首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BackgroundHemorrhagic fever with renal syndrome (HFRS) is a rodent-borne disease caused by many serotypes of hantaviruses. In China, HFRS has been recognized as a severe public health problem with 90% of the total reported cases in the world. This study describes the spatiotemporal dynamics of HFRS cases in China and identifies the regions, time, and populations at highest risk, which could help the planning and implementation of key preventative measures.MethodsData on all reported HFRS cases at the county level from January 2005 to December 2012 were collected from Chinese Center for Disease Control and Prevention. Geographic Information System-based spatiotemporal analyses including Local Indicators of Spatial Association and Kulldorff''s space-time scan statistic were performed to detect local high-risk space-time clusters of HFRS in China. In addition, cases from high-risk and low-risk counties were compared to identify significant demographic differences.ResultsA total of 100,868 cases were reported during 2005–2012 in mainland China. There were significant variations in the spatiotemporal dynamics of HFRS. HFRS cases occurred most frequently in June, November, and December. There was a significant positive spatial autocorrelation of HFRS incidence during the study periods, with Moran''s I values ranging from 0.46 to 0.56 (P<0.05). Several distinct HFRS cluster areas were identified, mainly concentrated in northeastern, central, and eastern of China. Compared with cases from low-risk areas, a higher proportion of cases were younger, non-farmer, and floating residents in high-risk counties.ConclusionsThis study identified significant space-time clusters of HFRS in China during 2005–2012 indicating that preventative strategies for HFRS should be particularly focused on the northeastern, central, and eastern of China to achieve the most cost-effective outcomes.  相似文献   

2.
3.
BackgroundHand, foot, and mouth disease (HFMD) is a global infectious disease; particularly, it has a high disease burden in China. This study was aimed to explore the temporal and spatial distribution of the disease by analyzing its epidemiological characteristics, and to calculate the early warning signals of HFMD by using a logistic differential equation (LDE) model.MethodsThis study included datasets of HFMD cases reported in seven regions in Mainland China. The early warning time (week) was calculated using the LDE model with the key parameters estimated by fitting with the data. Two key time points, “epidemic acceleration week (EAW)” and “recommended warning week (RWW)”, were calculated to show the early warning time.ResultsThe mean annual incidence of HFMD cases per 100,000 per year was 218, 360, 223, 124, and 359 in Hunan Province, Shenzhen City, Xiamen City, Chuxiong Prefecture, Yunxiao County across the southern regions, respectively and 60 and 34 in Jilin Province and Longde County across the northern regions, respectively. The LDE model fitted well with the reported data (R2 > 0.65, P < 0.001). Distinct temporal patterns were found across geographical regions: two early warning signals emerged in spring and autumn every year across southern regions while one early warning signals in summer every year across northern regions.ConclusionsThe disease burden of HFMD in China is still high, with more cases occurring in the southern regions. The early warning of HFMD across the seven regions is heterogeneous. In the northern regions, it has a high incidence during summer and peaks in June every year; in the southern regions, it has two waves every year with the first wave during spring spreading faster than the second wave during autumn. Our findings can help predict and prepare for active periods of HFMD.  相似文献   

4.
BackgroundDespite public health efforts to reduce the leprosy burden in Yunnan, China, leprosy remains an important public health problem in some specific areas. We analyzed the epidemiological characteristics and spatial distribution of leprosy in Yunnan, China, and provide data to guide disease prevention and control efforts.Methodology/principal findingsThe surveillance data of newly detected leprosy cases in Yunnan, China, during 2011–2020 were extracted from the LEPROSY MANAGEMANT INFORMATION SYSTEM IN CHINA (LEPMIS), and spatial distribution analysis, spatial autocorrelation analysis, and spatiotemporal scanning were performed with ArcGIS 10.6.1, GeoDa 1.8.8, and SaTScan 9.4.3 software, respectively. A total of 1907 newly detected leprosy cases were reported in Yunnan, China, during 2011–2020. The new case detection rate (NCDR) decreased from 0.62 in 2011 to 0.25 in 2020, with an annual incidence of 0.41/100,000 population. The proportions of multibacillary (MB) cases, cases in female patients, cases causing grade 2 physical disability (G2D), and cases in pediatric patients were 67.07%, 33.93%, 17.99%, and 2.83%, respectively. The number of counties with an incidence above 1/100,000 population decreased from 30 in 2011 to 8 in 2020. The Moran’s I of leprosy in Yunnan, China, during 2011–2020 ranged from 0.076 to 0.260, indicating the presence of spatial clusters. Local spatial autocorrelation (LSA) analysis showed that high-high cluster areas (hot spots) were mainly distributed in the southeastern, northern, and northwestern regions. Spatiotemporal scanning showed three clusters with high NCDRs. The probably primary clusters, occurring during January 1, 2011–December 31, 2015, covered 11 counties in the southeastern region (RR = 5.046515, LRR = 271.749664, P = 0.000).ConclusionThe number of leprosy cases in Yunnan decreased overall, although some high-NCDR regions remained. Geographic information system (GIS) analysis coupled with spatial analysis indicated regions with leprosy clusters. Continuous leprosy prevention and control strategies in Yunnan Province should be established, and interventions in high-risk regions should be prioritized and further strengthened.  相似文献   

5.
BackgroundScrub typhus, caused by Orientia tsutsugamushi, an obligate intracellular gram-negative bacterium, along with hemorrhagic fever with renal syndrome (HFRS), caused by hantaviruses, are natural-focus infectious diseases prevalent in Shandong Province, China. Both diseases have similar clinical manifestations in certain disease stages and similar epidemic seasons, which has caused difficulties for physicians in distinguishing them. The aim of this study was to investigate whether misdiagnosis of scrub typhus as HFRS occurred in patients in Shandong Province.MethodsSerum samples (N = 112) of clinically suspected HFRS patients from 2013 to 2014 in Shandong Province were analyzed with enzyme-linked immunosorbent assay (ELISA) for antibodies to both hantavirus and Orientia tsutsugamushi.ResultsELISA showed that 56.3% (63/112) and 8.0% (9/112) of clinically suspected HFRS patients were IgM antibody positive to hantavirus and O. tsutsugamushi, respectively. Among the hantavirus IgM antibody positive patients, 7.9% (5/63) were also IgM antibody positive to O. tsutsugamushi. Among the hantavirus IgM antibody negative sera, 8.2% (4/49) of sera were positive to O. tsutsugamushi.ConclusionsWe concluded that some scrub typhus patients were misdiagnosed as HFRS and co-infection of scrub typhus and HFRS might exist in China. Due to the different treatments for scrub typhus and HFRS, physicians should carefully differentiate between scrub typhus and HFRS and consider administering anti-rickettsia antibiotics if treatment for HFRS alone does not work.  相似文献   

6.

Background

Hemorrhagic fever with renal syndrome (HFRS), a rodent-borne infectious disease, is one of the most serious public health threats in China. Increasing our understanding of the spatial and temporal patterns of HFRS infections could guide local prevention and control strategies.

Methodology/Principal Findings

We employed statistical models to analyze HFRS case data together with environmental data from the Dongting Lake district during 2005–2010. Specifically, time-specific ecologic niche models (ENMs) were used to quantify and identify risk factors associated with HFRS transmission as well as forecast seasonal variation in risk across geographic areas. Results showed that the Maximum Entropy model provided the best predictive ability (AUC = 0.755). Time-specific Maximum Entropy models showed that the potential risk areas of HFRS significantly varied across seasons. High-risk areas were mainly found in the southeastern and southwestern areas of the Dongting Lake district. Our findings based on models focused on the spring and winter seasons showed particularly good performance. The potential risk areas were smaller in March, May and August compared with those identified for June, July and October to December. Both normalized difference vegetation index (NDVI) and land use types were found to be the dominant risk factors.

Conclusions/Significance

Our findings indicate that time-specific ENMs provide a useful tool to forecast the spatial and temporal risk of HFRS.  相似文献   

7.

Background

Hemorrhagic fever with renal syndrome (HFRS) is endemic in mainland China, accounting for 90% of total reported cases worldwide, and Jiangsu is one of the most severely affected provinces. In this study, the authors conducted GIS-based spatial analyses in order to determine the spatial distribution of the HFRS cases, identify key areas and explore risk factors for public health planning and resource allocation.

Methods

Interpolation maps by inverse distance weighting were produced to detect the spatial distribution of HFRS cases in Jiangsu from 2001 to 2011. Spatio-temporal clustering was applied to identify clusters at the county level. Spatial correlation analysis was conducted to detect influencing factors of HFRS in Jiangsu.

Results

HFRS cases in Jiangsu from 2001 to 2011 were mapped and the results suggested that cases in Jiangsu were not distributed randomly. Cases were mainly distributed in northeastern and southwestern Jiangsu, especially in Dafeng and Sihong counties. It was notable that prior to this study, Sihong county had rarely been reported as a high-risk area of HFRS. With the maximum spatial size of 50% of the total population and the maximum temporal size of 50% of the total population, spatio-temporal clustering showed that there was one most likely cluster (LLR = 624.52, P<0.0001, RR = 8.19) and one second-most likely cluster (LLR = 553.97, P<0.0001, RR = 8.25), and both of these clusters appeared from 2001 to 2004. Spatial correlation analysis showed that the incidence of HFRS in Jiangsu was influenced by distances to highways, railways, rivers and lakes.

Conclusion

The application of GIS together with spatial interpolation, spatio-temporal clustering and spatial correlation analysis can effectively identify high-risk areas and factors influencing HFRS incidence to lay a foundation for researching its pathogenesis.  相似文献   

8.

Background

Hemorrhagic fever with renal syndrome (HFRS) is highly endemic in mainland China, and has extended from rural areas to cities recently. Beijing metropolis is a novel affected region, where the HFRS incidence seems to be diverse from place to place.

Methodology/Principal Findings

The spatial scan analysis based on geographical information system (GIS) identified three geo-spatial “hotspots” of HFRS in Beijing when the passive surveillance data from 2004 to 2006 were used. The Relative Risk (RR) of the three “hotspots” was 5.45, 3.57 and 3.30, respectively. The Phylogenetic analysis based on entire coding region sequence of S segment and partial L segment sequence of Seoul virus (SEOV) revealed that the SEOV strains circulating in Beijing could be classified into at least three lineages regardless of their host origins. Two potential recombination events that happened in lineage #1 were detected and supported by comparative phylogenetic analysis. The SEOV strains in different lineages and strains with distinct special amino acid substitutions for N protein were partially associated with different spatial clustered areas of HFRS.

Conclusion/Significance

Hotspots of HFRS were found in Beijing, a novel endemic region, where intervention should be enhanced. Our data suggested that the genetic variation and recombination of SEOV strains was related to the high risk areas of HFRS, which merited further investigation.  相似文献   

9.
研究碳排放的时空格局演变及影响因素对指导制定差异化的碳减排政策具有重要意义。基于夜间灯光数据,在估算湖南省各县区碳排放量的基础上,结合空间统计、空间自相关、热点分析、地理加权回归、GIS等方法研究了湖南省县域碳排放的空间分异、时空格局特征与影响因素。研究结果表明:(1)2013—2017年,湖南省能源消费碳排放总体上呈现东高西低的空间格局,碳排放主要集中于区域的市辖区,县域碳排放最高点在长沙市市辖区;(2)湖南省能源消费碳排放存在较为显著的空间正相关,全省县域尺度能源消费碳排放全局Moran’sI指数整体呈现出逐年上升的趋势,各市的市辖区在中心相互辐射,表现出显著的集聚现象,并形成了碳排放“高-高型”分布特征;(3)湖南省能源消费碳排放量的冷热点格局表现出湘南地区冷点扩张,湘中地区热点扩张的演变趋势,从2013年到2017年,热点区与次热点区由11个升至13个,湘中地区与其他地区的冷热点差距在逐步拉大;(4)影响湖南省县域能源消费碳排放量的4个影响因素与碳排放均表现为正相关性,其影响程度依次为人口、人均GDP、第二产业比重与单位GDP能耗。  相似文献   

10.
BackgroundTrachoma is a blinding disease, initiated in early childhood by repeated conjunctival infection with the obligate intracellular bacterium Chlamydia trachomatis. The population prevalence of the clinical signs of active trachoma; ‘‘follicular conjunctivitis” (TF) and/or ‘‘intense papillary inflammation” (TI), guide programmatic decisions regarding the initiation and cessation of mass drug administration (MDA). However, the persistence of TF following resolution of infection at both the individual and population level raises concerns over the suitability of this clinical sign as a marker for C. trachomatis infection.Conclusions/SignificancePrior to MDA, TF is a good indicator of the community prevalence of C. trachomatis infection. Following MDA, the prevalence of TF tends to overestimate the underlying infection prevalence. In order to prevent unnecessary additional rounds of MDA and to accurately ascertain when elimination goals have been reached, a cost-effective test for C. trachomatis that can be administered in low-resource settings remains desirable.  相似文献   

11.

Background

Schistosomiasis remains a major public health problem in China. The major endemic areas are located in the lake and marshland regions of southern China, particularly in areas along the middle and low reach of the Yangtze River. Spatial analytical techniques are often used in epidemiology to identify spatial clusters in disease regions. This study assesses the spatial distribution of schistosomiasis and explores high-risk regions in Hubei Province, China to provide guidance on schistosomiasis control in marshland regions.

Methods

In this study, spatial autocorrelation methodologies, including global Moran’s I and local Getis–Ord statistics, were utilized to describe and map spatial clusters and areas where human Schistosoma japonicum infection is prevalent at the county level in Hubei province. In addition, linear logistic regression model was used to determine the characteristics of spatial autocorrelation with time.

Results

The infection rates of S. japonicum decreased from 2009 to 2013. The global autocorrelation analysis results on the infection rate of S. japonicum for five years showed statistical significance (Moran’s I > 0, P < 0.01), which suggested that spatial clusters were present in the distribution of S. japonicum infection from 2009 to 2013. Local autocorrelation analysis results showed that the number of highly aggregated areas ranged from eight to eleven within the five-year analysis period. The highly aggregated areas were mainly distributed in eight counties.

Conclusions

The spatial distribution of human S. japonicum infections did not exhibit a temporal change at the county level in Hubei Province. The risk factors that influence human S. japonicum transmission may not have changed after achieving the national criterion of infection control. The findings indicated that spatial–temporal surveillance of S. japonicum transmission plays a significant role on schistosomiasis control. Timely and integrated prevention should be continued, especially in the Yangtze River Basin of Jianghan Plain area.  相似文献   

12.

Background

Hemorrhagic fever with renal syndrome (HFRS) is a rodent-borne disease caused by Hantaviruses. It is endemic in all 31 provinces, autonomous regions, and metropolitan areas in mainland China where human cases account for 90% of the total global cases. Shandong Province is among the most serious endemic areas. HFRS cases in Shandong Province were first reported in Yutai County in 1968. Since then, the disease has spread across the province, and as of 2005, all 111 counties were reported to have local human infections. However, causes underlying such rapid spread and wide distribution remain less well understood.

Methods and Findings

Here we report a spatiotemporal analysis of human HFRS cases in Shandong using data spanning 1973 to 2005. Seasonal incidence maps and velocity vector maps were produced to analyze the spread of HFRS over time in Shandong Province, and a panel data analysis was conducted to explore the association between HFRS incidence and climatic factors. Results show a rapid spread of HFRS from its epicenter in Rizhao, Linyi, Weifang Regions in southern Shandong to north, east, and west parts of the province. Based on seasonal shifts of epidemics, three epidemic phases were identified over the 33-year period. The first phase occurred between 1973 and 1982 during which the foci of HFRS was located in the south Shandong and the epidemic peak occurred in the fall and winter, presenting a seasonal characteristic of Hantaan virus (HTNV) transmission. The second phase between 1983 and 1985 was characterized by northward and westward spread of HFRS foci, and increases in incidence of HFRS in both fall-winter and spring seasons. The human infections in the spring reflected a characteristic pattern of Seoul virus (SEOV) transmission. The third phase between 1986 and 2005 was characterized by the northeast spread of the HFRS foci until it covered all counties, and the HFRS incidence in the fall-winter season decreased while it remained high in the spring. In addition, our findings suggest that precipitation, humidity, and temperature are major environmental variables that are associated with the seasonal variation of HFRS incidence in Shandong Province.

Conclusions

The spread of HFRS in Shandong Province may have been accompanied by seasonal shifts of HTNV-dominated transmission to SEOV-dominated transmission over the past three decades. The variations in HFRS incidence were significantly associated with local precipitation, humidity, and temperature.  相似文献   

13.
BackgroundThe Transmission Assessment Survey (TAS) is a decision-making tool to determine when transmission of lymphatic filariasis is presumed to have reached a level low enough that it cannot be sustained even in the absence of mass drug administration. The survey is applied over geographic areas, called evaluation units (EUs); existing World Health Organization guidelines limit EU size to a population of no more than 2 million people.Methodology/Principal findingsIn 2015, TASs were conducted in 14 small EUs in Haiti. Simulations, using the observed TAS results, were performed to understand the potential programmatic impact had Haiti chosen to form larger EUs. Nine “combination-EUs” were formed by grouping adjacent EUs, and bootstrapping was used to simulate the expected TAS results.When the combination-EUs were comprised of at least one “passing” and one “failing” EU, the majority of these combination-EU would pass the TAS 79% - 100% of the time. Even in the case when both component EUs had failed, the combination-EU was expected to “pass” 11% of the time.Simulations of mini-TAS, a strategy with smaller power and hence smaller sample size than TAS, resulted in more conservative “passing” and “failing” when implemented in original EUs.Conclusions/SignificanceOur results demonstrate the high potential for misclassification when the average prevalence of lymphatic filariasis in the combined areas differs with regards to the TAS threshold. Of particular concern is the risk of “passing” larger EUs that include focal areas where prevalence is high enough to be potentially self-sustaining. Our results reaffirm the approach that Haiti took in forming smaller EUs. Where baseline or monitoring data show a high or heterogeneous prevalence, programs should leverage alternative strategies like mini-TAS in smaller EUs, or consider gathering additional data through spot check sites to advise EU formation.  相似文献   

14.
BackgroundThe 2017–2018 yellow fever virus (YFV) outbreak in southeastern Brazil marked a reemergence of YFV in urban states that had been YFV-free for nearly a century. Unlike earlier urban YFV transmission, this epidemic was driven by forest mosquitoes. The objective of this study was to evaluate environmental drivers of this outbreak.Methodology/Principal findingsUsing surveillance data from the Brazilian Ministry of Health on human and non-human primate (NHP) cases of YFV, we traced the spatiotemporal progression of the outbreak. We then assessed the epidemic timing in relation to drought using a monthly Standardized Precipitation Evapotranspiration Index (SPEI) and evaluated demographic risk factors for rural or outdoor exposure amongst YFV cases. Finally, we developed a mechanistic framework to map the relationship between drought and YFV. Both human and NHP cases were first identified in a hot, dry, rural area in northern Minas Gerais before spreading southeast into the more cool, wet urban states. Outbreaks coincided with drought in all four southeastern states of Brazil and an extreme drought in Minas Gerais. Confirmed YFV cases had an increased odds of being male (OR 2.6; 95% CI 2.2–3.0), working age (OR: 1.8; 95% CI: 1.5–2.1), and reporting any recent travel (OR: 2.8; 95% CI: 2.3–3.3). Based on this data as well as mosquito and non-human primate biology, we created the “Mono-DrY” mechanistic framework showing how an unusual drought in this region could have amplified YFV transmission at the rural-urban interface and sparked the spread of this epidemic.Conclusions/SignificanceThe 2017–2018 YFV epidemic in Brazil originated in hot, dry rural areas of Minas Gerais before expanding south into urban centers. An unusually severe drought in this region may have created environmental pressures that sparked the reemergence of YFV in Brazil’s southeastern cities.  相似文献   

15.

Background

Hemorrhagic fever with renal syndrome (HFRS) is highly endemic in mainland China, where human cases account for 90% of the total global cases. Zibo City is one of the most serious affected areas in Shandong Province China with the HFRS incidence increasing sharply from 2009 to 2012. However, the hotspots of HFRS in Zibo remained unclear. Thus, a spatial analysis was conducted with the aim to explore the spatial, spatial-temporal and seasonal patterns of HFRS in Zibo from 2009 to 2012, and to provide guidance for formulating regional prevention and control strategies.

Methods

The study was based on the reported cases of HFRS from the National Notifiable Disease Surveillance System. Annualized incidence maps and seasonal incidence maps were produced to analyze the spatial and seasonal distribution of HFRS in Zibo City. Then spatial scan statistics and space-time scan statistics were conducted to identify clusters of HFRS.

Results

There were 200 cases reported in Zibo City during the 4-year study period. One most likely cluster and one secondary cluster for high incidence of HFRS were identified by the space-time analysis. And the most likely cluster was found to exist at Yiyuan County in October to December 2012. The human infections in the fall and winter reflected a seasonal characteristic pattern of Hantaan virus (HTNV) transmission. The secondary cluster was detected at the center of Zibo in May to June 2009, presenting a seasonal characteristic of Seoul virus (SEOV) transmission.

Conclusion

To control and prevent HFRS in Zibo city, the comprehensive preventive strategy should be implemented in the southern areas of Zibo in autumn and in the northern areas of Zibo in spring.  相似文献   

16.
BackgroundEchinococcosis is a zoonotic parasitic disease caused by larval stages of cestodes belonging to the genus Echinococcus. The infection affects people’s health and safety as well as agropastoral sector. In China, human echinococcosis is a major public health burden, especially in western China. Echinococcosis affects people health as well as agricultural and pastoral economy. Therefore, it is important to understand the prevalence status and spatial distribution of human echinococcosis in order to advance our knowledge of basic information for prevention and control measures reinforcement.MethodsReport data on echinococcosis were collected in 370 counties in China in 2018 and were used to assess prevalence and spatial distribution. SPSS 21.0 was used to obtain the prevalence rate for CE and AE. For statistical analyses and mapping, all data were processed using SPSS 21.0 and ArcGIS 10.4, respectively. Chi-square test and Exact probability method were used to assess spatial autocorrelation and spatial clustering.ResultsA total of 47,278 cases of echinococcosis were recorded in 2018 in 370 endemic counties in China. The prevalence rate of human echinococcosis was 10.57 per 10,000. Analysis of the disease prevalence showed obvious spatial positive autocorrelation in globle spatial autocorrelation with two aggregation modes in local spatial autocorrelation, namely high-high and low-high aggregation areas. The high-high gathering areas were mainly concentrated in northern Tibet, western Qinghai, and Ganzi in the Tibetan Autonomous Region and in Sichuan. The low-high clusters were concentrated in Gamba, Kangma and Yadong counties of Tibet. In addition, spatial scanning analysis revealed two spatial clusters. One type of spatial clusters included 71 counties in Tibet Autonomous Region, 22 counties in Qinghai, 11 counties in Sichuan, three counties in Xinjiang Uygur Autonomous Region, two counties in Yunnan, and one county in Gansu. In the second category, six types of spatial clusters were observed in the counties of Xinjiang Uygur Autonomous Region, and the Qinghai, Gansu, and Sichuan Provinces.ConclusionThis study showed a serious prevalence of human echinococcosis with obvious spatial aggregation of the disease prevalence in China. The Qinghai-Tibet Plateau is the "hot spot" area of human echinococcosis in China. Findings from this study indicate that there is an urgent need of joint strategies to strengthen efforts for the prevention and control of echinococcosis in China, especially in the Qinghai-Tibet Plateau.  相似文献   

17.
AimAngolan Miombo woodlands, rich in timber species of the Leguminosae family, go through one of the highest rates of deforestation in sub‐Saharan Africa. This study presents, on the basis of updated information of the distribution of Leguminosae timber species native to Angola, an integrated index framing the main threats for trees, which aims to support new conservation measures.LocationSub‐Saharan Africa, Republic of Angola.MethodsThe current distribution areas of six Leguminosae timber species (i.e., Afzelia quanzensis, Brachystegia spiciformis, Guibourtia coleosperma, Isoberlinia angolensis, Julbernardia paniculata, and Pterocarpus angolensis) were predicted through ensemble modeling techniques. The level of threat to each species was analyzed, comparing the species potential distribution with a threat index map and with the protected areas. The threat index of anthropogenic and climatic factors encompasses the effects of population density, agriculture, proximity to roads, loss of tree cover, overexploitation, trends in wildfires, and predicted changes in temperature and precipitation.ResultsOur results revealed that about 0.5% of Angola''s area is classified as of “Very high” threat, 23.9% as “High” threat, and 66.5% as “Moderate” threat. Three of the studied species require special conservation efforts, namely B. spiciformis and I. angolensis, which have a large fraction of predicted distribution in areas of high threat, and G. coleosperma since it has a restricted distribution area and is one of the most valuable species in international markets. The priority areas for the conservation of Leguminosae timber species were found in Benguela and Huíla.Main conclusionsThis study provides updated data that should be applied to inform policymakers, contributing to national conservation planning and protection of native flora in Angola. Moreover, it presents a methodological approach for the predictions of species distribution and for the creation of a threat index map that can be applied in other poorly surveyed tropical regions.  相似文献   

18.

Background

China has the highest incidence of hemorrhagic fever with renal syndrome (HFRS) worldwide. Reported cases account for 90% of the total number of global cases. By 2010, approximately 1.4 million HFRS cases had been reported in China. This study aimed to explore the effect of the rodent reservoir, and natural and socioeconomic variables, on the transmission pattern of HFRS.

Methodology/Principal Findings

Data on monthly HFRS cases were collected from 2006 to 2010. Dynamic rodent monitoring data, normalized difference vegetation index (NDVI) data, climate data, and socioeconomic data were also obtained. Principal component analysis was performed, and the time-lag relationships between the extracted principal components and HFRS cases were analyzed. Polynomial distributed lag (PDL) models were used to fit and forecast HFRS transmission. Four principal components were extracted. Component 1 (F1) represented rodent density, the NDVI, and monthly average temperature. Component 2 (F2) represented monthly average rainfall and monthly average relative humidity. Component 3 (F3) represented rodent density and monthly average relative humidity. The last component (F4) represented gross domestic product and the urbanization rate. F2, F3, and F4 were significantly correlated, with the monthly HFRS incidence with lags of 4 months (r = −0.289, P<0.05), 5 months (r = −0.523, P<0.001), and 0 months (r = −0.376, P<0.01), respectively. F1 was correlated with the monthly HFRS incidence, with a lag of 4 months (r = 0.179, P = 0.192). Multivariate PDL modeling revealed that the four principal components were significantly associated with the transmission of HFRS.

Conclusions

The monthly trend in HFRS cases was significantly associated with the local rodent reservoir, climatic factors, the NDVI, and socioeconomic conditions present during the previous months. The findings of this study may facilitate the development of early warning systems for the control and prevention of HFRS and similar diseases.  相似文献   

19.

Background

The transmission of hemorrhagic fever with renal syndrome (HFRS) is influenced by population dynamics of its main host, rodents. It is therefore important to better understand rodents’ characteristic in epidemic areas.

Methodology/Principal Findings

We examined the potential impact of food available and climatic variability on HFRS rodent host and developed forecasting models. Monthly rodent density of HFRS host and climate data in Changsha from January 2004 to December 2011 were obtained. Monthly normalized difference vegetation index (NDVI) and temperature vegetation dryness index (TVDI) for rice paddies were extracted from MODIS data. Cross-correlation analysis were carried out to explore correlation between climatic variables and food available with monthly rodent data. We used auto-regressive integrated moving average model with explanatory variables to examine the independent contribution of climatic variables and food supply to rodent density. The results indicated that relative rodent density of HFRS host was significantly correlated with monthly mean temperatures, monthly accumulative precipitation, TVDI and NDVI with lags of 1–6 months.

Conclusions/Significance

Food available plays a significant role in population fluctuations of HFRS host in Changsha. The model developed in this study has implications for HFRS control and prevention.  相似文献   

20.
王佳琪  邢艳秋  常晓晴  杨红 《生态学报》2024,44(3):1231-1241
东北地区天然林资源保护工程的实施,改善了生态环境,提高了生态系统服务能力,对东北地区生态系统服务也起到了积极促进作用。为了更直观的反映东北地区天保工程的实施成效,研究基于长时间序列的遥感监测数据集-土地利用数据,采用InVEST模型和RUSLE模型对1990-2020年天保工程实施前后东北地区和天保工程区生态系统服务变化进行定量评估分析并采用Getis-Ord Gi*指数识别热点区域。结果表明:(1)东北地区1990-2020年城乡/工矿居民用地和耕地面积分别增加25.37%,12.15%,水域减少21.42%,草地减少14.02%,未利用土地和林地分别减少8.41%,5.34%。(2)1990-2020年东北地区和天保工程区土壤保持量分别增加了95.81×106 t、24.05×106 t,碳储量分别减少了7.49×108 tC、3.92×108 tC,水源涵养量分别增加了177.51×109 m3、58.65×109 m3。(3)东北地区的极显著热点区域主要分布内蒙古地区东北部、黑龙江省北部、吉林省东部和辽宁省东部。随着天保工程的实施,极显著热点区域显著增加,且范围与天保工程高度重合。研究拟为后续东北地区林业政策和生态工程的实施提供科学的参考依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号