首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
 The coordination state of Fe(III)- and Fe(II)-mimochrome I, a covalent peptide-deuteroheme sandwich involving two nonapeptides bearing a histidine residue in a central position, was studied by UV-visible, EPR, and resonance Raman spectroscopy. The ferric and ferrous states of this new iron species mainly exist, at pH 7, in a low-spin hexacoordinate form with two axial histidine ligands coming from the peptide chains. A minor amount of high-spin form for the ferric state is also present at pH 7. However, it is mainly high-spin at pH 2 or in DMSO. Fe(II)-mimochrome I binds CO with an affinity comparable to that of myoglobin and hemoglobin. Fe(III)-mimochrome I reacts with alkylhydroxylamine and arylhydrazines, leading to the corresponding Fe(II)-nitrosoalkyl and Fe(III)-σ-aryl complexes, respectively. These reactions were greatly dependent on the solvent used and on the pH, and were much slower than the corresponding reactions performed by deuterohemin in the presence of excess imidazole. All these results indicate that the reactivity of iron-mimochrome I is controlled by the binding of the peptide chains to the iron. The reactivity shown by this complex at neutral pH is intermediate between that observed for iron porphyrins in the presence of excess imidazole and that of hemoproteins characterized by a strong bis-histidine axial coordination, such as cytochrome b 5. Fe(III)-mimochrome I is able to catalyze styrene epoxidation by using a [Fe(III)-mimochrome I]/[H2O2]/[stryrene] ratio of 1 : 10 : 2000 in phosphate buffer solution (pH 7.2) containing 2% CTAB both under strictly anaerobic conditions and in the presence of oxygen, at 0  °C. Received: 26 May 1998 / Accepted: 20 August 1998  相似文献   

2.
We purified free flavin-independent NADPH oxidoreductase from Synechocystis sp. PCC6803 based on NADPH oxidation activity elicited during reduction of t-butyl hydroperoxide in the presence of Fe(III)-EDTA. The N-terminal sequencing of the purified enzyme revealed it to be ferredoxin-NADP+ oxidoreductase (FNR S ). The purified enzyme reacted with cytochrome c, ferricyanide and 2,6-dichloroindophenol (DCIP). The substrate specificity of the enzyme was similar to the known FNR. DNA degradation occurring in the presence of NADPH, Fe(III)-EDTA and hydrogen peroxide was potently enhanced by the purified enzyme, indicating that Synechocystis FNR S may drive the Fenton reaction. The Fenton reaction by Synechocystis FNR S in the presence of natural chelate iron compounds tended to be considerably lower than that in the presence of synthetic chelate iron compounds. The Synechocystis FNR S is considered to reduce ferric iron to ferrous iron when it evokes the Fenton reaction. Although Synechocystis FNR S was able to reduce iron compounds in the absence of free flavin, the ferric reduction by the enzyme was enhanced by the addition of free flavin. The enhancement was detected not only in the presence of natural chelate iron compounds but also synthetic chelate iron compounds.  相似文献   

3.
The effect of pH, oxygen and ferrous iron on growth and oxidation rates of iron-oxidizing bacteria (Gallionella spp and Leptothrix spp) as well as indirect effects, the most prominent being catalytic activity of the produced ferric iron deposits, were investigated. Deposits of biotic origin exhibit slightly lower surface oxidation rates compared to abiotically produced ferric iron. It was shown that the required habitat conditions of the studied species hardly overlap, but increase the pH/oxygen range of potential Fe(II) oxidation conditions. The study highlights the combined effect of microbial iron oxidation and catalytic properties of the Mn and Fe oxidation products.  相似文献   

4.
The acquisition and metabolism of iron (Fe) by the human pathogen Staphylococcus aureus is critical for disease progression. S. aureus requires Fe to synthesize inorganic cofactors called iron‐sulfur (Fe‐S) clusters, which are required for functional Fe‐S proteins. In this study we investigated the mechanisms utilized by S. aureus to metabolize Fe‐S clusters. We identified that S. aureus utilizes the Suf biosynthetic system to synthesize Fe‐S clusters and we provide genetic evidence suggesting that the sufU and sufB gene products are essential. Additional biochemical and genetic analyses identified Nfu as an Fe‐S cluster carrier, which aids in the maturation of Fe‐S proteins. We find that deletion of the nfu gene negatively impacts staphylococcal physiology and pathogenicity. A nfu mutant accumulates both increased intracellular non‐incorporated Fe and endogenous reactive oxygen species (ROS) resulting in DNA damage. In addition, a strain lacking Nfu is sensitive to exogenously supplied ROS and reactive nitrogen species. Congruous with ex vivo findings, a nfu mutant strain is more susceptible to oxidative killing by human polymorphonuclear leukocytes and displays decreased tissue colonization in a murine model of infection. We conclude that Nfu is necessary for staphylococcal pathogenesis and establish Fe‐S cluster metabolism as an attractive antimicrobial target.  相似文献   

5.
Short-term (3h) acquisition of iron (16 nmol 59FeCl3 l−1) from oxic, alkaline fresh water was assessed in rainbow trout Oncorhynchus mykiss in the presence or absence of a range of iron chelators, all of which had differing binding affinities for ferric iron [100 μmol l−1 of desferrioxamine (DFO), Log10K1 32·5; citric acid Log10K1 11·9; nitrilotriacetic acid (NTA) Log10K1 15·9, CP20 and CP94 (Log10K1 > 30), as well as humic acid (HA), Log10K1 5·04, 5 mg l−1]. In the absence of chelators (control conditions) O. mykiss acquired iron from the water under laboratory lights (wavelength range of the lights 440–650 nm, peak intensity 548–626 nm) via the gill. In these conditions iron uptake onto the gill had a maximum transport capacity (Jmax) of 11·2 pmol Fe g−1 h−1 (gill organ mass) and a Km of 21·3 nmol Fe l−1 h−1. Furthermore, there were two components to iron accumulation into the carcass of these fish, a slow rate of aqueous iron uptake at low concentrations (6–24 nmol Fe l−1), followed by a faster rate of uptake at higher iron concentrations (48–96 nmol Fe l−1), suggesting that the rate-limiting step of iron uptake at low iron concentrations is the apical entry step. O. mykiss also acquired iron in the presence of HA, although the majority of the other chelators prevented iron uptake. Ultraviolet light (354 nm) treatment of Fe-DFO increased iron bioavailability. Results suggest that rainbow trout are able to access either the predicted very low concentrations (picomolar) of ferrous iron present in fresh water or the ferric oxide complexes present in oxic environments. The iron uptake rate measured (0·75 pmol g−1 h−1) would be sufficient to provide a substantial proportion (c. 85%) of the daily iron requirements of growing salmonid fry.  相似文献   

6.
Summary A comparative study of iron removal at 30–60 C and pH 4–9 by pure (Aeromonas sp.) and mixed culture of iron resistant microbes (FMC) showed maximum efficiency of 45% (pH-8, 40 C) and 90% (pH-9, 40C) respectively in 60–72 h using a synthetic ferric citrate medium containing 650 mg/l Fe(III) with ammonium chloride as nitrogen source.  相似文献   

7.
Cadmium inhibits iron uptake and assimilation in the coastal diatom Thalassiosira weissflogii Grun. The effect of cadmium on short term Fe uptake fits ft competitive binding model: where (Fe3+) and (Cd2++) tire the free ferric and cadmium ion concentrations, respectively. The apparent binding constant Kcds, is calculated to be ca. lO8.2M-1 compared to a Kfe of lO19 M-1. At low free ferric ion concentrations. interference of cadmium with iron transport (at pCd = 8 and pFe* < 20) results in a simultaneous decrease in growth rate and Fe accumulation to a level known 1o limit growth. Upon decreasing the free cadmium ion concentration, cells accumulate a large amount oj iron prior to resumption of normal growth. At higher free ferric ion concentrations (pFe* < 20) normal or elevated Fe quotas are absented but “luxury consumption” of iron still occurs upon reversal of toxicity. Evidence that these algae with high cellular iron quotas are effectively Fe deficient is provided by a decrease in the cytochrome f/chlorophyll a ratio and a much greater decrease in NO3- reductase activity than in aldolase activity or H14C03 assimilation. Under the conditions of this study, cadmium had little effect on Si accumulation. The transport of methylamine (an analog of NH+4) is unaffected by short term exposure to high free cadmium ion concentration but is greatly inhibited upon long term (97 h) exposure.  相似文献   

8.
The conversion of ferrous verdoheme to ferric biliverdin in the presence of O2 was investigated using the B3LYP method. Both 6-31G and 6-31G (d) basis sets were employed for geometry optimization calculation as well as energy stabilization estimation. Three possible pathways for the conversion of iron verdoheme to iron biliverdin were considered. In the first route oxygen and reducing electron were employed. In this path formation of ferrous verdoheme-O2 complex was followed by the addition of one electron to the ferrous-oxycomplex to produce ferric peroxide intermediate. The ferric peroxide intermediate experienced an intramolecular nucleophilic attack to the most positive position at 5-oxo carbons on the ring to form a closed ring biliverdin. Subsequently the ring opening process took place and the iron (III) biliverdin complex was formed. Closed ring iron biliverdin intermediate and open ring iron biliverdin formed as a product of verdoheme cleavage were respectively 13.20 and 32.70 kcal mol−1 more stable than ferric peroxide intermediate. Barrier energy for conversion of ferric peroxide to closed ring Fe (III) biliverdin and from the latter to Fe (III) biliverdin were respectively 8.67 and 3.35 kcal mol−1. In this path spin ground states are doublet except for iron (III) biliverdin in which spin state is quartet. In the second path a ferrous-O2 complex was formed and, without going to a one electron reduction process, nucleophilic attack of iron superoxide complex took place followed by the formation of iron (III) biliverdin. This path is thermodynamically and kinetically less favorable than the first one. In addition, iron hydro peroxy complex or direct attack of O2 to macrocycle to form an isoporphyrin type intermediate have shown energy surfaces less favorable than aforementioned routes.  相似文献   

9.
Growth physiology of the iron-reducing bacteria Thermoterrabacterium ferrireducens and Thermoanaerobacter siderophilus was investigated. The stimulation of the organotrophic growth of T. ferrireducens and T. siderophilusin the presence of Fe(III) was shown to be due to the utilization of ferric iron as an electron acceptor in catabolic processes and not to the effect exerted on the metabolism by Fe(II) or by changes in the redox potential. It was established that Fe(III) reduction in T. ferrireducens is not a detoxication strategy. In T. siderophilus, this process is carried out to alleviate the inhibitory effect of hydrogen. T. ferrireducens was shown to be capable of lithoautotrophic growth with molecular hydrogen as an electron donor and amorphous ferric oxide as an electron acceptor, in the absence of any organic substances. The minimum threshold of H2 consumption was 3 × 10–5 vol % of H2. The presence of CO dehydrogenase activity in T. ferrireducens suggests that CO2 fixation in this organism involves the anaerobic acetyl-CoA pathway. T. siderophilus failed to grow under lithoautotrophic conditions. The fact that T. ferrireducens contains c-type cytochromes and T. siderophilus lacks them confirms the operation of different mechanisms of ferric iron reduction in these species.  相似文献   

10.
Contaminated soil from a historical industrial site and containing sulfide ore ashes and aromatic hydrocarbons underwent sequential leaching by 0.5 M citrate and microbial treatments. Heavy metals leaching was with the following efficiency scale: Cu (58.7%) > Pb (55.1%) > Zn (44.5%) > Cd (42.9%) > Cr (26.4%) > Ni (17.7%) > Co (14.0%) > As (12.4%) > Fe (5.3%) > Hg (1.1%) and was accompanied by concomitant removal of organic contaminants (about 13%). Leached metals were concentrated into an iron gel, produced during ferric citrate fermentation by the metal-resistant strain BAS-10 of Klebsiella oxytoca. Concomitantly, the acidic leached soil was bioaugmented with Allescheriella sp. DABAC 1, Stachybotrys sp. DABAC 3, Phlebia sp. DABAC 9, Pleurotus pulmonarius CBS 664.97, and Botryosphaeria rhodina DABAC P82. B. rhodina was most effective, leading to a significant depletion of the most abundant contaminants, including 7-H-benz[DE]anthracene-7-one, 9,10-anthracene dione and dichloroaniline isomers, and to a marked detoxification as assessed by the mortality test with the Collembola Folsomia candida Willem. The overall degradation activities of B. rhodina and P. pulmonarius appeared to be significantly enhanced by the preliminary metal removal.  相似文献   

11.
Arbuscular mycorrhizal (AM) fungi can improve iron (Fe) acquisition of their host plants. Here, we report a characterization of two components of the high‐affinity reductive Fe uptake system of Rhizophagus irregularis, the ferric reductase (RiFRE1) and the high affinity Fe permeases (RiFTR1‐2). In the extraradical mycelia (ERM), Fe deficiency induced activation of a plasma membrane‐localized ferric reductase, an enzyme that reduces Fe(III) sources to the more soluble Fe(II). Yeast mutant complementation assays showed that RiFRE1 encodes a functional ferric reductase and RiFTR1 an iron permease. In the heterologous system, RiFTR1 was expressed in the plasma membrane while RiFTR2 was expressed in the endomembranes. In the ERM, the highest expression levels of RiFTR1 were found in mycelia grown in media with 0.045 mM Fe, while RiFTR2 was upregulated under Fe‐deficient conditions. RiFTR2 expression also increased in the intraradical mycelia (IRM) of maize plants grown without Fe. These data indicate that the Fe permease RiFTR1 plays a key role in Fe acquisition and that RiFTR2 is involved in Fe homeostasis under Fe‐limiting conditions. RiFTR1 was highly expressed in the (IRM), which suggests that the maintenance of Fe homeostasis in the IRM might be essential for a successful symbiosis.  相似文献   

12.

In the present study, coupled stable sulfur and oxygen isotope fractionation during elemental sulfur disproportionation according to the overall reaction: 4H2O + 4S? → 3H2S + SO4 2 ? + 2H+, was experimentally investigated for the first time using a pure culture of the sulfate reducer Desulfobulbus propionicus at 35?C. Bacterial disproportionation of elemental sulfur is an important process in the sulfur cycle of natural surface sediments and leads to the simultaneous formation of sulfide and sulfate. A dual-isotope approach considering both sulfur and oxygen isotope discrimination has been shown to be most effective in evaluating specific microbial reactions. The influence of iron- and manganese bearing-solids (Fe(II)CO3, Fe(III)OOH, Mn(IV)O2) acting in natural sediments as scavengers for hydrogen sulfide, was considered, too. Disproportionation of elemental sulfur was observed in the presence of iron solids at a cell-specific sulfur disproportionation rate of about 10? 9.5± 0.4 μ mol S? cell? 1 h? 1. No disproportionation, however, was observed with MnO2. In the presence of iron solids, newly formed sulfate was enriched in 18 O compared to water by about +21‰ (≡ ? H2O ), in agreement with a suggested oxygen isotope exchange via traces of intra- or extracellular sulfite that is formed as a disproportionation intermediate. Dissolved sulfate was also enriched in 34S compared to elemental sulfur by up to +35%. Isotope fractionation by Desulfobulbus propionicusis highest for all disproportionating bacteria investigated, so far, and may impact on the development of isotope signals at the redox boundary of surface sediments.  相似文献   

13.
Microbially reduced iron minerals can reductively transform a variety of contaminants including heavy metals, radionuclides, chlorinated aliphatics, and nitroaromatics. A number of Cellulomonas spp. strains, including strain ES6, isolated from aquifer samples obtained at the U.S. Department of Energy’s Hanford site in Washington, have been shown to be capable of reducing Cr(VI), TNT, natural organic matter, and soluble ferric iron [Fe(III)]. This research investigated the ability of Cellulomonas sp. strain ES6 to reduce solid phase and dissolved Fe(III) utilizing different carbon sources and various electron shuttling compounds. Results suggest that Fe(III) reduction by and growth of strain ES6 was dependent upon the type of electron donor, the form of iron present, and the presence of synthetic or natural organic matter, such as anthraquinone-2,6-disulfonate (AQDS) or humic substances. This research suggests that Cellulomonas sp. strain ES6 could play a significant role in metal reduction in the Hanford subsurface and that the choice of carbon source and organic matter addition can allow for independent control of growth and iron reduction activity.  相似文献   

14.
Bacteria harbour both ferrous and ferric iron transporters. We now report that infection of macrophages and mice with a Salmonella enterica Typhimurium strain containing an inactivated feoBencoded ferrous iron transporter results in increased bacterial replication, compared to infection with wild type. Inactivation of other cation transporters, SitABCD or MntH, did not increase bacterial replication. The feoB mutant strain does not have an intrinsically faster growth rate. Instead, increased replication correlated with increased expression in macrophages of the fepBencoded bacterial ferric iron transporter and also required siderophores, which capture ferric iron. Co‐infection of mice with wild type and a feoB mutant strain yielded a different outcome: FeoB is clearly required for tissue colonization. In co‐infected primary mouse macrophages, FeoB is required for S. Typhimurium replication if the macrophages were IFNγ treated and contain phagocytosed erythrocytes, a model for haemophagocytosis. Haemophagocytes are macrophages that have engulfed erythrocytes and/or leucocytes and can harbour Salmonella in mice. These observations suggest that Salmonella acquires ferrous iron from haemophagocytic macrophages.  相似文献   

15.
We have here investigated the dissociation kinetics of the His side chains axially ligated to the heme-iron in the ferric (1–56 residues) N-fragment of horse cyt c. The ligand deligation induced by acidic pH-jump occurs as a biexponential process with different pre-exponential factors, consistent with a structural heterogeneity in solution and the presence of two differently coordinated species. In analogy with GuHCl-denatured cyt c, our data indicate the presence in solution of two ferric forms of the N-fragment characterized by bis-His coordination, as summarized in the following scheme: His18–Fe(III)–His26 \rightleftharpoons His18–Fe(III)–His33. We have found that the pre-exponential factors depend on the extent of the pH-jump. This may be correlated with the different pKa values shown by His26 and His33; due to steric factors, His26 binds to the heme–Fe(III) less strongly than His33, as recently shown by studies on denatured cyt c. Interestingly, the two lifetimes are affected by temperature but not by the extent of the pH-jump. The lower pKa for the deligation reaction required the use of an improved laser pH-jump setup, capable of inducing changes in H+ concentration as large as 1 mM after the end of the laser pulse. For the ferric N-fragment, close activation entropy values have been determined for the two histidines coordinated to the iron; this result significantly differs from that for GuHCl-denatured cyt c, where largely different values of activation entropy were calculated. This underlines the role played by the missing segment (residues 57–104) peptide chain in discriminating deligation of the nonnative His from the sixth coordination position of the metal.  相似文献   

16.
Iron has a central role in bioleaching and biooxidation processes. Fe2+ produced in the dissolution of sulfidic minerals is re-oxidized to Fe3+ mostly by biological action in acid bioleaching processes. To control the concentration of iron in solution, it is important to precipitate the excess as part of the process circuit. In this study, a bioprocess was developed based on a fluidized-bed reactor (FBR) for Fe2+ oxidation coupled with a gravity settler for precipitative removal of ferric iron. Biological iron oxidation and partial removal of iron by precipitation from a barren heap leaching solution was optimized in relation to the performance and retention time (τFBR) of the FBR. The biofilm in the FBR was dominated by Leptospirillum ferriphilum and “Ferromicrobium acidiphilum.” The FBR was operated at pH 2.0 ± 0.2 and at 37 °C. The feed was a barren leach solution following metal recovery, with all iron in the ferrous form. 98–99% of the Fe2+ in the barren heap leaching solution was oxidized in the FBR at loading rates below 10 g Fe2+/L h (τFBR of 1 h). The optimal performance with the oxidation rate of 8.2 g Fe2+/L h was achieved at τFBR of 1 h. Below the τFBR of 1 h the oxygen mass transfer from air to liquid limited the iron oxidation rate. The precipitation of ferric iron ranged from 5% to 40%. The concurrent Fe2+ oxidation and partial precipitative iron removal was maximized at τFBR of 1.5 h, with Fe2+ oxidation rate of 5.1 g Fe2+/L h and Fe3+ precipitation rate of 25 mg Fe3+/L h, which corresponded to 37% iron removal. The precipitates had good settling properties as indicated by the sludge volume indices of 3–15 mL/g but this step needs additional characterization of the properties of the solids and optimization to maximize the precipitation and to manage sludge disposal.  相似文献   

17.
Iron is an essential element for nearly all cells and limited iron availability often restricts growth. However, excess iron can also be deleterious, particularly when cells expressing high affinity iron uptake systems transition to iron rich environments. Bacillus subtilis expresses numerous iron importers, but iron efflux has not been reported. Here, we describe the B. subtilis PfeT protein (formerly YkvW/ZosA) as a P1B4‐type ATPase in the PerR regulon that serves as an Fe(II) efflux pump and protects cells against iron intoxication. Iron and manganese homeostasis in B. subtilis are closely intertwined: a pfeT mutant is iron sensitive, and this sensitivity can be suppressed by low levels of Mn(II). Conversely, a pfeT mutant is more resistant to Mn(II) overload. In vitro, the PfeT ATPase is activated by both Fe(II) and Co(II), although only Fe(II) efflux is physiologically relevant in wild‐type cells, and null mutants accumulate elevated levels of intracellular iron. Genetic studies indicate that PfeT together with the ferric uptake repressor (Fur) cooperate to prevent iron intoxication, with iron sequestration by the MrgA mini‐ferritin playing a secondary role. Protection against iron toxicity may also be a key role for related P1B4‐type ATPases previously implicated in bacterial pathogenesis.  相似文献   

18.
Owing to the indiscriminate reactivity of the free NO radical, intricate control mechanisms are required for storage, transport and transfer of NO to its various biological targets. Among the proposed storage components are protein-bound thionitrosyls (Rprotein–SNO) and protein-bound dinitrosyl iron complexes. Current knowledge suggests the latter are derived from iron–sulfur cluster degradation in the presence of excess NO. Mobilization of protein-bound NO could involve NO or Fe(NO)2 unit transfer to small serum molecules such as glutathione, free cysteine, or iron-porphyrins. The study reported is of a reaction model which addresses the key steps in NO transfer from a prototypal iron dinitrosyl complex. While the N,N′-bis(2-mercaptoethyl)-N,N′-diazacyclooctane (bme-daco) ligand typically binds in square-planar N2S2 coordination, it also serves as a bidentate dithiolate donor for tetrahedral structures in the preparation of the (H+bme-daco)Fe(NO)2 derivative (Chiang et al., J. Am. Chem. Soc. 126:10867–10874, 2004). The removal of one NO produces the mononitrosyl complex, (bme-daco)Fe(NO), and simplifies studies of NO release mechanisms. We have used heme-type model complexes, Fe or Co porphyrins as NO acceptors, yielding (porphyrin)M(NO), where M is Fe or Co, and monitored reactions by ν(NO) Fourier transform IR spectroscopy. Reaction products were verified by electrospray ionization mass spectrometry. Rudimentary mechanistic studies suggest a role for HNO in the NO release from the dinitrosyl; the mononitrosyl benefits as well from acid catalysis. Other NO uptake complexes such as [(N2S2)Fe]2 [N2S2 is bme-daco or N,N’-bis(2-mercapto-2-methylpropyl)-daco] are shown to form Fe(NO) mononitrosyls with stability and spectroscopic signatures similar to those of the porphyrins.  相似文献   

19.
Two free flavin-independent enzymes were purified by detecting the NAD(P)H oxidation in the presence of Fe(III)-EDTA and t-butyl hydroperoxide from E. coli. The enzyme that requires NADH or NADPH as an electron donor was a 28 kDa protein, and N-terminal sequencing revealed it to be oxygen-insensitive nitroreductase (NfnB). The second enzyme that requires NADPH as an electron donor was a 30 kDa protein, and N-terminal sequencing revealed it to be ferredoxin-NADP+ reductase (Fpr). The chemical stoichiometry of the Fenton activities of both NfnB and Fpr in the presence of Fe(III)-EDTA, NAD(P)H and hydrogen peroxide was investigated. Both enzymes showed a one-electron reduction in the reaction forming hydroxyl radical from hydrogen peroxide. Also, the observed Fenton activities of both enzymes in the presence of synthetic chelate iron compounds were higher than their activities in the presence of natural chelate iron compounds. When the Fenton reaction occurs, the ferric iron must be reduced to ferrous iron. The ferric reductase activities of both NfnB and Fpr occurred with synthetic chelate iron compounds. Unlike NfnB, Fpr also showed the ferric reductase activity on an iron storage protein, ferritin, and various natural iron chelate compounds including siderophore. The Fenton and ferric reductase reactions of both NfnB and Fpr occurred in the absence of free flavin. Although the k cat/K m value of NfnB for Fe(III)-EDTA was not affected by free flavin, the k cat/K m value of Fpr for Fe(III)-EDTA was 12-times greater in the presence of free FAD than in the absence of free FAD.  相似文献   

20.
Summary The role of various iron chelators on the multiplication of mouse hybridoma cells in an albumin-free, transferrin-deficient defined medium was investigated. Fe(III)-dihydroxyethylglycine, Fe(III)-glycylglycine, Fe(III)-ethylenediamine-N,N′-dipropionic acid, or Fe(III)-iminodiacetic acid supported the excellent growth of the cells. In addition, the growth of the iron-starved cells, which had been preincubated in a protein-, iron- and chelator-free defined medium, restored rapidly when the medium was supplemented with holotransfeerrin, ferric iron, and chelator compared to that when supplemented with holotransferin, but without iron and chelator. The results suggest that such chelators modulate a progression of transferrn cycle in the presence of transferin and ferric iron. An alternative explantation is that there is a decrease in generation of iron-catalyzed free radicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号