interfere with filarial nematode development thus, Wolbachia provide an excellent target for control of filariasis. A 63.1 kb bacterial artificial chromosome insert, from the Wolbachia endosymbiont of the human filarial parasite Brugia malayi, has been sequenced using the New England Biolabs Inc. Genome Priming System() transposition kit in conjunction with primer walking methods. The bacterial artificial chromosome insert contains approximately 57 potential ORFs which have been compared by individual protein BLAST analysis with the 35 published complete microbial genomes in the Comprehensive Microbial Resource database at The Institute for Genomic Research and in the NCBI GenBank database, as well as to data from 22 incomplete genomes from the DOE Joint Genome Institute. Twenty five of the putative ORFs have significant similarity to genes from the alpha-proteobacteria Rickettsia prowazekii, the most closely related completed genome, as well as to the newly sequenced alpha-proteobacteria endosymbiont Sinorhizobium meliloti. The bacterial artificial chromosome insert sequence however has little conserved synteny with the R. prowazekii and S. meliloti genomes. Significant sequence similarity was also found in comparisons with the currently available sequence data from the Wolbachia endosymbiont of Drosophila melanogaster. Analysis of this bacterial artificial chromosome insert provides useful gene density and comparative genomic data that will contribute to whole genome sequencing of Wolbachia from the B. malayi host. This will also lead to a better understanding of the interactions between the endosymbiont and its host and will offer novel approaches and drug targets for elimination of filarial disease.  相似文献   

11.
12.
A novel form of transglutaminase enzyme [EC 2.3.2. 13] was identified in adult worms of Brugia malayi. The molecular size of this enzyme was 22-kilodaltons as determined by Western blot and immunoprecipitation, using a monoclonal (CUB 7401) or polyclonal antibodies against guinea-pig liver tissue transglutaminase. The enzyme was present in female worms only; adult males contained no detectable levels of the enzyme peptide. Possible involvement of transglutaminase-catalyzed reactions in growth and survival of filarial parasites was studied by using various enzyme-specific pseudosubstrates. Presence of these inhibitors resulted into a significant inhibition of microfilariae production and release by gravid female worms in a dose-dependent manner. These results suggest that transglutaminase-catalyzed reactions are essential for development of in utero growing embryos to mature microfilariae.  相似文献   

13.
14.
DNA sequence analysis of genes encoding 5S rRNA in the human parasitic nematode Brugia malayi (B. malayi) indicates a surprising degree of heterogeneity. This variation in coding sequence is not accompanied by corresponding heterogeneity in flanking regions which are highly conserved. Six out of eight potential 5S coding regions differed; of these sequence variants, two were abundant in the B. malayi genome. Direct RNA sequence analysis indicated that one of these abundant variants accounts for most if not all of expressed 5S RNA at two stages of development.  相似文献   

15.
Copper is an essential trace element in many organisms and is utilized in all domains of life. It is often used as a cofactor of redox proteins, but is also a toxic metal ion. Intracellular copper must be carefully handled to prevent the formation of reactive oxygen species which pose a threat to DNA, lipids, and proteins. In this work, we examined patterns of copper utilization in prokaryotes by analyzing the occurrence of copper transporters and copper-containing proteins. Many organisms, including those that lack copper-dependent proteins, had copper exporters, likely to protect against copper ions that inadvertently enter the cell. We found that copper use is widespread among prokaryotes, but also identified several phyla that lack cuproproteins. This is in contrast to the use of other trace elements, such as selenium, which shows more scattered and reduced usage, yet larger selenoproteomes. Copper transporters had different patterns of occurrence than cuproproteins, suggesting that the pathways of copper utilization and copper detoxification are independent of each other. We present evidence that organisms living in oxygen-rich environments utilize copper, whereas the majority of anaerobic organisms do not. In addition, among copper users, cuproproteomes of aerobic organisms were larger than those of anaerobic organisms. Prokaryotic cuproproteomes were small and dominated by a single protein, cytochrome c oxidase. The data are consistent with the idea that proteins evolved to utilize copper following the oxygenation of the Earth.  相似文献   

16.
Lymphatic filarial nematodes are able to down-regulate parasite-specific and nonspecific responses of lymphocytes and APC. Lymphatic filariae are reliant on Wolbachia endosymbiotic bacteria for development and survival. We tested the hypothesis that repeated exposure to Wolbachia endosymbionts would drive macrophage tolerance in vitro and in vivo. We pre-exposed murine peritoneal-elicited macrophages to soluble extracts of Brugia malayi female worms (BMFE) before restimulating with BMFE or TLR agonists. BMFE tolerized macrophages (in terms of IFN-beta, IL-1beta, IL-6, IL-12p40, and TNF-alpha inflammatory cytokine production) in a dose-dependent manner toward self, LPS, MyD88-dependent TLR2 or TLR9 ligands (peptidoglycan, triacyl lipopeptide, CpG DNA) and the MyD88-independent/TRIF-dependent TLR3 ligand, polyinosinic-polycytidylic acid. This was accompanied with down-regulation in surface expression of TLR4 and up-regulation of CD14, CD40, and TLR2. BMFE tolerance extended to CD40 activation in vitro and systemic inflammation following lethal challenge in an in vivo model of endotoxin shock. The mechanism of BMFE-mediated macrophage tolerance was dependent on MyD88 and TLR2 but not TLR4. Evidence that desensitization was driven by Wolbachia-specific ligands was determined by use of extracts from Wolbachia-depleted B. malayi, aposymbiotic filarial species, and a cell line stably infected with Wolbachia pipientis. Our data promote a role for Wolbachia in contributing toward the dysregulated and tolerized immunological phenotype that accompanies the majority of human filarial infections.  相似文献   

17.
18.
The Filarial Genome Project (FGP) was initiated in 1994 under the auspices of the World Health Organisation. Brugia malayi was chosen as the model organism due to the availability of all life cycle stages for the construction of cDNA libraries. To date, over 20000 cDNA clones have been partially sequenced and submitted to the EST database (dbEST). These ESTs define approximately 7000 new Brugia genes. Analysis of the EST dataset provides useful information on the expression pattern of the most abundantly expressed Brugia genes. Some highly expressed genes have been identified that are expressed in all stages of the parasite's life cycle, while other highly expressed genes appear to be stage-specific. To elucidate the structure of the Brugia genome and to provide a basis for comparison to the Caenorhabditis elegans genome, the FGP is also constructing a physical map of the Brugia chromosomes and is sequencing genomic BAC clones. In addition to the nuclear genome, B. malayi possesses two other genomes: the mitochondrial genome and the genome of a bacterial endosymbiont. Eighty percent of the mitochondrial genome of B. malayi has been sequenced and is being compared to mitochondrial sequences of other nematodes. The bacterial endosymbiont genome found in B. malayi is closely related to the Wolbachia group of rickettsia-like bacteria that infects many insect species. A set of overlapping BAC clones is being assembled to cover the entire bacterial genome. Currently, half of the bacterial genome has been assembled into four contigs. A consortium has been established to sequence the entire genome of the Brugia endosymbiont. The sequence and mapping data provided by the FGP is being utilised by the nematode research community to develop a better understanding of the biology of filarial parasites and to identify new vaccine candidates and drug targets to aid the elimination of human filariasis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号