首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The mole-rat, Spalax ehrenbergi, is a complex subterranean rodent species whose habitat is restricted largely to the Middle East and North Africa. We typed over 50 mole-rats with mouse monoclonal and polyclonal antibodies specific for class I and class II major histocompatibility complex (Mhc) molecules. Some of these antibodies were produced against mouse Mhc molecules, others against Mhc molecules of other species. About 25% of the antibodies reacted with mole-rat lymphocytes in the cytotoxic test. Some of the serologically positive antibodies precipitated from a glycoprotein pool of mole-rat spleen cell molecules that corresponded in size with class I and class II molecules of other species. We conclude, therefore, that mole-rats, like other mammals, possess the Mhc which consists of class I and class 11 loci. We call this Mhc Spalax major histocompatibility (Smh) complex. The occurrence of a large number of different serotypes among the tested animals suggests that Smh loci are polymorphic. This Mhc polymorphism of the mole-rat contrasts with the monomorphism or oligomorphism of the Syrian hamster, a rodent with a similar ecology. Thus far no qualitative correlation could be found between Smh polymorphism and chromosome variation described in this superspecies.On leave from the Dept. of Physiology, University of Zagreb, Medical Faculty, Salata 3, Zagreb, Yugoslavia.  相似文献   

4.
We estimated synonymous (dN) and nonsynonymous (dS) substitution rates for protein-coding genes of the mitochondrial genome from two individuals each of the species human, chimpanzee, and gorilla. The genes were analyzed both separately and in a combined data set. Pairwise sequence comparisons suggest that the dN/dS rate ratios are about 5-10 times higher in within-species comparisons than in between-species comparisons. This result is confirmed by a more rigorous likelihood ratio test, which rejected the null hypothesis that the dN/dS rate ratios are identical within and between species. The likelihood models account for the genetic code structure, transition/transversion rate ratio, and codon usage bias and are expected to produce more reliable results than the commonly used contingency test. Separate analyses of different genes show that the dN/dS rate ratios are higher within species than between species for all 13 mitochondrial genes, with the difference being statistically significant for all except three small or slowly evolving genes. Furthermore, in conserved genes, nonsynonymous rates within species tend to be higher than the between-species rates by a greater proportion than in fast-changing genes. Our findings confirm and extend earlier results obtained from smaller data sets and suggest the operation of slightly deleterious mutations throughout the mitochondrial genome in the hominoids. Implications of the results for evolutionary studies and, in particular, for studies of the origin of modern humans, are discussed.  相似文献   

5.
Evolution of duplicate genes in a tetraploid animal, Xenopus laevis   总被引:6,自引:1,他引:5  
To understand the evolution of duplicate genes, we compared rates of nucleotide substitution between 17 pairs of nonallelic duplicated genes in the tetraploid frog Xenopus laevis with rates between the orthologous loci of human and rodent. For all duplicated X. laevis genes, the number of synonymous substitutions per site (dS) was greater than the number of nonsynonymous substitutions per site (dN), indicating that these genes are subject to purifying selection. There was also a significant positive correlation (r = 0.915) between dN for the X. laevis genes and dN for the mammalian genes, suggesting that, at the amino acid level, the X. laevis genes and the mammalian genes are under similar constraints. Results of relative-rate tests showed nearly equal rates of nonsynonymous substitution in each copy of the X. laevis genes; apparently there are similar constraints on both copies. No correlation was found between dS for the X. laevis genes and dS for the mammalian genes. There was a significant positive correlation both between members of pairs of duplicated X. laevis genes (r = 0.951) and between human and rodent orthologues (r = 0.854) with respect to third- position G+C content but no such relationship between the X. laevis genes and either of their mammalian orthologues. The results indicate that both copies of a duplicate gene can be subject to purifying selection and thus support the hypothesis of selection against all genotypes containing a null allele at either of two duplicate loci.   相似文献   

6.
Naked mole-rats are highly social and strictly subterranean rodents that live in large communal colonies in sealed and chronically oxygen-depleted burrows. Brain slices from naked mole-rats show extreme tolerance to hypoxia compared to slices from other mammals, as indicated by maintenance of synaptic transmission under more hypoxic conditions and three fold longer latency to anoxic depolarization. A key factor in determining whether or not the cellular response to hypoxia is reversible or leads to cell death may be the elevation of intracellular calcium concentration. In the present study, we used fluorescent imaging techniques to measure relative intracellular calcium changes in CA1 pyramidal cells of hippocampal slices during hypoxia. We found that calcium accumulation during hypoxia was significantly and substantially attenuated in slices from naked mole-rats compared to slices from laboratory mice. This was the case for both neonatal (postnatal day 6) and older (postnatal day 20) age groups. Furthermore, while both species demonstrated more calcium accumulation at older ages, the older naked mole-rats showed a smaller calcium accumulation response than even the younger mice. A blunted intracellular calcium response to hypoxia may contribute to the extreme hypoxia tolerance of naked mole-rat neurons. The results are discussed in terms of a general hypothesis that a very prolonged or arrested developmental process may allow adult naked mole-rat brain to retain the hypoxia tolerance normally only seen in neonatal mammals.  相似文献   

7.
Recent research has proposed a pathway in which sensory neurons expressing the capsaicin activated ion channel TRPV1 are required for histamine-induced itch and subsequent scratching behavior. We examined histamine-induced itch in the African naked mole-rat (Heterocephalus glaber) and found that although naked mole-rats display innate scratching behavior, histamine was unable to evoke increased scratching as is observed in most mouse strains. Using calcium imaging, we examined the histamine sensitivity of naked mole-rat dorsal root ganglia (DRG) neurons and identified a population of small diameter neurons activated by histamine, the majority of which are also capsaicin-sensitive. This suggested that naked mole-rat sensory neurons are activated by histamine, but that spinal dorsal horn processing of sensory information is not the same as in other rodents. We have previously shown that naked mole-rats naturally lack substance P (SP) in cutaneous C-fibers, but that the neurokinin-1 receptor is expressed in the superficial spinal cord. This led us to investigate if SP deficiency plays a role in the lack of histamine-induced scratching in this species. After intrathecal administration of SP into the spinal cord we observed robust scratching behavior in response to histamine injection. Our data therefore support a model in which TRPV1-expressing sensory neurons are important for histamine-induced itch. In addition, we demonstrate a requirement for active, SP-induced post-synaptic drive to enable histamine sensitive afferents to drive itch-related behavior in the naked mole-rat. These results illustrate that it is altered dorsal horn connectivity of nociceptors that underlies the lack of itch and pain-related behavior in the naked mole-rat.  相似文献   

8.
African mole-rats are subterranean rodents, which rarely if ever leave the safety of their burrow systems. The environment of the burrows is humid, with relatively stable temperatures, and may have a hypoxic and hypercapnic atmosphere. One of crucial problems related to the subterranean way of life in mammals is avoidance of overheating, because traditional mammalian cooling mechanisms are not effective under high humidity. In African mole-rats, a variety of adaptations have evolved in response to this and other challenges of the underground ecotope. Traditionally, attention has been devoted mainly to the naked mole-rat Heterocephalus glaber, which became popular as a result of its eusociality and absence of fur, both being unique phenomena in small mammals. Despite more recent research, information on other species is still relatively limited and patchy. I review the results of studies on African mole-rats that are relevant for the understanding of their energetics and thermal biology. Attention is paid to the parameters of the burrow environment, which represent the main selection pressures shaping their physiology. In addition, an overview is given of the morphological, physiological and behavioural adaptations helping mole-rats to face temperature extremes, mechanisms by which they deal with a surplus of metabolic heat and how changes in ambient temperature influence their daily activity. The naked mole-rat is compared to its furred relatives to determine whether this species is really exceptional from the point of thermal biology. An ordination analysis was conducted using published data on mole-rat body temperature, thermoneutral zone, resting metabolic rate and thermal conductance. Most of the variability in these characteristics was found to be explained by body mass, followed by temperature characteristics of climate, but not precipitation, of the species distributional ranges. This analysis shows that the naked mole-rat is comparable to the other mole-rat species in these physiological characteristics.  相似文献   

9.
In all mammals, tissue inflammation leads to pain and behavioral sensitization to thermal and mechanical stimuli called hyperalgesia. We studied pain mechanisms in the African naked mole-rat, an unusual rodent species that lacks pain-related neuropeptides (e.g., substance P) in cutaneous sensory fibers. Naked mole-rats show a unique and remarkable lack of pain-related behaviors to two potent algogens, acid and capsaicin. Furthermore, when exposed to inflammatory insults or known mediators, naked mole-rats do not display thermal hyperalgesia. In contrast, naked mole-rats do display nocifensive behaviors in the formalin test and show mechanical hyperalgesia after inflammation. Using electrophysiology, we showed that primary afferent nociceptors in naked mole-rats are insensitive to acid stimuli, consistent with the animal's lack of acid-induced behavior. Acid transduction by sensory neurons is observed in birds, amphibians, and fish, which suggests that this tranduction mechanism has been selectively disabled in the naked mole-rat in the course of its evolution. In contrast, nociceptors do respond vigorously to capsaicin, and we also show that sensory neurons express a transient receptor potential vanilloid channel-1 ion channel that is capsaicin sensitive. Nevertheless, the activation of capsaicin-sensitive sensory neurons in naked mole-rats does not produce pain-related behavior. We show that capsaicin-sensitive nociceptors in the naked mole-rat are functionally connected to superficial dorsal horn neurons as in mice. However, the same nociceptors are also functionally connected to deep dorsal horn neurons, a connectivity that is rare in mice. The pain biology of the naked mole-rat is unique among mammals, thus the study of pain mechanisms in this unusual species can provide major insights into what constitutes “normal” mammalian nociception.  相似文献   

10.
DNA from 20 individuals from four wild colonies of naked mole-rats, Heterocephalus glaber , were analysed for restriction fragment length polymorphism of class I major histocompatibility complex genes and minisatellite DNA, both of which have been shown to be highly variable between individuals in other species. The minisatellite probe employed in this study revealed limited polymorphism in the DNA of naked mole-rats, both within and between neighbouring colonies. Of the two class I major histocompatibility complex probes, both showed a lack of polymorphism within colonies, while one revealed a single difference in the restriction fragment pattern between one colony and the other three. This probe also revealed a possible variation in copy number of genes in some individuals. The low numbers of bands on the restriction fragment pattern also indicated that the naked mole-rat MHC I, in contrast to that of other mammalian species, may contain relatively few genes homologous to the class I major histocompatibility complex of the mouse. The absence of variability in naked mole-rat DNA in these normally highly polymorphic loci suggests that there may be little or no genetic diversity either within or between closely neighbouring colonies of naked mole-rats in the wild. The lack of polymorphism in the MHC I questions its possible role in individual odour recognition in this species of rodent.  相似文献   

11.
Tuco-tucos (Ctenomys) and related coruros (Spalacopus) are South American subterranean rodents. An energetically demanding lifestyle within the hypoxic, underground atmosphere may change the selective regime on oxidative phosphorylation. We examined whether weak and/or episodic positive directional selection affected the evolution of two mitochondrial genes (COX2, CytB), in a background of purifying selection in these lineages. We estimated rates of synonymous (dS) and non-synonymous (dN) substitutions and found: 1) significantly higher dN/dS ratio in subterranean groups relative to non-subterranean related species, and 2) two codons in each gene under episodic selection: 94 and 277 of COX2 and 269 and 307 of CytB.  相似文献   

12.
董彦娇  逄越  李庆伟 《遗传》2016,38(5):411-417
啮齿类动物是广泛应用于生物医学的重要模式动物,包括先天性胸腺缺陷型的裸鼠、不患癌的裸鼹鼠(Heterocephalus glaber)和盲鼹鼠(Spalax galili)等。哺乳动物的衰老过程与癌症发生率有关,衰老的程度与患癌机率呈正相关。由于啮齿类动物约占哺乳动物的40%,因此研究长寿型啮齿类动物抗肿瘤机制对于抗癌机制的研究具有十分重要的作用。复制性衰老是啮齿类动物中普遍存在的抗肿瘤机制,但在裸鼹鼠和盲鼹鼠体内发现了独特的抗肿瘤机制:盲鼹鼠主要的抗肿瘤机制是由细胞释放IFN-β,激活p53和Rb信号通路,进而导致细胞集中性死亡;裸鼹鼠的抗肿瘤机制是由高分子量透明质酸引起的早期接触性抑制介导。此外,裸鼹鼠和盲鼹鼠的基因组中还含有高表达与调节细胞死亡和抗炎机制相关的基因。本文对裸鼹鼠和盲鼹鼠的独特抗肿瘤机制进行了综述,以期为该领域的相关研究提供参考。  相似文献   

13.

Background

The African mole-rats (Bathyergidae, Rodentia) are strictly subterranean, congenitally microphthalmic rodents that are hardly ever exposed to environmental light. Because of the lack of an overt behavioural reaction to light, they have long been considered to be blind. However, recent anatomical studies have suggested retention of basic visual capabilities. In this study, we employed behavioural tests to find out if two mole-rat species are able to discriminate between light and dark, if they are able to discriminate colours and, finally, if the presence of light in burrows provokes plugging behaviour, which is assumed to have a primarily anti-predatory function.

Methodology/Principal Finding

We used a binary choice test to show that the silvery mole-rat Heliophobius argenteocinereus and the giant mole-rat Fukomys mechowii exhibit a clear photoavoidance response to full-spectrum (“white”), blue and green-yellow light, but no significant reaction to ultraviolet or red light during nest building. The mole-rats thus retain dark/light discrimination capabilities and a capacity to perceive short to medium-wavelength light in the photopic range of intensities. These findings further suggest that the mole-rat S opsin has its absorption maximum in the violet/blue part of the spectrum. The assay did not yield conclusive evidence regarding colour discrimination. To test the putative role of vision in bathyergid anti-predatory behaviour, we examined the reaction of mole-rats to the incidence of light in an artificial burrow system. The presence of light in the burrow effectively induced plugging of the illuminated tunnel.

Conclusion/Significance

Our findings suggest that the photopic vision is conserved and that low acuity residual vision plays an important role in predator avoidance and tunnel maintenance in the African mole-rats.  相似文献   

14.
15.
The bathyergid mole-rats provide a unique example of a family of subterranean rodents exhibiting a broad spectrum of sociality. Three genera comprise solitary, strongly territorial individuals whereas two genera are social. This sociality culminates in the eusocial naked mole-rat, Heterocephalus glaber . The pups of solitary mole-rats disperse, establish and thereafter defend their own burrow systems when approximately two months old, whereas those of social genera join an established natal colony. This paper examines whether these different lifestyles are reflected in the early development and rate of growth of pups of mole-rats.
Although the trends are not clear-cut, it is apparent that the pups of solitary genera grow and mature more rapidly than those from social genera. Thus, the growth rate constant ( K ) for the first70–80 days of postnatal growth (using the Gompertz equation) for the solitary genera was between 0.042 and 0.052 day−1, whereas that of the social mole-rats was considerably lower (0.01 5 day−1). Similarly the mean growth rates of solitary genera ranged between 3.3 and 1.227g/day while those of the social mole-rats were 0.229-0.233 g/day.
The pattern of development and the rates of growth in solitary bathyergids are similar to those of other solitary subterranean rodents. One interesting feature common to all the social genera studied to date was that the first pups recruited to a 'new colony', consisting of a reproductive pair of adult mole-rats, grew at a significantly faster rate than pups born to an established colony.  相似文献   

16.
Alternative splicing (AS) is known to significantly affect exon-level protein evolutionary rates in mammals. Particularly, alternatively spliced exons (ASEs) have a higher nonsynonymous-to-synonymous substitution rate (dN/dS) ratio than constitutively spliced exons (CSEs), possibly because the former are required only occasionally for normal biological functions. Meanwhile, intrinsically disordered regions (IDRs), the protein regions lacking fixed 3D structures, are also reported to have an increased evolutionary rate due to lack of structural constraint. Interestingly, IDRs tend to be located in alternative protein regions. Yet which of these two factors is the major determinant of the increased dN/dS in mammalian ASEs remains unclear. By comparing human-macaque and human-mouse one-to-one orthologous genes, we demonstrate that AS and protein structural disorder have independent effects on mammalian exon evolution. We performed analyses of covariance to demonstrate that the slopes of the (dN/dS-percentage of IDR) regression lines differ significantly between CSEs and ASEs. In other words, the dN/dS ratios of both ASEs and CSEs increase with the proportion of IDR (PIDR), whereas ASEs have higher dN/dS ratios than CSEs when they have similar PIDRs. Since ASEs and IDRs may less frequently overlap with protein domains (which also affect dN/dS), we also examined the correlations between dN/dS ratio and exon type/PIDR by controlling for the density of protein domain. We found that the effects of exon type and PIDR on dN/dS are both independent of domain density. Our results imply that nature can select for different biological features with regard to ASEs and IDRs, even though the two biological features tend to be localized in the same protein regions.  相似文献   

17.
In all mammals, tissue inflammation leads to pain and behavioral sensitization to thermal and mechanical stimuli called hyperalgesia. We studied pain mechanisms in the African naked mole-rat, an unusual rodent species that lacks pain-related neuropeptides (e.g., substance P) in cutaneous sensory fibers. Naked mole-rats show a unique and remarkable lack of pain-related behaviors to two potent algogens, acid and capsaicin. Furthermore, when exposed to inflammatory insults or known mediators, naked mole-rats do not display thermal hyperalgesia. In contrast, naked mole-rats do display nocifensive behaviors in the formalin test and show mechanical hyperalgesia after inflammation. Using electrophysiology, we showed that primary afferent nociceptors in naked mole-rats are insensitive to acid stimuli, consistent with the animal's lack of acid-induced behavior. Acid transduction by sensory neurons is observed in birds, amphibians, and fish, which suggests that this tranduction mechanism has been selectively disabled in the naked mole-rat in the course of its evolution. In contrast, nociceptors do respond vigorously to capsaicin, and we also show that sensory neurons express a transient receptor potential vanilloid channel-1 ion channel that is capsaicin sensitive. Nevertheless, the activation of capsaicin-sensitive sensory neurons in naked mole-rats does not produce pain-related behavior. We show that capsaicin-sensitive nociceptors in the naked mole-rat are functionally connected to superficial dorsal horn neurons as in mice. However, the same nociceptors are also functionally connected to deep dorsal horn neurons, a connectivity that is rare in mice. The pain biology of the naked mole-rat is unique among mammals, thus the study of pain mechanisms in this unusual species can provide major insights into what constitutes “normal” mammalian nociception.  相似文献   

18.

Background

African mole-rats (Bathyergidae, Rodentia) exhibit a wide range of social structures, from solitary to eusocial. We previously found a lack of sex differences in the external genitalia and morphology of the perineal muscles associated with the phallus in the eusocial naked mole-rat. This was quite surprising, as the external genitalia and perineal muscles are sexually dimorphic in all other mammals examined. We hypothesized that the lack of sex differences in naked mole-rats might be related to their unusual social structure.

Methodology/Principal Findings

We compared the genitalia and perineal muscles in three African mole-rat species: the naked mole-rat, the solitary silvery mole-rat, and the Damaraland mole-rat, a species considered to be eusocial, but with less reproductive skew than naked mole-rats. Our findings support a relationship between social structure, mating system, and sexual differentiation. Naked mole-rats lack sex differences in genitalia and perineal morphology, silvery mole-rats exhibit sex differences, and Damaraland mole-rats are intermediate.

Conclusions/Significance

The lack of sex differences in naked mole-rats is not an attribute of all African mole-rats, but appears to have evolved in relation to their unusual social structure and reproductive biology.  相似文献   

19.
An excess of nonsynonymous substitutions over synonymous ones is an important indicator of positive selection at the molecular level. A lineage that underwent Darwinian selection may have a nonsynonymous/synonymous rate ratio (dN/dS) that is different from those of other lineages or greater than one. In this paper, several codon-based likelihood models that allow for variable dN/dS ratios among lineages were developed. They were then used to construct likelihood ratio tests to examine whether the dN/dS ratio is variable among evolutionary lineages, whether the ratio for a few lineages of interest is different from the background ratio for other lineages in the phylogeny, and whether the dN/dS ratio for the lineages of interest is greater than one. The tests were applied to the lysozyme genes of 24 primate species. The dN/dS ratios were found to differ significantly among lineages, indicating that the evolution of primate lysozymes is episodic, which is incompatible with the neutral theory. Maximum- likelihood estimates of parameters suggested that about nine nonsynonymous and zero synonymous nucleotide substitutions occurred in the lineage leading to hominoids, and the dN/dS ratio for that lineage is significantly greater than one. The corresponding estimates for the lineage ancestral to colobine monkeys were nine and one, and the dN/dS ratio for the lineage is not significantly greater than one, although it is significantly higher than the background ratio. The likelihood analysis thus confirmed most, but not all, conclusions Messier and Stewart reached using reconstructed ancestral sequences to estimate synonymous and nonsynonymous rates for different lineages.   相似文献   

20.
Ubiquitin, a 76 residue protein, occurs in eucaryotic cells either free or covalently joined to a variety of protein species. Previous work suggested that ubiquitin may function as a signal for attack by proteinases specific for ubiquitin-protein conjugates. We show that the mouse cell line ts85 , a previously isolated cell cycle mutant, is temperature-sensitive in ubiquitin-protein conjugation, and that this effect is due to the specific thermolability of the ts85 ubiquitin-activating enzyme (E1). From E1 thermoinactivation kinetics in mixed (wild-type plus ts85 ) extracts, and from copurification of the determinant of E1 thermolability with E1 in ubiquitin-affinity chromatography, we conclude that the determinant of E1 thermolability is contained within the E1 polypeptide. ts85 cells fail to degrade otherwise short-lived intracellular proteins at the nonpermissive temperature (accompanying paper), demonstrating that degradation of the bulk of short-lived proteins in this higher eucaryotic cell proceeds through a ubiquitin-dependent pathway. We discuss possible roles of ubiquitin-dependent pathways in DNA transactions, the cell cycle, and the heat shock response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号