首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Question: Is plant diversity in fragmented semi‐natural grasslands related to present and historical landscape context? Location: Southern Sweden. Methods: Plant diversity was described at 30 semi‐natural grassland sites in terms of total and specialist plant species richness at the site and species density at different scales (0.5–10 m2). These measures are commonly used to assess conservation value of semi‐natural grasslands. Landscape context was measured as contemporary connectivity to other semi‐natural grasslands, historical connectivity 50 years ago, amount of linear elements potentially suitable for dispersal (road verges, power line clearings), and amount of forest (inverse of the openness of the landscape). Results: The diversity measures were generally correlated with each other, implying that species richness in a subset of the grassland can predict the total richness. Plant species density at three scales (0.5 m2, 10 m2 and total) was related to the landscape context using an information theoretic approach. Results showed that total species richness increased with increased size of grasslands, contrary to earlier diversity studies in semi‐natural grasslands. Larger grasslands were more heterogeneous than smaller grasslands, and this is a likely reason for the species‐area relationship. Heterogeneity was also of high importance at the smaller scales (0.5 m2, 10 m2). With increased amount of forest, total species richness increased but species density on 10 m2 decreased. There was no influence of connectivity in either the contemporary or the historical landscape, contrary to previous studies. Conclusions: Grassland size and heterogeneity are of greater importance for plant diversity in semi‐natural grassland, than grassland connectivity in the landscape.  相似文献   

2.
3.
There is a wealth of smaller-scale studies on the effects of forest management on plant diversity. However, studies comparing plant species diversity in forests with different management types and intensity, extending over different regions and forest stages, and including detailed information on site conditions are missing. We studied vascular plants on 1500 20 m × 20 m forest plots in three regions of Germany (Schwäbische Alb, Hainich-Dün, Schorfheide-Chorin). In all regions, our study plots comprised different management types (unmanaged, selection cutting, deciduous and coniferous age-class forests, which resulted from clear cutting or shelterwood logging), various stand ages, site conditions, and levels of management-related disturbances. We analyzed how overall richness and richness of different plant functional groups (trees, shrubs, herbs, herbaceous species typically growing in forests and herbaceous light-demanding species) responded to the different management types. On average, plant species richness was 13% higher in age-class than in unmanaged forests, and did not differ between deciduous age-class and selection forests. In age-class forests of the Schwäbische Alb and Hainich-Dün, coniferous stands had higher species richness than deciduous stands. Among age-class forests, older stands with large quantities of standing biomass were slightly poorer in shrub and light-demanding herb species than younger stands. Among deciduous forests, the richness of herbaceous forest species was generally lower in unmanaged than in managed forests, and it was even 20% lower in unmanaged than in selection forests in Hainich-Dün. Overall, these findings show that disturbances by management generally increase plant species richness. This suggests that total plant species richness is not suited as an indicator for the conservation status of forests, but rather indicates disturbances.  相似文献   

4.
Question: How distinct is the flora of field boundaries? How does the structure of field boundaries determine the composition of vegetation? Location: Estonia, six 4 km × 4 km agricultural areas. Methods: We studied the vegetation of fields and field boundaries using 2 m × 2 m sample plots. We estimated the frequency of species in both habitat types, applied an MRPP test to analyse the vegetation composition of field boundaries with various combinations of landscape features (ditches, roads, tree and bush layers) illustrating this by DCA ordination, and used indicator species analysis to determine the characteristic species of each boundary type. Results: Ca. 45% of the flora of field boundaries comprised species found on agricultural land. Most typical species in fields — agrotolerants — were also the most common in field boundaries. The vegetation of road verges and grassy boundaries consisted mainly of disturbance‐tolerant species. Woody boundaries were characterised by shade‐tolerant and nitrophilous species. Ditch banks included species typical of moist habitats and semi‐natural grasslands. Few threatened or protected species were observed. Conclusion: The vegetation composition of field boundaries varied due to the complex effects of landscape structure around and in these boundaries. Plant species in agricultural landscapes can be classified into two broad emergent groups on the basis of their different responses to agricultural disturbances — agrotolerant species and nature‐value species. Agrotolerant species are promoted by agriculture, nature‐value species include rare weeds and habitat specialists. We suggest that high‐nature‐value species should prevail in monitoring the effects of land‐use intensification on biodiversity rather than total species richness.  相似文献   

5.
River levels in Central Amazonia fluctuate up to 14 m annually, with the flooding period ranging from 50 to 270 days between the rising and falling phases. Vast areas of forest along the rivers contain plant species that are well adapted to annual flooding. We studied the effect of flooding level on tree species richness, diversity, density, and composition in lake, river, and stream habitats in Jaú National Park, Brazil. 3051 trees >10 cm diameter (at 1.3 m diameter at breast height, dbh) were measured and identified in 25 10 m × 40 m randomly selected plots in each habitat. Ordination methods and analysis of variance results showed that forested areas near lakes had significantly lower species richness of trees than riverine and streamside habitats. Plot species richness and diversity were strongly negatively correlated with the water level and duration of flooding. The drier (stream) habitat had more total species (54 species of trees) and more unique species of trees (6 tree species) than the riverine (52 tree species; 3 unique species) and lake (33 tree species; 3 unique species) habitats. Species composition overlap among habitats was surprisingly high (42.6–60.6% overlap), almost one-third of the species were found in all three habitat types, and few species were unique to each habitat. We conclude that: (1) duration of flooding has a strong impact on species richness, diversity and plant distribution patterns; (2) most species are adapted to a wide range of habitats and flood durations; and (3) while flood duration may decrease local diversity, it also creates and maintains high landscape-scale diversity by increasing landscape heterogeneity. Received: 20 April 1997 / Accepted: 14 January 1999  相似文献   

6.

Questions

Near-ground temperatures can vary substantially over relatively short distances, enabling species with different temperature preferences and geographical distributions to co-exist within a small area. In a forest landscape, the near-ground temperatures may change due to management activities that alter forest density. As a result of such management activities, current species distributions and performances might not only be affected by current microclimates, but also by past conditions due to time-lagged responses.

Location

Sweden.

Methods

We examined the effects of past and current microclimates on the distributions and performances of two northern, cold-favoured, and two southern, warm-favoured, plant species in 53 managed forest sites. Each pair was represented by one vascular plant and one bryophyte species. We used temperature logger data and predictions from microclimate models based on changes in basal area to relate patterns of occurrence, abundance, and reproduction to current and past microclimate.

Results

The two northern species were generally favoured by microclimates that were currently cold, characterised by later snowmelt and low accumulated heat over the growing season. In contrast, the two southern species were generally favoured by currently warm microclimates, characterised by high accumulated heat over the growing season. Species generally had higher abundance in sites with a preferred microclimate both in the past and present, and lower abundance than expected from current conditions, if the past microclimate had changed from warm to cold or vice versa, indicating time-lags in abundance patterns of the species.

Conclusions

Our results show a potential importance of past and present microclimate heterogeneity for the co-existence of species with different temperature preferences in the same landscape and highlight the possibility to manage microclimates to mitigate climate change impacts on forest biodiversity.  相似文献   

7.
Questions: What is the relative influence of size, connectivity and disturbance history on plant species richness and assemblages of fragmented grasslands? What is the contribution of small fragments to the conservation of native species pool of the region? Location: Tandilia's Range, Southern Pampa, Argentina. Methods: Cover of plants was registered within 24 fragments of tall‐tussock grassland remnants within an agricultural landscape using modified Whittaker nested sampling. We analysed the influence of site variables related to disturbance history (canopy height, litter thickness) and fragment variables (size, connectivity) on species richness (asymptotic species richness, slope of the species–area curve) as well as on species assemblages by multiple regressions analysis and canonical correspondence analyses, respectively. Cumulative area was used for analysing whether small fragments or large fragments are more important to species diversity in the landscape. Results: Asymptotic species richness was significantly influenced by site variables, in particular by Paspalum quadrifarium's canopy height, but not by fragment variables. Species assemblages were also affected by site variables (12.2% of total variation), but no additional portion of the species assemblage variability was significantly explained by fragment size and connectivity. Sampling of several small fragments rendered more exotic and native species than sampling of few large fragments of the same total area. Conclusions: Our results agree with previous studies reporting low sensitivity of species diversity to size and isolation of grassland fragments in fragmented landscapes and high sensitivity of species diversity to local variables. The higher capture of regional native species pool by small grassland fragments than by few larger ones of equivalent accumulated area highlights the value of small fragments for conservation.  相似文献   

8.
A sound monitoring of appropriate biodiversity indicators is necessary in order to assess the progress towards the internationally agreed target of halting the loss of biodiversity by 2010. However, existing monitoring schemes often do not address species richness as a key component of biodiversity directly or do so with insufficient methods. I provide an overview and assessment of the large variety of different sampling approaches for small-scale plant species richness. Major shortcomings of many of these are (i) non-uniform plot sizes or shapes; (ii) analysis of only one spatial scale despite the scale dependence of nearly all biodiversity parameters; (iii) lack of replication of smaller subplots; and (iv) exclusion of bryophytes and lichens despite their often large contribution to total plant diversity. Based on this review, I propose a new standardised sampling approach for plant diversity patterns at small scales that is applicable for a multitude of purposes and in any biome. In its basic variant, species composition is recorded on nested squares of 0.01 m2, 0.1 m2, 1 m2, 10 m2, and 100 m2, with all smaller subplots being replicated at least 3-fold and evenly spaced within the next larger plot. Not only terricolous vascular plants, but also bryophytes, lichens, macro-algae as well as non-terricolous taxa should be recorded with the any-part system, i.e. those plants are counted within a plot whose superficial parts reach over it. This approach can be used to assess plant diversity patterns (i) of individual plots of interest, (ii) along environmental gradients, (iii) within specific vegetation types, or (iv) for landscape sectors. In the latter case, the series of nested plots must be placed randomly or systematically, but irrespective of plot homogeneity. The proposed approach allows the calculation of many meaningful biodiversity indicators, while being well compatible with a range of other sampling schemes, but avoiding their shortcomings. As this approach is not very time-consuming in its basic variant, but can easily be extended for specific purposes, I suggest its use for any kind of biodiversity studies and particularly for monitoring.  相似文献   

9.
Aims Aboveground biomass production commonly increases with species richness in plant biodiversity experiments. Little is known about the direct mechanisms that cause this result. We tested if by occupying different heights and depths above and below ground, and by optimizing the vertical distribution of leaf nitrogen, species in mixtures can contribute to increased resource uptake and, thus, increased productivity of the community in comparison with monocultures.Methods We grew 24 grassland plant species, grouped into four nonoverlapping species pools, in monoculture and 3- and 6-species mixture in spatially heterogeneous and uniform soil nutrient conditions. Layered harvests of above- and belowground biomass, as well as leaf nitrogen and light measurements, were taken to assess vertical canopy and root space structure.Important findings The distribution of leaf mass was shifted toward greater heights and light absorption was correspondingly enhanced in mixtures. However, only some mixtures had leaf nitrogen concentration profiles predicted to optimize whole-community carbon gain, whereas in other mixtures species seemed to behave more 'selfish'. Nevertheless, even in these communities, biomass production increased with species richness. The distribution of root biomass below ground did not change from monocultures to three- and six-species mixtures and there was also no indication that mixtures were better than monocultures at extracting heterogeneously as compared to homogeneously distributed soil resources. We conclude that positive biodiversity effect on aboveground biomass production cannot easily be explained by a single or few common mechanisms of differential space use. Rather, it seems that mechanisms vary with the particular set of species combined in a community.  相似文献   

10.
The intensification of land use constitutes one of the main drivers of global change and alters nutrient fluxes on all spatial scales, causing landscape‐level eutrophication and contamination of natural resources. Changes in soil nutrient concentrations are thus indicative for crucial environmental issues associated with intensive land use. We measured concentrations of NO3–N, NH4–N, P, K, Mg, and Ca using 1,326 ion‐exchange resin bags buried in 20 cm depth beneath the main root zone in 150 temperate grasslands. Nutrient concentrations were related to land use intensity, that is, fertilization, mowing, grazing intensities, and plant diversity by structural equation modeling. Furthermore, we assessed the response of soil nutrients to mechanical sward disturbance and subsequent reseeding, a common practice for grassland renewal. Land use intensity, especially fertilization, significantly increased the concentrations of NO3–N, NH4–N, K, P, and also Mg. Besides fertilization (and tightly correlated mowing) intensity, grazing strongly increased NO3–N and K concentrations. Plant species richness decreased P and NO3–N concentrations in soil when grassland productivity of the actual year was statistically taken into account, but not when long‐term averages of productivity were used. Thus, we assume that, in the actual study year, a distinct drought period might have caused the observed decoupling of productivity from fertilization and soil nutrients. Breaking up the grassland sward drastically increased NO3–N concentrations (+146%) but reduced NH4–N, P, and K concentrations, unbalancing soil nutrient stoichiometry and boosting the risk of N leaching. Reseeding the sward after disturbance did not have a short‐term effect on nutrient concentrations. We conclude that renewal of permanent grassland should be avoided as far as possible and future grassland management has to strongly rise the effectiveness of fertilization. Additionally, grassland management might have to increasingly taking care of periods of drought, in which nutrient additions might not increase plant growth but potentially only facilitate leaching.  相似文献   

11.
12.
Richness and diversity of perennial plant species were evaluated in 17 Stipa tenacissima steppes along a degradation gradient in semiarid SE Spain. The main objective of the study was to evaluate the relative importance of historical human impacts, small‐scale patch attributes and environmental factors as determinants of perennial plant species richness and diversity in S. tenacissima steppes, where vegetation is arranged as discrete plant patches inserted on a bare ground matrix. Partial least squares regression was used to determine the amount of variation in species richness and diversity that could be significantly explained by historical human impacts, patch attributes, and environmental factors together and separately. They explained up to 89% and 69% of the variation in species richness and diversity, respectively. In both cases, the predictive power of patch attributes models was higher than that of models consisting of abiotic characteristics and variables related to human impact, suggesting that patch attributes are the major determinants of species richness and diversity in semiarid S. tenacissima steppes. However, patch attributes alone are not enough to explain the observed variation in species richness and diversity. The area covered by late‐successional sprouting shrubs and the distance between consecutive patches were the most influencing individual variables on species richness and diversity, respectively. The implications of these results for the management of S. tenacissima steppes are discussed.  相似文献   

13.
Indices of biological integrity of wetlands based on vascular plants (VIBIs) have been developed in many areas of the USA and are used in some states to make critical management decisions. An underlying concept of all VIBIs is that they respond negatively to disturbance. The Ohio VIBI (OVIBI) is calculated from 10 metrics, which are different for each wetland vegetation class. We present a candidate vegetation index of biotic integrity based on floristic quality (VIBI-FQ) that requires only two metrics to calculate an overall score regardless of vegetation class. These metrics focus equally on the critical ecosystem elements of diversity and dominance as related to a species’ degree of fidelity to habitat requirements. The indices were highly correlated but varied among vegetation classes. Both indices responded negatively with a published index of wetland disturbance in 261 Ohio wetlands. Unlike VIBI-FQ, however, errors in classifying wetland vegetation may lead to errors in calculating OVIBI scores. This is especially critical when assessing the ecological condition of rapidly developing ecosystems typically associated with wetland restoration and creation projects. Compared to OVIBI, the VIBI-FQ requires less field work, is much simpler to calculate and interpret, and can potentially be applied to all habitat types. This candidate index, which has been “standardized” across habitats, would make it easier to prioritize funding because it would score the “best” and “worst” of all habitats appropriately and allow for objective comparison across different vegetation classes.  相似文献   

14.
15.
三江平原残存湿地斑块特征及其对物种多样性的影响   总被引:1,自引:0,他引:1  
施建敏  马克明  赵景柱  王继丰 《生态学报》2010,30(24):6683-6690
景观破碎化是当前一个突出的生态学问题,破碎斑块的大小和形状特征对物种多样性具有重要影响。选取三江平原别拉洪河流域为研究区,通过调查残存湿地斑块的面积、形状和植物物种丰富度,利用相关分析和回归分析等方法研究了残存湿地斑块特征及其对物种多样性的影响。研究结果表明:在强烈的人为活动干扰下,三江平原湿地破碎化严重,残存湿地斑块面积较小,斑块形状规则、边界简单。斑块形状指数、分维数、形状特征点数和斑块面积、物种丰富度均没有显著相关关系,而斑块面积、周长和周长面积比对物种丰富度具有显著影响。但是斑块周长和周长面积比均受面积的直接影响,所以斑块面积是决定物种丰富度的主要因素,这点需在湿地生物多样性保护中予以重视。虽然斑块形状特征点数是农业景观物种丰富度的一个很好预测指标,但是该指标不适用于形状规则的残存湿地斑块物种丰富度预测。另外,对于残存湿地斑块种-面积关系的机理还有待进一步研究。  相似文献   

16.
17.

Aim

Human activity is known to greatly influence species occurrences. In forest ecosystems, biodiversity is often believed to be influenced by two habitat characteristics: (1) forest continuity, related to a minimum length of time in a wooded state since a threshold date; and (2) stand maturity, related to the availability of late‐developmental‐forest attributes. In a context of ongoing global biodiversity loss, qualifying the effect of past and present human activity on forest ecosystems while taking into account variations in abiotic factors is of primary importance for conservation.

Location

Temperate mountain forests in the Northern Alps.

Method

Based upon a sampling design crossing forest continuity (ancient vs. Recent) and stand maturity (mature vs. overmature), and while controlling for the effect of two major environmental factors, soil and climate, we explored the individual response of saproxylic beetle, springtail, herbaceous plant and epiphytic macrolichen species to past and present human activity.

Results

Forest continuity influenced the occurrence of relatively few species, indicating that past land use had almost no legacy effect on the species occurring in the study forests today. In contrast, stand maturity had an overall positive effect on species occurrences. However, our results showed that species occurrences were more obviously influenced by abiotic conditions. Indeed, beyond the effect of continuity and maturity factors, the probability of presence of numerous species was best explained by climate and soil.

Main conclusions

Overall, we show that species occurrence was more influenced by stand maturity than by forest continuity, but also that site‐specific characteristics were of great importance in explaining the probability of presence for numerous species. In the ecological context of alpine forests, these findings emphasize the need to better control for climatic and edaphic conditions in order to (1) improve accuracy in predicting species occurrence and (2) better design areas of conservation interest.
  相似文献   

18.
Tidal channels influence the distribution and composition of salt marsh vegetation in a San Francisco Bay salt marsh. Two channel networks in the Petaluma Marsh, Sonoma County, CA, were mapped and characterized using global positioning and geographic information systems. Plant species abundance was sampled on transects placed perpendicular to and extending away from the channel banks. The vegetation showed significant increases in species richness along channel banks and larger areas of effect which increased approximately linearly with channel size. Composition of species assemblages varies with distance from the channel bank and channel size. These results demonstrate that salt marsh plant assemblages, composed of both major and minor species, are distributed with respect to the channel network in Petaluma Marsh.  相似文献   

19.
Recent studies emphasise the potential importance of scale and species pool on the humped-back or unimodal relationship between species richness and productivity. We use a classic phytosociological data-set from Rondane, central south Norway, to evaluate the relative importance of these factors in an alpine area. The effect of species pool is assessed using plot scores from a Correspondence Analysis (CA) of the data. Generalised Additive Models (GAM) are used to relate vascular plant species richness to cover of vascular plants, CA plot scores, and plot area in different combinations. Species richness of vascular plants is unimodally related to total vascular plant cover. Plot scores of the first three CA axes (representing the effect of species pool) have a complex relationship with species richness, but explain a large fraction of the total deviance in richness. A humped relationship between richness and cover remains after accounting for CA plot scores in the model, i.e. the relationship is independent of species pool. The results suggest that the relationship between richness and cover changes from one vegetation type to another, as evaluated statistically through the importance of the interaction between cover and CA scores in explaining variation in richness. Plot area also influences the relationship. A unimodal relationship is only evident when small plot sizes are used, whereas a monotonically increasing relationship is found at large plot sizes. Plot area has the strongest effect on the unimodal relationship between richness and cover, whereas vegetation type has only a minor effect on this relationship. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号