首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In African savannas, termite mounds usually serve as browsing hotspots for mammals because of their soil fertility. Van der Plas et al., in this issue, describe that browsers avoid the unpalatable, evergreen tree species on mounds of Macrotermes natalensis in a mesic savanna, preferring mainly leguminous species with high leaf N and P concentrations in the matrix. This exception is probably a consequence of the fertile soils of the study area, and highlights the importance of environmental context for assessing ecological interactions.  相似文献   

2.
3.
为研究大气CO2浓度升高条件下土壤动物的响应, 本文采用开顶式气室(OTC)控制大气CO2浓度, 设置了3个梯度, 分别为低浓度370 ppm背景CO2 (AC)、中浓度550 ppm CO2 (EC1)和高浓度700 ppm CO2 (EC2)。于2017年秋季取样并用改良Tullgren干漏斗法和Baermann湿漏斗分离土壤动物。结果表明: (1)共捕获土壤动物6,268头, 隶属于7纲15目, 优势类群为甲螨亚目, 占捕获量的88.13%; 常见类群为弹尾目和双翅目幼虫, 合计占捕获量的9%。不同CO2浓度水平下, 优势类群(甲螨亚目)和常见类群(弹尾目、双翅目幼虫)相同, 但是稀有类群存在一定差异。(2) CO2浓度升高显著增加了甲螨亚目的类群数和个体密度, 显著降低了弹尾目的类群数和个体密度, 对其他土壤动物无显著影响。(3)三江平原不同浓度条件下土壤动物的Shannon-Wiener多样性指数、Pielou均匀度指数均为AC > EC1 > EC2, 而优势度指数为EC2 > EC1 > AC, 丰富度指数为AC > EC2 > EC1。研究表明, 气候变化有可能影响土壤动物的群落结构以及土壤动物的多样性。  相似文献   

4.
Summary Three high marsh communities on the Chesapeake Bay were exposed to a doubling in ambient CO2 concentration for one growing season. Open-top chambers were used to raise CO2 concentrations ca. 340 ppm above ambient over monospecific communities of Scirpus olneyi (C3) and Spartina patens (C4), and a mixed community of S. olneyi, S. patens, and Distichlis spicata (C4). Plant growth and senescence were monitored by serial, nondestructive censuses. Elevated CO2 resulted in increased shoot densities and delayed sensecence in the C3 species. This resulted in an increase in primary productivity in S. olneyi growing in both the pure and mixed communities. There was no effect of CO2 on growth in the C4 species. These results demonstrate that elevated atmospheric CO2 can cause increased aboveground production in a mature, unmanaged ecosystem.  相似文献   

5.
As the bioconversion of methane becomes increasingly important for bio-industrial and environmental applications, methanotrophs have received much attention for their ability to convert methane under ambient conditions. This includes the extensive reporting of methanotroph engineering for the conversion of methane to biochemicals. To further increase methane usability, we demonstrated a highly flexible and efficient modular approach based on a synthetic consortium of methanotrophs and heterotrophs mimicking the natural methane ecosystem to produce mevalonate (MVA) from methane. In the methane-conversion module, we used Methylococcus capsulatus Bath as a highly efficient methane biocatalyst and optimized the culture conditions for the production of high amounts of organic acids. In the MVA-synthesis module, we used Escherichia coli SBA01, an evolved strain with high organic acid tolerance and utilization ability, to convert organic acids to MVA. Using recombinant E. coli SBA01 possessing genes for the MVA pathway, 61 mg/L (0.4 mM) of MVA was successfully produced in 48 h without any addition of nutrients except methane. Our platform exhibited high stability and reproducibility with regard to cell growth and MVA production. We believe that this versatile system can be easily extended to many other value-added processes and has a variety of potential applications.  相似文献   

6.
Nelson DM  Cann IK  Mackie RI 《PloS one》2010,5(12):e15897

Background

Archaea are important to the carbon and nitrogen cycles, but it remains uncertain how rising atmospheric carbon dioxide concentrations ([CO2]) will influence the structure and function of soil archaeal communities.

Methodology/Principal Findings

We measured abundances of archaeal and bacterial 16S rRNA and amoA genes, phylogenies of archaeal 16S rRNA and amoA genes, concentrations of KCl-extractable soil ammonium and nitrite, and potential ammonia oxidation rates in rhizosphere soil samples from maize and soybean exposed to ambient (∼385 ppm) and elevated (550 ppm) [CO2] in a replicated and field-based study. There was no influence of elevated [CO2] on copy numbers of archaeal or bacterial 16S rRNA or amoA genes, archaeal community composition, KCl-extractable soil ammonium or nitrite, or potential ammonia oxidation rates for samples from maize, a model C4 plant. Phylogenetic evidence indicated decreased relative abundance of crenarchaeal sequences in the rhizosphere of soybean, a model leguminous-C3 plant, at elevated [CO2], whereas quantitative PCR data indicated no changes in the absolute abundance of archaea. There were no changes in potential ammonia oxidation rates at elevated [CO2] for soybean. Ammonia oxidation rates were lower in the rhizosphere of maize than soybean, likely because of lower soil pH and/or abundance of archaea. KCl-extractable ammonium and nitrite concentrations were lower at elevated than ambient [CO2] for soybean.

Conclusion

Plant-driven shifts in soil biogeochemical processes in response to elevated [CO2] affected archaeal community composition, but not copy numbers of archaeal genes, in the rhizosphere of soybean. The lack of a treatment effect for maize is consistent with the fact that the photosynthesis and productivity of maize are not stimulated by elevated [CO2] in the absence of drought.  相似文献   

7.
8.
The ecological impacts of long‐term elevated atmospheric CO2 (eCO2) levels on soil microbiota remain largely unknown. This is particularly true for the arbuscular mycorrhizal (AM) fungi, which form mutualistic associations with over two‐thirds of terrestrial plant species and are entirely dependent on their plant hosts for carbon. Here, we use high‐resolution amplicon sequencing (Illumina, HiSeq) to quantify the response of AM fungal communities to the longest running (>15 years) free‐air carbon dioxide enrichment (FACE) experiment in the Northern Hemisphere (GiFACE); providing the first evaluation of these responses from old‐growth (>100 years) semi‐natural grasslands subjected to a 20% increase in atmospheric CO2. eCO2 significantly increased AM fungal richness but had a less‐pronounced impact on the composition of their communities. However, while broader changes in community composition were not observed, more subtle responses of specific AM fungal taxa were with populations both increasing and decreasing in abundance in response to eCO2. Most population‐level responses to eCO2 were not consistent through time, with a significant interaction between sampling time and eCO2 treatment being observed. This suggests that the temporal dynamics of AM fungal populations may be disturbed by anthropogenic stressors. As AM fungi are functionally differentiated, with different taxa providing different benefits to host plants, changes in population densities in response to eCO2 may significantly impact terrestrial plant communities and their productivity. Thus, predictions regarding future terrestrial ecosystems must consider changes both aboveground and belowground, but avoid relying on broad‐scale community‐level responses of soil microbes observed on single occasions.  相似文献   

9.
 The aim of this study was to characterise growth and photosynthetic capacity in plants adapted to long-term contrasting atmospheric CO2 concentrations (C a). Seeds of Agrostis canina L. ssp. monteluccii were collected from a natural CO2 transect in central-western Italy and plants grown in controlled environment chambers at both ambient and elevated CO2 (350 and 700 μmol mol−1) in nutrient-rich soil. Seasonal mean C a at the source of the plant material ranged from 610 to 451 μmol CO2 mol−1, derived from C4 leaf stable carbon isotope discrimination (δ13C). Under chamber conditions, CO2 enrichment stimulated the growth of all populations. However, plants originating from elevated C a exhibited higher initial relative growth rates (RGRs) irrespective of chamber CO2 concentrations and a positive relationship was found between RGR and C a at the seed source. Seed weight was positively correlated with C a, but differences in seed weight were found to explain no more than 34% of the variation in RGRs at elevated CO2. Longer-term experiments (over 98 days) on two populations originating from the extremes of the transect (451 and 610 μmol CO2 mol−1) indicated that differences in growth between populations were maintained when plants were grown at both 350 and 700 μmol CO2 mol−1. Analysis of leaf material revealed an increase in the cell wall fraction (CWF) in plants grown at elevated CO2, with plants originating from high C a exhibiting constitutively lower levels but a variable response in terms of the degree of lignification. In vivo gas exchange measurements revealed no significant differences in light and CO2 saturated rates of photosynthesis and carboxylation efficiency between populations or with CO2 treatment. Moreover, SDS-PAGE/ LISA quantification of leaf ribulose bisphosphate carboxylase/oxygenase (Rubisco) showed no difference in Rubisco content between populations or CO2 treatments. These findings suggest that long-term adaptation to growth at elevated CO2 may be associated with a potential for increased growth, but this does not appear to be linked with differences in the intrinsic capacity for photosynthesis. Received: 16 August 1996 / Accepted: 19 October 1996  相似文献   

10.
Abstract

The study of microbial communities in river sediments contaminated by thallium (Tl) is necessary to achieve the information for in-situ microbially mediated bioremediation. However, little is known about the microbial community in Tl-contaminated river sediments. In the present study, we characterized the microbial community and their responses to Tl pollution in river sediments from the Tl-mineralized Lanmuchang area, Southwest Guizhou, China. Illumina sequencing of 16S rRNA amplicons revealed that over 40 phyla belong to the domain bacteria. In all samples, Proteobacteria, Cyanobacteria, and Actinobacteria were the most dominant phyla. Based on the UPGMA (Unweighted Pair Group Method with Arithmetic Mean) tree and PCoA (Principal Coordinates Analysis) analysis, microbial composition of each segment was distinct, indicating in-situ geochemical parameters (including Tl, sulfate, TOC, Eh, and pH) had influenced on the microbial communities. Moreover, canonical correspondence analysis (CCA) was employed to further elucidate the impact of geochemical parameters on the distribution of microbial communities in local river sediments. The results indicated that a number of microbial communities including Cyanobacteria, Spirochaete, Hydrogenophaga, and Acinetobacter were positively correlated with total Tl, suggesting potential roles of these microbes to Tl tolerance or to biogeochemical cycling of Tl. Our results suggested a reliable location for the microbial community’s diversity in the presence of high concentrations of Tl and might have a potential association for in-situ bioremediation strategies of Tl-contaminated river. Overall, in situ microbial community could provide a useful tool for monitoring and assessing geo-environmental stressors in Tl-polluted river sediments.  相似文献   

11.
Pathways of the degradation of the main compounds of (meth)acrylate-producing factories wastewater (methyl methacrylate, methyl and butyl acrylate, acrylate and methacrylate, acetone, isopropanol, butanol and methanol) by the anaerobic microbial consortium of mesophilic unadapted granulated sludge from the "UASB" reactor and of adapted activated sludge from the contact reactor were comparatively studied. It was shown that the degradation of fatty acids and alcohols took place in both types of sludge. Methacrylate, acrylate and acetone degradation occurred only in adapted sludge. Both types of sludge were characterized by the reversible conversion of acetone and isopropanol and by the presence of the isomeric transition of butyrate and isobutyrate too. The present results allow to suggest that the adaptation of activated sludge to substrate includes the accumulation of biomass of microorganisms capable of hydrolyze specific substrates into such general intermediates as low-molecular-weight fatty acid and alcohols further metabolized to methane and carbon dioxide.  相似文献   

12.
13.
14.
Increasing temperatures and atmospheric CO2 concentrations will affect tree carbon fluxes, generating potential feedbacks between forests and the global climate system. We studied how elevated temperatures and CO2 impacted leaf carbon dynamics in Norway spruce (Picea abies), a dominant northern forest species, to improve predictions of future photosynthetic and respiratory fluxes from high‐latitude conifers. Seedlings were grown under ambient (AC, c. 435 μmol mol?1) or elevated (EC, 750 μmol mol?1) CO2 concentrations at ambient, +4 °C, or +8 °C growing temperatures. Photosynthetic rates (Asat) were high in +4 °C/EC seedlings and lowest in +8 °C spruce, implying that moderate, but not extreme, climate change may stimulate carbon uptake. Asat, dark respiration (Rdark), and light respiration (Rlight) rates acclimated to temperature, but not CO2: the thermal optimum of Asat increased, and Rdark and Rlight were suppressed under warming. In all treatments, the Q10 of Rlight (the relative increase in respiration for a 10 °C increase in leaf temperature) was 35% higher than the Q10 of Rdark, so the ratio of Rlight to Rdark increased with rising leaf temperature. However, across all treatments and a range of 10–40 °C leaf temperatures, a consistent relationship between Rlight and Rdark was found, which could be used to model Rlight in future climates. Acclimation reduced daily modeled respiratory losses from warm‐grown seedlings by 22–56%. When Rlight was modeled as a constant fraction of Rdark, modeled daily respiratory losses were 11–65% greater than when using measured values of Rlight. Our findings highlight the impact of acclimation to future climates on predictions of carbon uptake and losses in northern trees, in particular the need to model daytime respiratory losses from direct measurements of Rlight or appropriate relationships with Rdark.  相似文献   

15.
The ability of bacteria to overcome oxidative stress is related to the levels and types of antioxidative mechanisms which they possess. In this study, the antioxidative properties in Lactobacillus sake strains from different food origins were determined at low temperature (8 degrees C) and upon exposure to oxygen levels between 20 and 90% O(2). The L. sake strains tested grew well at 8 degrees C and in the presence of 20% O(2), however, most of the strains could not grow at O(2) levels as high as 50 and/or 90%. Cell-free extracts of all strains possessed certain levels of hydroxyl radical scavenging, metal chelating and reducing capacities essential for growth of cells at ambient O(2). At elevated O(2) concentrations, a high H(2)O(2) splitting capacity and low specific rates of H(2)O(2) production were demonstrated in the O(2)-insensitive strain L. sake NCFB 2813, which could grow at elevated O(2) conditions. Although H(2)O(2) was generated in the O(2)-sensitive L. sake DSM 6333 at levels which were not directly toxic to the cells (<0.2 mM), we can conclude that its removal is essential for cell protection at elevated O(2) conditions.  相似文献   

16.
This study focuses on the mass cultivation of bacteria adapted to the degradation of a mixture composed of toluene, ethylbenzene, o-, m- and p-xylenes (TEX). For the cultivation process Substrate Pulse Batch (SPB) technique was adapted under well-automated conditions. The key parameters to be monitored were handled by LabVIEW software including, temperature, pH, dissolved oxygen and turbidity. Other parameters, such as biomass, ammonium or residual substrate concentrations needed offline measurements. SPB technique has been successfully tested experimentally on TEX. The overall behavior of the mixed bacterial population was observed and discussed along the cultivation process. Carbon and nitrogen limitations were shown to affect the integrity of the bacterial cells as well as their production of exopolymeric substances (EPS). Average productivity and yield values successfully reached the industrial specifications, which were 0.45 kgDW m−3 d−1 and 0.59 gDW gC−1, respectively. Accuracy and reproducibility of the obtained results present the controlled SPB process as a feasible technique.  相似文献   

17.
Partial nitrification has proven to be an economic way for treatment of industrial N-rich effluent, reducing oxygen and external COD requirements during nitrification/denitrification process. One of the key issues of this system is the intermediate nitrite accumulation stability. This work presents a control strategy and a modeling tool for maintaining nitrite build-up. Partial nitrification process has been carried out in a sequencing batch reactor at 30 degrees C, maintaining strong changing ammonia concentration in the reactor (sequencing feed). Stable nitrite accumulation has been obtained with the help of an on-line oxygen uptake rate (OUR)-based control system, with removal rate of 2 kg NH4 (+)-N x m(-3)/day and 90%-95% of conversion of ammonium into nitrite. A mathematical model, identified through the occurring biological reactions, is proposed to optimize the process (preventing nitrate production). Most of the kinetic parameters have been estimated from specific respirometric tests on biomass and validated on pilot-scale experiments of one-cycle duration. Comparison of dynamic data at different pH confirms that NH3 and NO2- should be considered as the true substrate of nitritation and nitratation, respectively. The proposed model represents major features: the inhibition of ammonia-oxidizing bacteria by its substrate (NH3) and product (HNO2), the inhibition of nitrite-oxidizing bacteria by free ammonia (NH3), the INFluence of pH. It appears that the model correctly describes the short-term dynamics of nitrogenous compounds in SBR, when both ammonia oxidizers and nitrite oxidizers are present and active in the reactor. The model proposed represents a useful tool for process design and optimization.  相似文献   

18.
Hill  B. H.  Willingham  W. T.  Parrish  L. P.  McFarland  B. H. 《Hydrobiologia》2000,428(1):161-169
The effects of elevated metals on stream periphyton in the Eagle River, a mining impacted river in central Colorado, were assessed in 1991 and 1992 using assemblage information (taxa richness, community similarity) and non-taxonomic measures (biomass, chlorophyll a, autotrophic index). The number of periphyton genera collected ranged from 2 at a site adjacent to abandoned mining operations to 21 at a downstream site, but was not significantly correlated with dissolved metals concentrations. Fragilaria and Achnanthes were the dominant genera at all sites, with Fragilaria dominating the less impacted sites and Achnanthesdominating at the more impacted sites. Taxonomic similarity was greatest among those sites receiving the greatest inputs of metals from mining operations, where the coefficient of similarity ranged from 0.87 to 0.99. Cluster analyses revealed significant differences among sites adjacent to the mine and either the upstream or downstream sites. Chlorophyll a content of periphyton and the autotrophic index in both years showed significant downstream decreases associated with increasing dissolved metals concentrations. Overall, the periphyton community data were able to separate metal contaminated sites from reference or less impacted sites, and responded in predictable ways to increasing metal concentrations of Eagle River water.  相似文献   

19.

Large uncertainties in estimates of methane (CH4) emissions from tropical inland waters reflect the paucity of information at appropriate temporal and spatial scales. CH4 concentrations, diffusive and ebullitive fluxes, and environmental parameters in contrasting aquatic habitats of Lake Janauacá, an Amazon floodplain lake, measured for two years revealed patterns in temporal and spatial variability related to different aquatic habitats and environmental conditions. CH4 concentrations ranged from below detection to 96 µM, CH4 diffusive fluxes from below detection to 2342 µmol m−2 h−1, and CH4 ebullitive fluxes from 0 to 190 mmol m−2 d−1. Vegetated aquatic habitats had higher surface CH4 concentrations than open water habitats, and no significant differences in diffusive CH4 fluxes, likely due to higher k values measured in open water habitats. CH4 emissions were enhanced after a prolonged low water period, when the exposed sediments were colonized by herbaceous plants that decomposed after water levels rose, possibly fueling CH4 production. Statistical models indicated the importance of variables related to CH4 production (temperature, dissolved organic carbon) and consumption (dissolved nitrogen, oxygenated water column), as well as maximum depth, in controlling surface water CH4 concentrations.

  相似文献   

20.
Rapid evolutionary adaptions to new and previously detrimental environmental conditions can increase the risk of invasion by novel pathogens. We tested this hypothesis with a 133‐day‐long evolutionary experiment studying the evolution of the pathogenic Serratia marcescens bacterium at salinity niche boundary and in fluctuating conditions. We found that S. marcescens evolved at harsh (80 g/L) and extreme (100 g/L) salt conditions had clearly improved salt tolerance than those evolved in the other three treatments (ancestral conditions, nonsaline conditions, and fluctuating salt conditions). Evolutionary theories suggest that fastest evolutionary changes could be observed in intermediate selection pressures. Therefore, we originally hypothesized that extreme conditions, such as our 100 g/L salinity treatment, could lead to slower adaptation due to low population sizes. However, no evolutionary differences were observed between populations evolved in harsh and extreme conditions. This suggests that in the study presented here, low population sizes did not prevent evolution in the long run. On the whole, the adaptive potential observed here could be important for the transition of pathogenic S. marcescens bacteria from human‐impacted freshwater environments, such as wastewater treatment plants, to marine habitats, where they are known to infect and kill corals (e.g., through white pox disease).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号