首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
子午岭三种生境下辽东栎幼苗定居限制   总被引:1,自引:0,他引:1  
郭华  王孝安  朱志红 《生态学报》2010,30(23):6521-6529
辽东栎(Quercus wutaishanica)是子午岭地区的乡土乔木树种,也是该地区气候顶极群落的建群种,其幼苗的补充更新影响着森林群落的结构及物种组成。在3种典型生境(辽东栎林、人工油松林、灌草丛)中,设置3因素(种子、干扰、遮荫)两水平的野外播种实验(随机区组设计),记录辽东栎幼苗出苗量,并监测幼苗同生群在3种生境中3a间的生长状况,以确定种子及微生境在辽东栎幼苗补充过程中的限制作用。播种实验样方大小30cm×30cm,共计216个样方。结果显示,在辽东栎林及油松林内,增加种子和干扰强度(去除枯落物),能引起出苗量和幼苗补充量的显著增加,且2种处理方式间存在交互作用,表明在郁闭林冠下,辽东栎幼苗的补充受到了种子和微生境的双重限制,枯落物是导致微生境限制的主要因素之一。在灌草丛生境,各种处理方式均不能增加幼苗的补充量,表明辽东栎无法在开阔生境(强光照、干旱)中完成实生幼苗的补充更新。3种生境中的幼苗同生群生存分析表明,辽东栎幼苗在森林群落中存活率显著高于灌草丛群落。根据幼苗生长指标判断,在3种生境中,人工油松林是辽东栎幼苗定居的最佳场所。与实验预期相反,灌木对辽东栎幼苗的补充无显著影响。  相似文献   

2.
In herbaceous dominated patches and ecosystems, tree establishment is influenced partly by the ability of woody seedlings to survive and grow in direct competition with herbaceous vegetation. We studied the importance of season long wet and dry spells on the competitive interactions between herbaceous vegetation and oak seedlings along a light and nitrogen gradient in an infertile secondary successional grassland in central North America. We conducted a field experiment in which seedlings of bur oak (Quercus macrocarpa) and northern pin oak (Q. ellipsoidalis) were exposed to two levels of light (full sun and 80% shade), three levels of nitrogen input (0, 5, 15 g m–1 yr–1), and three levels of water input (low, medium and high). In addition, seedlings were grown with and without the presence of surrounding herbaceous vegetation under both light and all three water levels. Seedling survival, growth, and rate of photosynthesis were significantly affected by competition with herbaceous vegetation and these effects varied along the multiple resource gradient. Overall, seedling survival of both species was significantly greater in wetter and shaded plots and when surrounding herbaceous vegetation was removed and was lower in nitrogen enriched plots. We found that soil water was significantly affected by varying inputs of water, light, and the presence or absence of herbaceous vegetation, and that seedling survival and rate of photosynthesis were highly correlated with available soil water. Our findings show that the impact of season long wet and dry spells on tree seedling success in grasslands can be affected by light and soil nitrogen availability.  相似文献   

3.
在子午岭马兰林区选择油松林、辽东栎林、灌丛、草地等四种群落,通过播种实验及3 a的跟踪调查,研究四种不同生境下辽东栎幼苗在定居过程中的生长规律.结果显示:在四种生境中,人为增加辽东栎种子密度,均能明显提高出苗量,幼苗生长三年后大量死亡,死亡高峰出现在第三年.郁闭生境下(油松林和辽东栎林),辽东栎出苗率及存活率高于开阔生...  相似文献   

4.
Reduced recruitment of blue oak (Quercus douglasii) seedlings in California grasslands and woodlands may result from shifts in seasonal soil water availability coincident with replacement of the native perennial herbaceous community by Mediterranean annuals. We used a combination of container and field experiments to examine the interrelationships between soil water potential, herbaceous neighborhood composition, and blue oak seedling shoot emergence and growth. Neighborhoods of exotic annuals depleted soil moisture more rapidly than neighborhoods of a perennial grass or "no-neighbor" controls. Although effects of neighborhood composition on oak seedling root elongation were not statistically significant, seedling shoot emergence was significantly inhibited in the annual neighborhoods where soil water was rapidly depleted. Seedling water status directly reflected soil water potential, which also determined the extent and duration of oak seedling growth during the first year. End-of-season seedling height significantly influenced survival and growth in subsequent years. While growth and survival of blue oak seedlings may be initially constrained by competition with herbaceous species, subsequent competition with adult blue oak trees may further contribute to reduced sapling recruitment.  相似文献   

5.
The relationship between seed size and fitness in plants may depend on offspring density, especially in cases where seed size affects the outcome of competition. We investigated the relationship between seed mass, germination, intraspecific competition and seedling height in a glasshouse experiment on three European white oak species (Quercus robur, Q. petraea, Q. pubescens). Within offspring families, seed mass showed a moderate, but statistically significant effect on seedling height, i.e. seedlings from heavier seeds were slightly taller. In contrast, competition caused pronounced inequality in seedling height in pairs of competing seedlings, but in only 55.2% of all pairs the dominant competitor arose from the heavier seed. It is thus possible that a positive effect of seed mass on seedling growth can be mediated through the density of conspecific seedlings and that heterogeneity in offspring density will contribute to the maintenance of seed mass variation in oak populations.  相似文献   

6.
To face summer drought and wildfire in Mediterranean-type ecosystems, plants adopt different strategies that involve considerable rearrangements of biomass allocation and physiological activity. This paper analyses morphological and physiological traits in seedlings of three oak species (Quercus ilex, Quercus trojana and Quercus virgiliana) co-occurring under natural conditions. The aim of this study was to evaluate species-specific characteristics and the response of these oak seedlings to drought stress and fire treatment. Seedlings were kept in a growth chamber that mimicked natural environmental conditions. All three species showed a good degree of tolerance to drought and fire treatments. Differences in specific biomass allocation patterns and physiological traits resulted in phenotypic differences between species. In Q. ilex, drought tolerance depended upon adjustment of the allocation pattern. Q. trojana seedlings undergoing mild to severe drought presented a higher photosystem II (PSII) efficiency than control seedlings. Moreover, Q. trojana showed a very large root system, which corresponded to higher soil area exploitation, and bigger leaf midrib vascular bundles than the other two species. Morphological and physiological performances indicated Q. trojana as the most tolerant to drought and fire. These characteristics contribute to a high recruitment potential of Q. trojana seedlings, which might be the reason for the dominance of this species under natural conditions. Drought increase as a result of climate change is expected to favour Q. trojana, leading to an increase in its spatial distribution.  相似文献   

7.
In forests, the vulnerable seedling stage is largely influenced by the canopy, which modifies the surrounding environment. Consequently, any alteration in the characteristics of the canopy, such as those promoted by forest dieback, might impact regeneration dynamics. Our work analyzes the interaction between canopy neighbors and seedlings in Mediterranean forests affected by the decline of their dominant species (Quercus suber). Our objective was to understand how the impacts of neighbor trees and shrubs on recruitment could affect future dynamics of these declining forests. Seeds of the three dominant tree species (Quercus suber, Olea europaea and Quercus canariensis) were sown in six sites during two consecutive years. Using a spatially-explicit, neighborhood approach we developed models that explained the observed spatial variation in seedling emergence, survival, growth and photochemical efficiency as a function of the size, identity, health, abundance and distribution of adult trees and shrubs in the neighborhood. We found strong neighborhood effects for all the performance estimators, particularly seedling emergence and survival. Tree neighbors positively affected emergence, independently of species identity or health. Alternatively, seedling survival was much lower in neighborhoods dominated by defoliated and dead Q. suber trees than in neighborhoods dominated by healthy trees. For the two oak species, these negative effects were consistent over the three years of the experimental seedlings. These results indicate that ongoing changes in species’ relative abundance and canopy trees’ health might alter the successional trajectories of Mediterranean oak-forests through neighbor-specific impacts on seedlings. The recruitment failure of dominant late-successional oaks in the gaps opened after Q. suber death would indirectly favor the establishment of other coexisting woody species, such as drought-tolerant shrubs. This could lead current forests to shift into open systems with lower tree cover. Adult canopy decline would therefore represent an additional factor threatening the recruitment of Quercus forests worldwide.  相似文献   

8.
Seedling recruitment is a bottleneck for population dynamics and range shift. The vital rates linked to recruitment by seed are impacted by amplified drought induced by climate change. In the Mediterranean region, autumn and winter seedling emergence and mortality may have strong impact on the overall seedling recruitment. However, studies focusing on the temporal dynamic of recruitment during these seasons are rare. This study was performed in a deciduous Mediterranean oak forest located in southern France and quantifies the impact of amplified drought conditions on autumn and winter seedling emergence and seedling mortality rates of two herbaceous plant species with meso‐Mediterranean and supra‐Mediterranean distribution (respectively, Silene italica and Silene nutans). Seedlings were followed from October 2019 to May 2020 in both undisturbed and disturbed plots where the litter and the aboveground biomass have been removed to create open microsites. Amplified drought conditions reduced seedling emergence and increased seedling mortality for both Silene species but these negative effects were dependent on soil disturbance conditions. Emergence of S. italica decreased only in undisturbed plots (−7%) whereas emergence of Snutans decreased only in disturbed plots (−10%) under amplified drought conditions. The seedling mortality rate of Sitalica was 51% higher under amplified drought conditions in undisturbed plots while that of Snutans was 38% higher in disturbed plots. Aridification due to lower precipitation in the Mediterranean region will negatively impact the seedling recruitment of these two Silene species. Climate change effects on early vital rates may likely have major negative impacts on the overall population dynamic.  相似文献   

9.
Seedling growth dynamics of Quercus macrocarpa Michx. and Quercus muhlenbergii Engelm. were compared over a 3-month period under optimal growth conditions. These two species are the dominant trees at the western limit of the eastern deciduous forest, and are typically confined to gallery forests along stream beds in tallgrass prairie. Since tallgrass prairie is characterized by a highly variable climate and is prone to periodic drought, we hypothesized that these oaks would have rapid root growth and produce deep taproots as seedlings, enabling them to avoid drought stress and persist in this region. These traits may also facilitate forest expansion into the more xeric tallgrass prairie if fires are suppressed. Taproots of Q. macrocarpa and Q. muhlenbergii grew to approximately 140 cm and 100 cm in length, respectively, after 104 days. In both species, 65% or more of seedling biomass was allocated below ground, and root/total biomass was significantly greater in Q. muhlenbergii at 0-20 and 21-40 days after germination. The seedling taproot elongation rates reported here are much greater than rates reported in other eastern deciduous forest trees. Long-term precipitation data and soil moisture patterns from tallgrass prairie, when combined with rapid taproot elongation rates, suggest that soil moisture may not limit oak establishment or growth in tallgrass prairie in most years, although water uptake by roots was not measured in this study. Other factors, such as fire, herbivory, and seed predation and dispersal may be equally important in constraining the distribution of these species to gallery forests.  相似文献   

10.
接种外生菌根对辽东栎幼苗生长的影响   总被引:13,自引:0,他引:13       下载免费PDF全文
 辽东栎(Quercus liaotungensis)是中国特有的栎林树种,也是中国暖温带落叶阔叶林的主要优势树种之一。铆钉菇(Gomphidius viscidus)和臭红菇(Russula foetens)是在自然环境中与其共生形成外生菌根的真菌。在温室花盆中播种辽东栎种子获得辽东栎幼苗,并对幼苗接种铆钉菇和臭红菇合成外生菌根,比较了有菌根和无菌根辽东栎幼苗生长、光合蒸腾特性、氮磷含量的差异。外生菌根对辽东栎幼苗的生长有明显的促进作用,有菌根幼苗的生物量、株高、净光合速率和水分利用效率高于无菌根幼苗,蒸腾速率则相反。有菌根幼苗的氮磷含量分别为无菌根幼苗的1.7倍和2.2倍,外生菌根的合成还改变了氮磷在幼苗器官间的分配比例,与无菌根幼苗相比,有菌根幼苗茎中的氮磷减少,而叶片中的磷显著增加。同时接种铆钉菇和臭红菇的生长促进效果优于单独接种。  相似文献   

11.
Regeneration patterns in relation to canopy species composition and site variables were analyzed in mixed oak forests of the Sierra de Manantlán in western Mexico with the aim of establishing an ecological basis for the design of management alternatives. Using ordination (canonical correspondence analysis) and classification (two-way indicator species analysis) methods, five different canopy types and three different seedling associations were revealed according to species composition, all of them dominated by one or more oak species. Red–far red ratio, slope, altitude, topography, canopy type and grazing intensity were the main variables that explained differences in species composition among the seedling associations. Oak seedlings were relatively scarce in the sampling plots, with the lowest frequency values of all species recorded except for those of Quercus crassipes Humb. & Bonpl., and also the lowest density values. The presence of a particular oak seedling species was strongly associated with a particular percentage of canopy openness; Quercus candicans Née, Quercus laurina Humb. & Bonpl. and Quercus rugosa Née were present in the plots with the least-open canopy (6.4%, 2.9 and 6.2%, respectively), while Quercus castanea Née and Quercus crassipes Humb. & Bonpl. were present in the plots with the most-open canopy (13 and 8.1%, respectively). Every oak seedling species was more frequent, although not dependent, on the canopy type where the same oak species dominated. Because of the great heterogeneity in species composition and the physiographical factors of mixed oak forests in the Sierra de Manantlán, we concluded that management alternatives must be prescribed for each ecological situation where the different oak species are growing.  相似文献   

12.
13.
Emergence, survival and mortality patterns of current-year oak (Quercus crispula Blume) seedlings were investigated for 4 consecutive years in a secondary oak forest in Hokkaido, northern Japan. Despite the emergence of a considerable number of oak seedlings in the years following masting, few current-year seedlings survived until the end of the growing season. Almost all of the seedlings died from damage to their stems caused by the gnawing of rodents. Rodent gnawing on transplanted oak seedlings was also observed in the year following masting but not in the year following a bad crop year. Cuttings of dwarf bamboo, Sasa, did not reduce the seedling mortality caused by gnawing. However, transplanted oak seedlings were gnawed more quickly when they were placed on the forest floor with a thicker Sasa covering. All rodents trapped in the vicinity of the study area were Apodemus speciosus Temminck. These results suggest that rodents strongly influence the recruitment of oak trees not only through the predation and dispersal of acorns but also through gnawing seedlings.  相似文献   

14.
High evaporative demand and periodic drought characterize the growing season in midwestern grasslands relative to deciduous forests of the eastern US, and predicted climatic changes suggest that these climatic extremes may be exacerbated. Despite this less than optimal environment for tree seedling establishment, deciduous trees have expanded into adjacent tallgrass prairie within the last century leading to a dramatic land cover change. In order to determine the role of light and temperature on seedling establishment, we assessed carbon and water relations and aboveground growth of first‐year Quercus macrocarpa seedlings exposed to one of three conditions: (1) intact tallgrass prairie communities (control), (2) aboveground herbaceous biomass removed (grass removal), and (3) shade plus biomass removal to reduce light (PFD) to levels typical of the grassland‐forest ecotone (shade). In the 2000 growing season, precipitation was 35% below the long‐term average, which had a significant negative effect on oak seedling carbon gain at midseason (photosynthesis declined to 10% of maximum rates). However, net photosynthesis and stomatal conductance in the shade treatment was ca. 2.5 and 1.5 times greater, respectively, than in control treatment seedlings during this drought. During this period, leaf and air temperatures in control seedlings were similar whereas leaf temperatures in the shade treatment remained below air temperature. A late‐season recovery period, coincident with decreased air temperatures, resulted in increased net photosynthesis for all seedlings. Increased photosynthetic rates and water relations in shaded seedlings compared to seedlings in full sun suggest that, at least in dry years, high light and temperature may negatively impact oak seedling performance. However, high survival rates for all seedlings indicate that Q. macrocarpa seedlings are capable of tolerating both present‐day and future climatic extremes. Unless historic fire regimes are restored, forest expansion and land cover change are likely to continue.  相似文献   

15.
The natural expansion of forestry trees into habitats outside plantations is a concern for managers and conservationists. We studied seedling emergence and survival of the two main forestry species in Portugal: Eucalyptus globulus (exotic) and Pinus pinaster (native); using a seed addition experiment. Our main objective was to evaluate the combined effects of climate (mild-summer and warm-summer climate), habitat (oak forest and shrubland), and disturbance (vegetation removal and non-disturbance) on the seedling establishment of species in semi- and natural habitats. Furthermore, we tested the effect of the “sowing season” (autumn and spring) on seedling emergence and survival. Overall, seedling establishment of both species was enhanced by light and water. However, we found important interactions among climate, habitat, and disturbance on both species’ emergence and survival. The differences between habitats were more evident in the mild-summer climate than in the warm-summer climate. Our results also suggested that seedling survival may be enhanced by shrub cover in drier conditions (warm-summer climate). Eucalyptus globulus appears more sensitive to drought and disturbance changes than P. pinaster. In shrublands and mild-summer climate conditions, disturbance especially promoted E. globulus seedling establishment, while the forest canopy and the shade appeared to control it in both climatic conditions. After the first summer life, very low seedling survival was observed in both species, although the colonization of new areas appeared to be more limited for E. globulus. Our study suggests that climate conditions influence the effect (direction and intensity) of habitat and disturbance (plant–plant interactions) on seedling survival. Thus, the effect of light availability (forest canopy) and disturbance (vegetation removal) on these species establishment is climate context-dependent. This study presents very useful information to understand future shifts in these species distribution and has direct applications for the management of natural establishment outside the planted areas, and the management of the understorey to favor forest regeneration or limit forest colonization.  相似文献   

16.
Ni BR  Pallardy SG 《Plant physiology》1992,99(4):1502-1508
Comparative responses of net photosynthesis (A) to water stress in woody species from a variety of habitats were studied to assess the relationship between photosynthetic attributes and drought tolerance. Stomatal and nonstomatal limitations to A were compared in three-month-old white oak (Quercus alba L.), post oak (Quercus stellata Wangenh.), sugar maple (Acer saccharum Marsh.), and black walnut (Juglans nigra L.) seedlings during a drying cycle. Relative stomatal limitation of photosynthesis (I) was less than 50% in all species except for Q. stellata seedlings subjected to severe water stress. No significant changes in I were observed in Q. alba and J. nigra before, during, and after drought. In A. saccharum, I was generally low and decreased significantly under water stress. Under well-watered conditions, A was highest in Q. stellata, intermediate in Q. alba, and lower in A. saccharum and J. nigra. High A in well-watered Q. stellata was associated with high stomatal conductance and carboxylation efficiency, whereas low A was associated with low stomatal conductance and carboxylation efficiency in A. saccharum and low stomatal conductance, low carboxylation efficiency, and high CO2 compensation point in J. nigra. Under severe water stress, A, carboxylation efficiency, and stomatal conductance decreased substantially in all species; however, Q. stellata had the highest carboxylation efficiency and lowest CO2 compensation point under these conditions. After 5 days at high soil moisture after drought, stomatal and mesophyll components of A in A. saccharum and J. nigra had not recovered to predrought levels, whereas they had completely recovered in Q. stellata and Q. alba. The photosynthetic apparatus, especially mesophyll components, of drought-tolerant Quercus species showed either less inhibition under water stress, superior recovery to predrought capacity, or both. Exposure of the leaves to 14CO2 indicated apparent asymmetric stomatal closure for mildly water-stressed seedlings, but not for leaves of well-watered, severely stressed, or rehydrated plants. These results suggest that patchy stomatal closure under mild water stress might be important for water stress-induced inhibition of photosynthesis, but not under the more severe water stress imposed in this study.  相似文献   

17.
Oaks (Quercus spp.) represent the most important broadleaf genus with respect to forest-shaping tree species in the Mediterranean. Considering future climate scenarios (increased drought conditions), the identification of drought tolerant oak species is of great importance for future forest management in this region. The objective of the study was the comparison of physiological status of three economically and ecologically valuable oak species (Quercus ilex, Quercus frainetto and Quercus pubescens) co-existing in natural coppice stands in NE Greece, in response to seasonal drought stress. Measurements were conducted between June and September 2016, every 15–20 days until leaf falling. The parameters studied were predawn leaf water potential and fast chlorophyll fluorescence induction curves (OJIP test), chlorophyll content, and relative water content. Meteorological data from the area were also collected. Photosynthetic parameters such as performance indices (PIabs and PItot) reacted to summer drought conditions, with Q. frainetto showing the lowest values. The discrepancy between species increased with duration of drought period. Q. frainetto revealed the lowest predawn water potential values. The results indicate that Q. frainetto is less suitable for future forestry applications in the studied climate/elevation zone than Q. pubescens and Q. ilex.  相似文献   

18.
苗圃科学施氮(N)作为提高苗木N贮存水平与质量的核心手段,能否提高干旱立地苗木造林效果仍存在争议;N贮存水平与干旱如何协同作用影响叶片光合N分配及苗木生物量积累尚不明确。阐明上述问题,能够为干旱立地下的森林植被恢复以及造林苗木科学精准施N提供科学依据。选择栓皮栎(Quercus variabilis Blume)为研究对象,对一年生苗木设置2个苗圃木质化期N加载水平(0、24 mg N/株),翌年春苗木移栽后设置2个灌溉水平(85%、40%田间持水量),取样测定苗木生物量、叶片N、叶绿素与脯氨酸水平、以及气体交换参数,计算光合N分配及光合N利用效率(PNUE)。结果表明,叶片发育完成后,干旱抑制N向光合系统分配,但N加载处理提高了干旱下的光合N含量,从而在一定程度上抵消干旱对生物量积累的抑制;无N加载苗木则向光合系统投入更少的N,而提高脯氨酸水平,生物量积累受抑制更为显著。无N加载苗木在遭受干旱后将N向羧化组分分配,而N加载苗木遭遇干旱后则显著抑制叶片将N向羧化系统以及电子传递系统分配,捕光组分N的分配则不受植物体内N贮存或外部水分状况的影响,栓皮栎苗木通过调整不同功能组分光合N含量和...  相似文献   

19.
Conspecific negative density dependence (CNDD) is one of the main mechanisms influencing diversity maintenance in tropical forests. Tropical highland forests, in contrast to most lowland forests, are commonly dominated by a few tree species, and testing the importance of density dependence effects on seedling establishment of dominant trees may provide insights on the mechanisms regulating population dynamics and forest composition of tropical highlands. We tested the effect of CNDD regulation on seedling survival and recruitment of Quercus costaricensis, a monodominant oak in the Talamanca highland forests of Costa Rica. We used Ripley's K and generalized linear mixed models to test the effects of conspecific density, distance to the nearest adult, density of Chusquea bamboo shoots, and herbivory on the annual survival probability of 3579 seedlings between 2014 and 2017. We did not find a significant effect of CNDD on seedling survival. However, bamboo density and herbivory both significantly decreased oak seedling survival. All seedlings had signs of herbivory and predator satiation may explain the lack of density dependent regulation in seedlings of this species. We argue that the lack of intraspecific density regulation at the seedling stage may contribute to explain the dominance of Q. costaricensis in the highland forests of Costa Rica. Local seedling dynamics of this endemic oak are instead regulated by herbivory and the density of Chusquea. Abstract in Spanish is available with online material.  相似文献   

20.
 北京东灵山区的人工油松(Pinus tabulaeformis)林中常常混生有萌生的辽东栎(Quercus wutaishanica)种群。局部地带辽东栎与油松形成混交林,在山脊及山坡上部一些特殊生境辽东栎甚至取代油松林成为优势种。为了探讨北京东灵山区辽东栎林的天然更新机制及辽东栎幼苗在人工油松林中的天然更新,在油松人工林的林下和林缘两种生境条件下将辽东栎种子播种于2 cm深的土中,对辽东栎幼苗的补充和建立进行了对照试验。结果显示,在辽东栎结实丰年,两种生境条件下播种后辽东栎种子丢失差异并不显著,而辽东栎幼苗补充和建立方面的差异极显著。由于森林动物特别是啮齿类动物的活动对辽东栎幼苗建立的影响具有二重性:消耗种子与促进萌发,本试验特别关注辽东栎幼苗子叶丢失现象及其丢失后果。由于辽东栎种子萌根较早,在幼苗出土前其粗大的主根长达10~20 cm,并已初步形成根系,表明已有相当比例的营养物质从子叶转移到根部。因此当幼苗出土后如果仅仅只是子叶的丢失对辽东栎幼苗的成活和生长均无明显的影响。通过研究发现辽东栎幼苗期子叶丢失有3种形式:1)仅丢失子叶,幼苗其它部位未受伤害,多发生在林缘生境中,占发芽坚果的29.69%;2)整个幼苗连根被拖出地面,多发生在林下生境,占62.43%;3)在子叶与根颈的连接处主干被咬断,林缘为50.88%,显著高于林下的8.41%。但只有后两种形式才导致幼苗死亡。导致这些现象的原因是由于林缘土壤腐殖质含量低,比较干燥,土质较坚实,以及幼苗出土前坚果主根生长得较长等缘故,当幼苗遭受动物捕食时不会轻易地被拖出地面,拖走的往往仅仅是子叶。至生长季节结束,林缘样方辽东栎幼苗的成活率接近20%,茎干平均高度7.94 cm,芽数11.24·株-1,叶片平均干重为81.14 mg·株-1,且几乎全部由丢失子叶的幼苗所构成;而林下样方辽东栎幼苗的成活率不足2%,茎干平均高度4.74 cm,芽数7.52·株-1,叶片平均干重仅为42.27 mg·株-1,以未丢失子叶的幼苗为主。试验结果表明,林缘及类似林缘的环境条件更有利于辽东栎的实生更新。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号