首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
α-Synuclein (α-Syn) is a protein implicated in the pathogenesis of Parkinson''s disease (PD). It is an intrinsically disordered protein that binds acidic phospholipids. Growing evidence supports a role for α-Syn in membrane trafficking, including, mechanisms of endocytosis and exocytosis, although the exact role of α-Syn in these mechanisms is currently unclear. Here we investigate the associations of α-Syn with the acidic phosphoinositides (PIPs), phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2). Our results show that α-Syn colocalizes with PIP2 and the phosphorylated active form of the clathrin adaptor protein 2 (AP2) at clathrin-coated pits. Using endocytosis of transferrin as an indicator for clathrin-mediated endocytosis (CME), we find that α-Syn involvement in endocytosis is specifically mediated through PI(4,5)P2 levels on the plasma membrane. In accord with their effects on PI(4,5)P2 levels, the PD associated A30P, E46K, and A53T mutations in α-Syn further enhance CME in neuronal and nonneuronal cells. However, lysine to glutamic acid substitutions at the KTKEGV repeat domain of α-Syn, which interfere with phospholipid binding, are ineffective in enhancing CME. We further show that the rate of synaptic vesicle (SV) endocytosis is differentially affected by the α-Syn mutations and associates with their effects on PI(4,5)P2 levels, however, with the exception of the A30P mutation. This study provides evidence for a critical involvement of PIPs in α-Syn–mediated membrane trafficking.  相似文献   

2.
RalBP1 and POB1, the downstream molecules of small GTP-binding protein Ral, are involved in receptor-mediated endocytosis together with Epsin and Eps15. The regulation of assembly of the complex of these proteins was examined. RalBP1, POB1, Epsin, and Eps15 formed a complex with alpha-adaptin of AP-2 in Chinese hamster ovary cells, but the formation was reduced in mitotic phase. RalBP1, POB1, Epsin, and Eps15 were all phosphorylated in mitotic phase. The phosphorylated forms of POB1 and Epsin were recognized by the antibody MPM2, which is known to detect mitotic phosphoproteins. POB1 and Epsin were phosphorylated by p34(cdc2) kinase in vitro. Their phosphorylation sites (Ser(411) of POB1 and Ser(357) of Epsin) were determined. Phosphorylated Epsin and Epsin(S357D) formed a complex with alpha-adaptin less efficiently than wild type Epsin. Although the EH domain of POB1 bound directly to Epsin, phosphorylation of Epsin inhibited the binding. Furthermore, Epsin(S357D) but not Epsin(S357A) lost the effect of Epsin on the insulin-dependent endocytosis. These results suggest that phosphorylation of Epsin in mitotic phase inhibits receptor-mediated endocytosis by disassembly of its complex with POB1 and alpha-adaptin.  相似文献   

3.
Eps15 has been identified as a substrate of the EGF receptor tyrosine kinase. In this report, we show that activation of the EGF receptor by either EGF or TGF-α results in phosphorylation of Eps15. Stimulation of cells with PDGF or insulin did not lead to Eps15 phosphorylation, suggesting that phosphorylation of Eps15 is a receptor-specific process. We demonstrate that Eps15 is constitutively associated with both α-adaptin and clathrin. Upon EGF stimulation, Eps15 and α-adaptin are recruited to the EGF receptor. Using a truncated EGF receptor mutant, we demonstrate that the regulatory domain of the cytoplasmic tail of the EGF receptor is essential for the binding of Eps15. Fractionation studies reveal that Eps15 is present in cell fractions enriched for plasma membrane and endosomal membranes. Immunofluorescence studies show that Eps15 colocalizes with adaptor protein-2 (AP-2) and partially with clathrin. No colocalization of Eps15 was observed with the early endosomal markers rab4 and rab5. These observations indicate that Eps15 is present in coated pits and coated vesicles of the clathrin-mediated endocytic pathway, but not in early endosomes. Neither AP-2 nor clathrin are required for the binding of Eps15 to coated pits or coated vesicles, since in membranes lacking AP-2 and clathrin, Eps15 still shows the same staining pattern. These findings suggest that Eps15 may play a critical role in the recruitment of active EGF receptors into coated pit regions before endocytosis of ligand-occupied EGF receptors.  相似文献   

4.
Epsin is a key molecule in receptor-mediated endocytosis. Epsin is phosphorylated and ubiquitinated, and these post-translational modifications are necessary for the regulation of endocytosis. Since human Epsin (hEpsin) has two ubiquitin-interacting motifs (UIMs), we investigated the roles of these UIMs in endocytosis. hEpsin formed a complex with ubiquitinated proteins but did not bind to monoubiquitin. Neither of the two UIMs of hEpsin alone was sufficient to form a complex with ubiquitinated proteins: both UIMs were necessary. Mutations of Asp209 and Asp210 to Ala in UIM (hEpsinDA) abolished the binding activity of hEpsin to ubiquitinated proteins. However, hEpsinDA interacted with Eps15, POB1, and AP-2, which are involved in receptor-mediated endocytosis, as efficiently as wild-type hEpsin. Expression of hEpsinDA in CHO-IR cells affected neither the binding of insulin to nor insulin-dependent autophosphorylation of its receptor. Expression of wild-type hEpsin inhibited the internalization of insulin, whereas that of hEpsinDA did not. These results suggest that the UIM motifs of hEpsin interact with proteins modified with ubiquitin, and that the complex formation is involved in insulin-dependent receptor endocytosis.  相似文献   

5.
The covalent attachment of ubiquitin to proteins is an evolutionarily conserved signal for rapid protein degradation. However, additional cellular functions for ubiquitination are now emerging, including regulation of protein trafficking and endocytosis. For example, recent genetic studies suggested a role for ubiquitination in regulating epsin, a modular endocytic adaptor protein that functions in the assembly of clathrin-coated vesicles; however, biochemical evidence for this notion has been lacking. Epsin consists of an epsin NH(2)-terminal homology (ENTH) domain that promotes the interaction with phospholipids, several AP2 binding sites, two clathrin binding sequences, and several Eps15 homology (EH) domain binding motifs. Interestingly, epsin also possesses several recently described ubiquitin-interacting motifs (UIMs) that have been postulated to bind ubiquitin. Here, we demonstrate that epsin is predominantly monoubiquitinated and resistant to proteasomal degradation. The UIMs are necessary for epsin ubiquitination but are not the site of ubiquitination. Finally, we demonstrate that the isolated UIMs from both epsin and an unrelated monoubiquitinated protein, Eps15, are sufficient to promote ubiquitination of a chimeric glutathione-S-transferase (GST)-UIM fusion protein. Thus, our data suggest that UIMs may serve as a general signal for ubiquitination.  相似文献   

6.
Epsin (epsin 1) is an interacting partner for the EH domain-containing region of Eps15 and has been implicated in conjunction with Eps15 in clathrin-mediated endocytosis. We report here the characterization of a similar protein (epsin 2), which we have cloned from human and rat brain libraries. Epsin 1 and 2 are most similar in their NH(2)-terminal region, which represents a module (epsin NH(2) terminal homology domain, ENTH domain) found in a variety of other proteins of the data base. The multiple DPW motifs, typical of the central region of epsin 1, are only partially conserved in epsin 2. Both proteins, however, interact through this central region with the clathrin adaptor AP-2. In addition, we show here that both epsin 1 and 2 interact with clathrin. The three NPF motifs of the COOH-terminal region of epsin 1 are conserved in the corresponding region of epsin 2, consistent with the binding of both proteins to Eps15. Epsin 2, like epsin 1, is enriched in brain, is present in a brain-derived clathrin-coated vesicle fraction, is concentrated in the peri-Golgi region and at the cell periphery of transfected cells, and partially colocalizes with clathrin. High overexpression of green fluorescent protein-epsin 2 mislocalizes components of the clathrin coat and inhibits clathrin-mediated endocytosis. The epsins define a new protein family implicated in membrane dynamics at the cell surface.  相似文献   

7.
AP-2/Eps15 Interaction Is Required for Receptor-mediated Endocytosis   总被引:32,自引:4,他引:28  
We have previously shown that the protein Eps15 is constitutively associated with the plasma membrane adaptor complex, AP-2, suggesting its possible role in endocytosis. To explore the role of Eps15 and the function of AP-2/Eps15 association in endocytosis, the Eps15 binding domain for AP-2 was precisely delineated. The entire COOH-terminal domain of Eps15 or a mutant form lacking all the AP-2–binding sites was fused to the green fluorescent protein (GFP), and these constructs were transiently transfected in HeLa cells. Overexpression of the fusion protein containing the entire COOH-terminal domain of Eps15 strongly inhibited endocytosis of transferrin, whereas the fusion protein in which the AP-2–binding sites had been deleted had no effect. These results were confirmed in a cell-free assay that uses perforated A431 cells to follow the first steps of coated vesicle formation at the plasma membrane. Addition of Eps15-derived glutathione-S-transferase fusion proteins containing the AP-2–binding site in this assay inhibited not only constitutive endocytosis of transferrin but also ligand-induced endocytosis of epidermal growth factor. This inhibition could be ascribed to a competition between the fusion protein and endogenous Eps15 for AP-2 binding. Altogether, these results show that interaction of Eps15 with AP-2 is required for efficient receptor-mediated endocytosis and thus provide the first evidence that Eps15 is involved in the function of plasma membrane–coated pits.  相似文献   

8.
The large-conductance Ca2+-activated K+ (BK) channel is broadly expressed in various mammalian cells and tissues such as neurons, skeletal and smooth muscles, exocrine cells, and sensory cells of the inner ear. Previous studies suggest that BK channels are promiscuous binders involved in a multitude of protein-protein interactions. To gain a better understanding of the potential mechanisms underlying BK interactions, we analyzed the abundance, distribution, and potential mechanisms of intrinsic disorder in 27 BK channel variants from mouse cochlea, 104 previously reported BK-associated proteins (BKAPS) from cytoplasmic and membrane/cytoskeletal regions, plus BK β- and γ-subunits. Disorder was evaluated using the MFDp algorithm, which is a consensus-based predictor that provides a strong and competitive predictive quality and PONDR, which can determine long intrinsically disordered regions (IDRs). Disorder-based binding sites or molecular recognition features (MoRFs) were found using MoRFpred and ANCHOR. BKAP functions were categorized based on Gene Ontology (GO) terms. The analyses revealed that the BK variants contain a number of IDRs. Intrinsic disorder is also common in BKAPs, of which ∼5% are completely disordered. However, intrinsic disorder is very differently distributed within BK and its partners. Approximately 65% of the disordered segments in BK channels are long (IDRs) (>50 residues), whereas >60% of the disordered segments in BKAPs are short IDRs that range in length from 4 to 30 residues. Both α and γ subunits showed various amounts of disorder as did hub proteins of the BK interactome. Our analyses suggest that intrinsic disorder is important for the function of BK and its BKAPs. Long IDRs in BK are engaged in protein-protein and protein-ligand interactions, contain multiple post-translational modification sites, and are subjected to alternative splicing. The disordered structure of BK and its BKAPs suggests one of the underlying mechanisms of their interaction.  相似文献   

9.
The best characterized role for ubiquitination of membrane receptors is to negatively regulate signaling by targeting receptors for lysosomal degradation. The high affinity receptor for IgE (FcεRI) expressed on mast cells and basophils is rapidly ubiquitinated upon antigen stimulation. However, the nature and the role of this covalent modification are still largelly unknown. Here, we show that FcεRI subunits are preferentially ubiquitinated at multiple sites upon stimulation, and provide evidence for a role of ubiquitin as an internalization signal: under conditions of impaired receptor ubiquitination a decrease of receptor entry is observed by FACS analysis and fluorescence microscopy. We also used biochemical approaches combined with fluorescence microscopy, to demonstrate that receptor endocytosis requires the integrity of specific membrane domains, namely lipid rafts. Additionally, by RNA interference we demonstrate the involvement of ubiquitin-binding endocytic adaptors in FcεRI internalization and sorting. Notably, the triple depletion of Eps15, Eps15R and Epsin1 negatively affects the early steps of Ag-induced receptor endocytosis, whereas Hrs depletion retains ubiquitinated receptors into early endosomes and partially prevents their sorting into lysosomes for degradation. Our results are compatible with a scenario in which the accumulation of engaged receptor subunits into lipid rafts is required for receptor ubiquitination, a prerequisite for efficient receptor internalization, sorting and delivery to a lysosomal compartment.  相似文献   

10.
The transport channel of nuclear pore complexes (NPCs) contains a high density of intrinsically disordered proteins that are rich in phenylalanine-glycine (FG)-repeat motifs (FG Nups). The FG Nups interact promiscuously with various nuclear transport receptors (NTRs), such as karyopherins (Kaps), that mediate the trafficking of nucleocytoplasmic cargoes while also generating a selectively permeable barrier against other macromolecules. Although the binding of NTRs to FG Nups increases molecular crowding in the NPC transport channel, it is unclear how this impacts FG Nup barrier function or the movement of other molecules, such as the Ran importer NTF2. Here, we use surface plasmon resonance to evaluate FG Nup conformation, binding equilibria, and interaction kinetics associated with the multivalent binding of NTF2 and karyopherinβ1 (Kapβ1) to Nsp1p molecular brushes. NTF2 and Kapβ1 show different long- and short-lived binding characteristics that emerge from varying degrees of molecular retention and FG repeat binding avidity within the Nsp1p brush. Physiological concentrations of NTF2 produce a collapse of Nsp1p brushes, whereas Kapβ1 binding generates brush extension. However, the presence of prebound Kapβ1 inhibits Nsp1p brush collapse during NTF2 binding, which is dominated by weak, short-lived interactions that derive from steric hindrance and diminished avidity with Nsp1p. This suggests that binding promiscuity confers kinetic advantages to NTF2 by expediting its facilitated diffusion and reinforces the proposal that Kapβ1 contributes to the integral barrier function of the NPC.  相似文献   

11.
Epsin consists of an epsin NH2-terminal homology domain that promotes interaction with phospholipids, several AP-2-binding sites, two clathrin-binding sequences and several Eps15 homology domain-binding motifs. Epsin additionally possesses ubiquitin-interacting motifs (UIMs) and has been demonstrated to bind ubiquitinated cargo. We therefore investigated whether epsin promoted clathrin-mediated endocytosis of the ubiquitinated EGF receptor (EGFR). By immunoprecipitation, we found that epsin 1 interacted with ubiquitinated EGFR and that functional UIMs were essential for complex formation. Furthermore, RNA interference-mediated knockdown of epsin 1 was found to inhibit internalization of the EGFR, while having no effect on endocytosis of the transferrin receptor. Additionally, upon knockdown of epsin 1, translocation of the EGFR to central parts of clathrin-coated pits was inhibited. This supports the contention that epsin 1 promotes endocytosis of the ubiquitinated EGFR.  相似文献   

12.
The involvement of Ral and its downstream molecules in receptor-mediated endocytosis was examined. Expression of either RalG23V or RalS28N, which are known to be constitutively active and dominantnegative forms, respectively, in A431 cells blocked internalization of epidermal growth factor (EGF). Stable expression of RalG23V or RalS28N in CHO-IR cells also inhibited internalization of insulin. Internalization of EGF and insulin was not affected by full-length RalBP1 which is an effector protein of Ral, but was inhibited by its C-terminal region which binds directly to Ral and POB1. POB1 is a binding protein of RalBP1 and has the Eps15 homology (EH) domain. Deletion mutants of POB1 inhibited internalization of EGF and insulin. However, internalization of transferrin was unaffected by Ral, RalBP1, POB1 and their mutants. Epsin and Eps15 have been reported to be involved in the regulation of endocytosis of the receptors for EGF and transferrin. The EH domain of POB1 bound directly to Epsin and Eps15. Taken together with the observation that EGF and insulin activate Ral, these results suggest that Ral, RalBP1 and POB1 transmit the signal from the receptors to Epsin and Eps15, thereby regulating ligand-dependent receptor-mediated endocytosis.  相似文献   

13.
Clathrin‐coated pits are formed by the recognition of membrane and cargo by the AP2 complex and the subsequent recruitment of clathrin triskelia. A role for AP2 in coated‐pit assembly beyond initial clathrin recruitment has not been explored. Clathrin binds the β2 subunit of AP2, and several binding sites have been identified, but our structural knowledge of these interactions is incomplete and their functional importance during endocytosis is unclear. Here, we analysed the cryo‐EM structure of clathrin cages assembled in the presence of β2 hinge‐appendage (β2HA). We find that the β2‐appendage binds in at least two positions in the cage, demonstrating that multi‐modal binding is a fundamental property of clathrin‐AP2 interactions. In one position, β2‐appendage cross‐links two adjacent terminal domains from different triskelia. Functional analysis of β2HA‐clathrin interactions reveals that endocytosis requires two clathrin interaction sites: a clathrin‐box motif on the hinge and the “sandwich site” on the appendage. We propose that β2‐appendage binding to more than one triskelion is a key feature of the system and likely explains why assembly is driven by AP2.  相似文献   

14.
The activity of many signaling receptors is regulated by their endocytosis via clathrin-coated pits (CCPs). For G protein-coupled receptors (GPCRs), recruitment of the adaptor protein arrestin to activated receptors is thought to be sufficient to drive GPCR clustering in CCPs and subsequent endocytosis. We have identified an unprecedented role for the ubiquitin-like protein PLIC-2 as a negative regulator of GPCR endocytosis. Protein Linking IAP to Cytoskeleton (PLIC)-2 overexpression delayed ligand-induced endocytosis of two GPCRs: the V2 vasopressin receptor and β-2 adrenergic receptor, without affecting endocytosis of the transferrin or epidermal growth factor receptor. The closely related isoform PLIC-1 did not affect receptor endocytosis. PLIC-2 specifically inhibited GPCR concentration in CCPs, without affecting membrane recruitment of arrestin-3 to activated receptors or its cellular levels. Depletion of cellular PLIC-2 accelerated GPCR endocytosis, confirming its regulatory function at endogenous levels. The ubiquitin-like domain of PLIC-2, a ligand for ubiquitin-interacting motifs (UIMs), was required for endocytic inhibition. Interestingly, the UIM-containing endocytic adaptors epidermal growth factor receptor protein substrate 15 and Epsin exhibited preferential binding to PLIC-2 over PLIC-1. This differential interaction may underlie PLIC-2 specific effect on GPCR endocytosis. Identification of a negative regulator of GPCR clustering reveals a new function of ubiquitin-like proteins and highlights a cellular requirement for exquisite regulation of receptor dynamics.  相似文献   

15.
Eps15 was originally identified as a substrate for the kinase activity of the epidermal growth factor receptor (EGFR). Eps15 has a tripartite structure comprising a NH2-terminal portion, which contains three EH domains, a central putative coiled-coil region, and a COOH-terminal domain containing multiple copies of the amino acid triplet Aspartate-Proline-Phenylalanine. A pool of Eps15 is localized at clathrin coated pits where it interacts with the clathrin assembly complex AP-2 and a novel AP-2 binding protein, Epsin. Perturbation of Eps15 and Epsin function inhibits receptor-mediated endocytosis of EGF and transferrin, demonstrating that both proteins are components of the endocytic machinery. Since the family of EH-containing proteins is implicated in various aspects of intracellular sorting, biomolecular strategies aimed at interfering with these processes can now be envisioned. These strategies have potentially far reaching implications extending to the control of cell proliferation. In this regard, it is of note that Eps15 has the potential of transforming NIH-3T3 cells and that the eps15 gene is rearranged with the HRX/ALL/MLL gene in acute myelogeneous leukemias, thus implicating this protein in the subversion of cell proliferation in neoplasia.  相似文献   

16.
The complex cellular milieu can spontaneously demix, or phase separate, in a process controlled in part by intrinsically disordered (ID) proteins. A protein''s propensity to phase separate is thought to be driven by a preference for protein–protein over protein–solvent interactions. The hydrodynamic size of monomeric proteins, as quantified by the polymer scaling exponent (v), is driven by a similar balance. We hypothesized that mean v, as predicted by protein sequence, would be smaller for proteins with a strong propensity to phase separate. To test this hypothesis, we analyzed protein databases containing subsets of proteins that are folded, disordered, or disordered and known to spontaneously phase separate. We find that the phase-separating disordered proteins, on average, had lower calculated values of v compared with their non-phase-separating counterparts. Moreover, these proteins had a higher sequence-predicted propensity for β-turns. Using a simple, surface area-based model, we propose a physical mechanism for this difference: transient β-turn structures reduce the desolvation penalty of forming a protein-rich phase and increase exposure of atoms involved in π/sp2 valence electron interactions. By this mechanism, β-turns could act as energetically favored nucleation points, which may explain the increased propensity for turns in ID regions (IDRs) utilized biologically for phase separation. Phase-separating IDRs, non-phase-separating IDRs, and folded regions could be distinguished by combining v and β-turn propensity. Finally, we propose a new algorithm, ParSe (partition sequence), for predicting phase-separating protein regions, and which is able to accurately identify folded, disordered, and phase-separating protein regions based on the primary sequence.  相似文献   

17.
Ligand binding triggers clathrin-mediated and, at high ligand concentrations, clathrin-independent endocytosis of EGFR. Clathrin-mediated endocytosis (CME) of EGFR is also induced by stimuli activating p38 MAPK. Mechanisms of both ligand- and p38-induced endocytosis are not fully understood, and how these pathways intermingle when concurrently activated remains unknown. Here we dissect the mechanisms of p38-induced endocytosis using a pH-sensitive model of endogenous EGFR, which is extracellularly tagged with a fluorogen-activating protein, and propose a unifying model of the crosstalk between multiple EGFR endocytosis pathways. We found that a new locus of p38-dependent phosphorylation in EGFR is essential for the receptor dileucine motif interaction with the σ2 subunit of clathrin adaptor AP2 and concomitant receptor internalization. p38-dependent endocytosis of EGFR induced by cytokines was additive to CME induced by picomolar EGF concentrations but constrained to internalizing ligand-free EGFRs due to Grb2 recruitment by ligand-activated EGFRs. Nanomolar EGF concentrations rerouted EGFR from CME to clathrin-independent endocytosis, primarily by diminishing p38-dependent endocytosis.  相似文献   

18.
Although genetic and biochemical studies suggest a role for Eps15 homology domain containing proteins in clathrin-mediated endocytosis, the specific functions of these proteins have been elusive. Eps15 is found at the growing edges of clathrin-coated pits, leading to the hypothesis that it participates in the formation of coated vesicles. We have evaluated this hypothesis by examining the effect of Eps15 on clathrin assembly. We found that although Eps15 has no intrinsic ability to assemble clathrin, it potently stimulates the ability of the clathrin adaptor protein, AP180, to assemble clathrin at physiological pH. We have also defined the binding sites for Eps15 on squid AP180. These sites contain an NPF motif, and peptides derived from these binding sites inhibit the ability of Eps15 to stimulate clathrin assembly in vitro. Furthermore, when injected into squid giant presynaptic nerve terminals, these peptides inhibit the formation of clathrin-coated pits and coated vesicles during synaptic vesicle endocytosis. This is consistent with the hypothesis that Eps15 regulates clathrin coat assembly in vivo, and indicates that interactions between Eps15 homology domains and NPF motifs are involved in clathrin-coated vesicle formation during synaptic vesicle recycling.  相似文献   

19.
Complex formation and endocytosis of transforming growth factor-β (TGF-β) receptors play important roles in signaling. However, their interdependence remained unexplored. Here, we demonstrate that ALK1, a TGF-β type I receptor prevalent in endothelial cells, forms stable complexes at the cell surface with endoglin and with type III TGF-β receptors (TβRIII). We show that ALK1 undergoes clathrin-mediated endocytosis (CME) faster than ALK5, type II TGF-β receptor (TβRII), endoglin, or TβRIII. These complexes regulate the endocytosis of the TGF-β receptors, with a major effect mediated by ALK1. Thus, ALK1 enhances the endocytosis of TβRIII and endoglin, while ALK5 and TβRII mildly enhance endoglin, but not TβRIII, internalization. Conversely, the slowly endocytosed endoglin has no effect on the endocytosis of either ALK1, ALK5, or TβRII, while TβRIII has a differential effect, slowing the internalization of ALK5 and TβRII, but not ALK1. Such effects may be relevant to signaling, as BMP9-mediated Smad1/5/8 phosphorylation is inhibited by CME blockade in endothelial cells. We propose a model that links TGF-β receptor oligomerization and endocytosis, based on which endocytosis signals are exposed/functional in specific receptor complexes. This has broad implications for signaling, implying that complex formation among various receptors regulates their surface levels and signaling intensities.  相似文献   

20.
研究肾小球裂隙膜的主要成分nephrin分子在细胞内的转运途径及不同转运途径对nephrin磷酸化的影响.分别应用笼型蛋白介导的内吞(clathrin-mediated endocytosis,CME)和脂筏介导的内吞(raft-mediated endocytosis,RME)标记物转铁蛋白和霍乱毒素B亚基对nephrin的内吞过程进行分析,并进一步应用两种内吞途径阻断物EPS15Δ和Dyn2aK44A,研究阻断nephrin的内吞途径对其磷酸化水平的影响.结果显示,nephrin通过笼型蛋白和脂筏介导的两种内吞途径以不同速率进行内吞;与Src酪氨酸激酶家族成员Fyn共表达时,细胞内nephrin酪氨酸磷酸化被增强,而在Src家族激酶抑制剂PP2的作用下,nephrin酪氨酸磷酸化被减弱,表明nephrin的磷酸化过程是Fyn依赖的;内吞20min时,笼型蛋白介导的内吞途径的特异性阻断物EPS15Δ降低了nephrin磷酸化水平、笼型蛋白和脂筏介导的内吞途径的通用抑制剂Dyn2aK44A则增加了nephrin的磷酸化水平,综上结果表明:单独阻断脂筏介导的内吞可引起nephrin的磷酸化水平增加,脂筏介导的内吞对nephrin磷酸化过程起下调作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号