首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thymocytes were reported to undergo apoptosis in the presence of extracellular ATP through the activation of the purinergic receptors P2 X 1R, P2 X 7R or both. We investigated the identity of the P2 X R and the signaling pathways involved in ATP-mediated apoptosis. Apoptosis elicited by ATP was prevented by inhibition of P2 X 7R, or in thymocytes bearing a mutated P2 X 7R, and reproduced with a P2 X 7R agonist, but not with a P2 X 1R agonist. Stimulation of thymocytes with either ATP or a P2 X 7R agonist was found to stimulate a late de novo ceramide synthesis and mitochondrial alterations. Inhibition of either processes attenuated apoptosis. Interestingly, stimulation with either ATP or a P2 X 1R agonist induced an early ceramide accumulation and a weak caspases-3/7 activation that did not lead to apoptosis. In conclusion, de novo ceramide generation and mitochondrial alterations, both resulting from P2 X 7R activation, were implicated in ATP-induced thymocyte apoptosis.  相似文献   

2.
The potent pro-inflammatory cytokine, interleukin-1β (IL-1β), is synthesized as an inactive 33-kDa precursor (pro-IL-1β) and is processed by caspase 1 into the bioactive 17-kDa mature form. The P2X7 receptor, an ATP-gated cation channel, plays an essential role in caspase 1 activation, production and release of mature bioactive 17-kDa form. We recently reported ATP induces the release of an unconventional 20-kDa form of IL-1β (p20-IL-1β) from lipopolysaccharide-primed microglial cells. Emerging evidence suggests physiological relevance for p20-IL-1β; however, the underlying mechanisms for its production and release remain unknown. Here, we investigated the pathways involved in the ATP-induced production of p20-IL-1β using lipopolysaccharide-primed mouse microglial cells. The activation of P2X7 receptor by ATP triggered p20-IL-1β production under acidic extracellular conditions. ATP-induced p20-IL-1β production was blocked by pepstatin A, a potent inhibitor of the lysosomal protease, cathepsin D. The removal of extracellular Ca(2+) inhibited the p20-IL-1β production as well as ATP-induced cathepsin D release via lysosome exocytosis. The acidic extracellular pH also facilitated the dilatation of membrane pore after ATP stimulation. Since facilitation of pore dilatation results in cytolysis accompanied with cytoplasmic pro-IL-1β leakage, our data suggest the leaked pro-IL-1β is processed into p20-IL-1β by cathepsin D released after ATP stimulation under acidic extracellular conditions.  相似文献   

3.
The adenosine 5′-triphosphate (ATP)-gated P2X7 receptor is a membrane-bound, non-selective cation channel, expressed in a variety of cell types. The P2X7 senses high extracellular ATP concentrations and seems to be implicated in a wide range of cellular functions as well as pathophysiological processes, including immune responses and inflammation, release of gliotransmitters and cytokines, cancer cell growth or development of neurodegenerative diseases. In the present study, we identified natural compounds and analogues that can block or sensitize the ATP (1 mM)-induced Ca2+ response using a HEK293 cell line stably expressing human P2X7 and fluorometric imaging plate reader technology. For instance, teniposide potently blocked the human P2X7 at sub-miromolar concentrations, but not human P2X4 or rat P2X2. A marked block of ATP-induced Ca2+ entry and Yo-Pro-1 uptake was also observed in human A375 melanoma cells and mouse microglial cells, both expressing P2X7. On the other hand, agelasine (AGL) and garcinolic acid (GA) facilitated the P2X7 response to ATP in all three cell populations. GA also enhanced the YO-PRO-1 uptake, whereas AGL did not affect the ATP-stimulated intracellular accumulation of this dye. According to the pathophysiological role of P2X7 in various diseases, selective modulators may have potential for further development, e.g. as neuroprotective or antineoplastic drugs.  相似文献   

4.
5.
P2X7 receptor (P2X7) activity may link inflammation to depressive disorders. Genetic variants of human P2X7 have been linked with major depression and bipolar disorders, and the P2X7 knockout mouse has been shown to exhibit anti-depressive-like behaviour. P2X7 is an ATP-gated ion channel and is a major regulator of the pro-inflammatory cytokine interleukin 1β (IL-1β) secretion from monocytes and microglia. We hypothesised that antidepressants may elicit their mood enhancing effects in part via modulating P2X7 activity and reducing inflammatory responses. In this study, we determined whether common psychoactive drugs could affect recombinant and native human P2X7 responses in vitro. Common antidepressants demonstrated opposing effects on human P2X7-mediated responses; paroxetine inhibited while fluoxetine and clomipramine mildly potentiated ATP-induced dye uptake in HEK-293 cells stably expressing recombinant human P2X7. Paroxetine inhibited dye uptake mediated by human P2X7 in a concentration-dependent manner with an IC50 of 24 μM and significantly reduces ATP-induced inward currents. We confirmed that trifluoperazine hydrochloride suppressed human P2X7 responses (IC50 of 6.4 μM). Both paroxetine and trifluoperazine did not inhibit rodent P2X7 responses, and mutation of a known residue (F 95L) did not alter the effect of either drug, suggesting neither drug binds at this site. Finally, we demonstrate that P2X7-induced IL-1β secretion from lipopolysaccharide (LPS)-primed human CD14+ monocytes was suppressed with trifluoperazine and paroxetine.  相似文献   

6.
P2X7-type purinergic receptors are distributed throughout the nervous system where they contribute to physiological and pathological functions. In the retina, this receptor is found in both inner and outer cells including microglia modulating signaling and health of retinal cells. It is involved in retinal neurodegenerative disorders such as retinitis pigmentosa and age-related macular degeneration (AMD). Experimental studies demonstrated that saffron protects photoreceptors from light-induced damage preserving both retinal morphology and visual function and improves retinal flicker sensitivity in AMD patients. To evaluate a possible interaction between saffron and P2X7 receptors (P2X7Rs), different cellular models and experimental approaches were used. We found that saffron positively influences the viability of mouse primary retinal cells and photoreceptor-derived 661W cells exposed to ATP, and reduced the ATP-induced intracellular calcium increase in 661W cells. Similar results were obtained on HEK cells transfected with recombinant rat P2X7R but not on cells transfected with rat P2X2R. Finally, patch-clamp experiments showed that saffron inhibited cationic currents in HEK-P2X7R cells. These results point out a novel mechanism through which saffron may exert its protective role in neurodegeneration and support the idea that P2X7-mediated calcium signaling may be a crucial therapeutic target in the treatment of neurodegenerative diseases.  相似文献   

7.
Extracellular nucleotides, such as ATP, are released from cells and play roles in various physiological and pathological processes through activation of P2 receptors. Here, we show that autocrine signaling through release of ATP and activation of P2X7 receptor influences migration of human lung cancer cells. Release of ATP was induced by stimulation with TGF-β1, which is a potent inducer of cell migration, in human lung cancer H292 cells, but not in noncancerous BEAS-2B cells. Treatment of H292 cells with a specific antagonist of P2X7 receptor resulted in suppression of TGF-β1-induced migration. PC-9 human lung cancer cells released a large amount of ATP under standard cell culture conditions, and P2X7 receptor-dependent dye uptake was observed even in the absence of exogenous ligand, suggesting constitutive activation of P2X7 receptor in this cell line. PC-9 cells showed high motile activity, which was inhibited by treatment with ecto-nucleotidase and P2X7 receptor antagonists, whereas a P2X7 receptor agonist enhanced migration. PC-9 cells also harbor a constitutively active mutation in epidermal growth factor receptor (EGFR). Treatment with EGFR tyrosine kinase inhibitor AG1478 suppressed both cell migration and P2X7 receptor expression in PC-9 cells. Compared to control PC-9 cells, cells treated with P2X7 antagonist exhibited broadened lamellipodia around the cell periphery, while AG1478-treated cells lacked lamellipodia. These results indicate that P2X7-mediated signaling and EGFR signaling may regulate migration of PC-9 cells through distinct mechanisms. We propose that autocrine ATP-P2X7 signaling is involved in migration of human lung cancer cells through regulation of actin cytoskeleton rearrangement.

Electronic supplementary material

The online version of this article (doi:10.1007/s11302-014-9411-x) contains supplementary material, which is available to authorized users.  相似文献   

8.
Pain is unfortunately a quite common symptom for cancer patients. Normally pain starts as an episodic experience at early cancer phases to become chronic in later stages. In order to improve the quality of life of oncological patients, anti-cancer treatments are often accompanied by analgesic therapies. The P2X receptor are adenosine triphosphate (ATP) gated ion channels expressed by several cells including neurons, cancer and immune cells. Purinergic signaling through P2X receptors recently emerged as possible common pathway for cancer onset/growth and pain sensitivity. Indeed, tumor microenvironment is rich in extracellular ATP, which has a role in both tumor development and pain sensation. The study of the different mechanisms by which P2X receptors favor cancer progression and relative pain, represents an interesting challenge to design integrated therapeutic strategies for oncological patients. This review summarizes recent findings linking P2X receptors and ATP to cancer growth, progression and related pain. Special attention has been paid to the role of P2X2, P2X3, P2X4 and P2X7 in the genesis of cancer pain and to the function of P2X7 in tumor growth and metastasis. Therapeutic implications of the administration of different P2X receptor blockers to alleviate cancer-associated pain sensations contemporarily reducing tumor progression are also discussed.  相似文献   

9.
Endothelial cells control vascular tone, permeability and leukocyte transmigration and are modulated by pro-inflammatory mediators. Schistosomiasis is an intravascular disease associated with inflammation, therefore altering endothelial cells’ phenotype. Purinergic P2X7 receptors (P2X7R) play an important role in inflammation; however, the impact of the disease upon endothelial P2X7R function or expression has not been explored. Using ethidium bromide uptake to investigate P2X7R function, we observed that the effects of ATP (3 mM) and the P2X7R agonist 3′-O-(4-benzoyl)-ATP (BzATP) were smaller in mesenteric endothelial cells from the Schistosoma mansoni-infected group than in the control group. In the control group, BzATP induced endothelial nitric oxide production, which was blocked by the P2X7R antagonists KN-62 and A740003. However, in the infected group, we observed a reduced effect of BzATP and no effect of both P2X7R antagonists, suggesting a downregulation of endothelial P2X7R in schistosomiasis. We observed similar results in both infected and P2X7R−/− groups, which were also comparable to data obtained with KN-62- or A740004-treated control cells. Data from Western blot and immunocytochemistry assays confirmed the reduced expression of P2X7R in the infected group. In conclusion, our data show a downregulation of P2X7R in schistosomiasis infection, which likely limits the infection-related endothelial damage.  相似文献   

10.
J. Neurochem. (2012) 122, 1118-1128. ABSTRACT: P2X7 receptor (P2X7R) is known to be a 'death receptor' in immune cells, but its functional expression in non-immune cells such as neurons is controversial. Here, we examined the involvement of P2X7R activation and mitochondrial dysfunction in ATP-induced neuronal death in cultured cortical neurons. In P2X7R- and pannexin-1-expressing neuron cultures, 5 or more mM ATP or 0.1 or more mM BzATP induced neuronal death including apoptosis, and cell death was prevented by oxATP, P2X7R-selective antagonists. ATP-treated neurons exhibited Ca(2+) entry and YO-PRO-1 uptake, the former being inhibited by oxATP and A438079, and the latter by oxATP and carbenoxolone, while P2X7R antagonism with oxATP, but not pannexin-1 blocking with carbenoxolone, prevented the ATP-induced neuronal death. The ATP treatment induced reactive oxygen species generation through activation of NADPH oxidase and activated poly(ADP-ribose) polymerase, but both of them made no or negligible contribution to the neuronal death. Rhodamine123 efflux from neuronal mitochondria was increased by the ATP-treatment and was inhibited by oxATP, and a mitochondrial permeability transition pore inhibitor, cyclosporine A, significantly decreased the ATP-induced neuronal death. In ATP-treated neurons, the cleavage of pro-caspase-3 was increased, and caspase inhibitors, Q-VD-OPh and Z-DEVD-FMK, inhibited the neuronal death. The cleavage of apoptosis-inducing factor was increased, and calpain inhibitors, MDL28170 and PD151746, inhibited the neuronal death. These findings suggested that P2X7R was functionally expressed by cortical neuron cultures, and its activation-triggered Ca(2+) entry and mitochondrial dysfunction played important roles in the ATP-induced neuronal death.  相似文献   

11.
Brain microglia are a major source of inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-alpha), which have been implicated in the progression of neurodegenerative diseases. Recently, microglia were revealed to be highly responsive to ATP, which is released from nerve terminals, activated immune cells, or damaged cells. It is not clear, however, whether released ATP can regulate TNF-alpha secretion from microglia. Here we demonstrate that ATP potently stimulates TNF-alpha release, resulting from TNF-alpha mRNA expression in rat cultured brain microglia. The TNF-alpha release was maximally elicited by 1 mM ATP and also induced by a P2X(7) receptor-selective agonist, 2'- and 3'-O-(4-benzoylbenzoyl)adenosine 5'-triphosphate, suggesting the involvement of P2X(7) receptor. ATP-induced TNF-alpha release was Ca(2+)-dependent, and a sustained Ca(2+) influx correlated with the TNF-alpha release in ATP-stimulated microglia. ATP-induced TNF-alpha release was inhibited by PD 098059, an inhibitor of extracellular signal-regulated protein kinase (ERK) kinase 1 (MEK1), which activates ERK, and also by SB 203580, an inhibitor of p38 mitogen-activated protein kinase. ATP rapidly activated both ERK and p38 even in the absence of extracellular Ca(2+). These results indicate that extracellular ATP triggers TNF-alpha release in rat microglia via a P2 receptor, likely to be the P2X(7) subtype, by a mechanism that is dependent on both the sustained Ca(2+) influx and ERK/p38 cascade, regulated independently of Ca(2+) influx.  相似文献   

12.
We previously observed that activation of presynaptic P2X7 receptors located on rat cerebrocortical nerve terminals induced the release of glutamate through different modes: the channel conformation allowing Ca(2+) entry triggered exocytotic release, while the receptor itself functioned as a permeation pathway for the non-exocytotic glutamate release. Considering that exocytotic and non-exocytotic glutamate release evoked by the activation of P2X7 receptors might play a role in the control of glutamatergic synapses, we investigated whether calmidazolium (which has been found to inhibit small cation currents through recombinant P2X7 receptors, but not organic molecule permeation) could distinguish between P2X7-related exocytotic and non-exocytotic modes of glutamate release. We found that calmidazolium inhibited the intrasynaptosomal Ca(2+) response to P2X7 receptor activation and the Ca(2+)-dependent exocytotic glutamate release from rat cerebrocortical nerve terminals, but was ineffective against the Ca(2+)-independent glutamate release. The P2X7 competitive antagonist A-438079 eliminated both exocytotic and non-exocytotic P2X7 receptor-evoked glutamate release. Selective inhibition of exocytotic glutamate release indicates that calmidazolium inhibits events dependent on the function of native rat P2X7 receptors as Ca(2+) channels, and suggests that it can be used as a tool to dissociate P2X7-evoked exocytotic from non-exocytotic glutamate release.  相似文献   

13.
Extracellular adenosine 5′-triphosphate (ATP) triggers the P2X7 receptor (P2X7R) ionic channel to stimulate the release of the interleukin-IL-1β cytokine into macrophages. The current study explored the reaction of six structurally diverse triazole derivatives on P2X7-mediated dye uptake into murine peritoneal macrophages. P2X7R activity determined by ATP-evoked fluorescent dye uptake. Triazole derivatives toxicity measured using dextran rhodamine exclusion based colorimetric assay. A740004 and BBG, both P2X7R antagonist, inhibited ATP-induced dye uptake. In contrast, the derivatives 5a, 5b, 5e, and 5f did not diminish P2X7R activity in concentrations until 100?µM. 5c and 5d analogs caused a potent inhibitory activity on P2X7-induced dye uptake. Dextran Rhodamine exclusion measurements after 24?h of continuous treatment with triazole derivatives indicated a moderated toxicity for all molecules. In conclusion, this study showed that a series of new hybrid 1,2,3-triazolic naphthoquinones reduces P2X7R-induced dye uptake into murine macrophages. In silico analysis indicates a good pharmacokinetic profile and molecular docking results of these analogs indicate the potential to bind into an allosteric site located into the P2X7R pore and juxtaposed with the ATP binding pocket. In this manner, the compounds 5c and 5d may be used as a scaffold for new P2X7R inhibitors with reduced toxicity, and good anti-inflammatory activity.  相似文献   

14.
We previously reported that incubation of bone-marrow derived macrophages in the absence of macrophage-colony stimulating factor (M-CSF), a cytokine that is essential for their growth and survival, resulted in stimulation of acid sphingomyelinase, accumulation of ceramides, and induction of apoptosis [A. Gomez-Munoz et al. 2004. Ceramide 1-phosphate blocks apoptosis through inhibition of acid sphingomyelinase in macrophages. J Lipid Res 45: 99–105]. Here, we show that alveolar NR8383 macrophages, which are not dependent on M-CSF for viability, undergo apoptosis when they are incubated in the absence of serum. NR8383 cells showed increased levels of ceramides under apoptotic conditions, but in contrast to bone marrow macrophage acid and neutral sphingomyelinases were only slightly activated. We found that the major mechanism for ceramide generation in NR8383 macrophages was stimulation of their synthesis de novo. This action involved activation of serine palmitoyltransferase (SPT), the key regulatory enzyme of this pathway. A relevant finding was that ceramide 1-phosphate (C1P) inhibited SPT activity and ceramide accumulation leading to inhibition of apoptosis. Furthermore, C1P enhanced the activity of antiapoptotic protein kinase B and its downstream effector nuclear factor kappa B. These observations add a new dimension to the understanding of the pro-survival actions of C1P in mammalian cells.  相似文献   

15.

Background

The extracellular ATP-gated cation channel, P2X7 receptor, has an emerging role in neoplasia, however progress in the field is limited by a lack of malignant cell lines expressing this receptor.

Methods

Immunofluorescence labelling and a fixed-time ATP-induced ethidium+ uptake assay were used to screen a panel of human malignant cell lines for the presence of functional P2X7. The presence of P2X7 was confirmed by RT-PCR, immunoblotting and pharmacological approaches. ATP-induced cell death was measured by colourimetric tetrazolium-based and cytofluorometric assays. ATP-induced CD23 shedding was measured by immunofluorescence labelling and ELISA.

Results

RPMI 8226 multiple myeloma cells expressed P2X7 mRNA and protein, as well as P2X1, P2X4 and P2X5 mRNA. ATP induced ethidium+ uptake into these cells with an EC50 of ~ 116 μM, and this uptake was reduced in the presence of extracellular Ca2+ and Mg2+. The P2X7 agonist 2'- and 3'-0(4-benzoylbenzoyl) ATP, but not UTP, induced ethidium+ uptake. ATP-induced ethidium+ uptake was impaired by the P2X7 antagonists, KN-62 and A-438079. ATP induced death and CD23 shedding in RPMI 8226 cells, and both processes were impaired by P2X7 antagonists. The metalloprotease antagonists, BB-94 and GM6001, impaired ATP-induced CD23 shedding but not ethidium+ uptake.

Conclusions

P2X7 receptor activation induces cell death and CD23 shedding in RPMI 8226 cells.

General significance

RPMI 8226 cells may be useful to study the role of P2X7 in multiple myeloma and B-lymphocytes.  相似文献   

16.
Glioblastoma multiforme (GBM) is considered the most lethal intracranial tumor and the median survival time is approximately 14 months. Although some glioma cells present radioresistance, radiotherapy has been the mainstay of therapy for patients with malignant glioma. The activation of P2X7 receptor (P2X7R) is responsible for ATP-induced death in various cell types. In this study, we analyzed the importance of ATP-P2X7R pathway in the radiotherapy response P2X7R silenced cell lines, in vivo and human tumor samples. Both glioma cell lines used in this study present a functional P2X7R and the P2X7R silencing reduced P2X7R pore activity by ethidium bromide uptake. Gamma radiation (2 Gy) treatment reduced cell number in a P2X7R-dependent way, since both P2X7R antagonist and P2X7R silencing blocked the cell cytotoxicity caused by irradiation after 24 h. The activation of P2X7R is time-dependent, as EtBr uptake significantly increased after 24 h of irradiation. The radiotherapy plus ATP incubation significantly increased annexin V incorporation, compared with radiotherapy alone, suggesting that ATP acts synergistically with radiotherapy. Of note, GL261 P2X7R silenced-bearing mice failed in respond to radiotherapy (8 Gy) and GL261 WT-bearing mice, that constitutively express P2X7R, presented a significant reduction in tumor volume after radiotherapy, showing in vivo that functional P2X7R expression is essential for an efficient radiotherapy response in gliomas. We also showed that a high P2X7R expression is a good prognostic factor for glioma radiosensitivity and survival probability in humans. Our data revealed the relevance of P2X7R expression in glioma cells to a successful radiotherapy response, and shed new light on this receptor as a useful predictor of the sensitivity of cancer patients to radiotherapy and median survival.  相似文献   

17.
Membrane currents and changes in the intracellular Ca2+ concentration ([Ca2+]i) were measured in HEK293 cells transfected with the human P2X3 receptor (HEK293-hP2X3). RT-PCR and immunocytochemistry indicated the additional presence of endogenous P2Y1 and to some extent P2Y4 receptors. P2 receptor agonists induced inward currents in HEK293-hP2X3 cells with the rank order of potency alpha,beta-meATP approximately ATP > ADP-beta-S > UTP. A comparable rise in [Ca2+]i was observed after the slow superfusion of ATP, ADP-beta-S and UTP; alpha,beta-meATP was ineffective. These data, in conjunction with results obtained by using the P2 receptor antagonists TNP-ATP, PPADS and MRS2179 indicate that the current response to alpha,beta-meATP is due to P2X3 receptor activation, while the ATP-induced rise in [Ca2+]i is evoked by P2Y1 and P2Y4 receptor activation. TCE depressed the alpha,beta-meATP current in a manner compatible with a non-competitive antagonism. The ATP-induced increase of [Ca2+]i was much less sensitive to the inhibitory effect of TCE than the current response to alpha,beta-meATP. The present study indicates that in HEK293-hP2X3 cells, TCE, but not ethanol, potently inhibits ligand-gated P2X3 receptors and, in addition, moderately interferes with G protein-coupled P2Y1 and P2Y4 receptors. Such an effect may be relevant for the interruption of pain transmission in dorsal root ganglion neurons following ingestion of chloral hydrate or trichloroethylene.  相似文献   

18.
Excitatory ATP responses in rat cultured thoracolumbar sympathetic neurones are mediated by somatic P2X(2) receptors. The present study investigated a possible role of axonal P2X(2) as well as P2X(7) receptors on the same preparation. Confocal laser scanning microscopy demonstrated P2X(2) and P2X(7) immunoreactivity along the axons as well as P2X(7) immunoreactivity surrounding the cell nuclei. P2X(7) mRNA expression was detected in individual neurones using a single-cell RT-PCR approach. Adenosine triphosphate (ATP) caused a significant increase in axonal Ca(2+) concentration which was dependent on external Ca(2+) but insensitive to depletion of the cellular Ca(2+) pools by cyclopiazonic acid. Pyridoxal-phosphate-6-azophenyl-2',4'-disulfonate (PPADS; 30 micro m) virtually abolished the ATP response, whereas brilliant blue G (0.1 micro m), a selective P2X(7) receptor antagonist, had no effect. Dibenzoyl-ATP (BzATP; 100 micro m) induced a much smaller increase in axonal [Ca(2+)] concentration than ATP at equimolar concentrations. The response to BzATP was distinctly reduced by PPADS but not by brilliant blue G. The overall pharmacological profile of the axonal P2X receptors resembled closely that of the somatic P2X(2) receptors. In conclusion, the present data suggest the occurrence of axonal excitatory P2X(2) receptors in thoracolumbar sympathetic neurones. However, the functional significance of axonal and (peri)-nuclear P2X(7) receptors has still to be proven.  相似文献   

19.
The presence of P2X7 on erythroid cells is well established, but its physiological role remains unclear. The current study aimed to determine if P2X7 activation induces reactive oxygen species (ROS) formation in murine erythroleukaemia (MEL) cells, a commonly used erythroid cell line. ATP induced ROS formation in a time- and concentration-dependent fashion. The most potent P2X7 agonist, 2′(3′)-O-(4-benzoylbenzoyl)ATP, but not UTP or ADP, also induced ROS formation. The P2X7 antagonist, A-438079, impaired ATP-induced ROS formation. The ROS scavenger, N-acetyl-l-cysteine, and the ROS inhibitor, diphenyleneiodonium, also impaired P2X7-induced ROS formation, but use of enzyme-specific ROS inhibitors failed to identify the intracellular source of P2X7-induced ROS formation. P2X7-induced ROS formation was impaired partly by physiological concentrations of Ca2+ and Mg2+ and almost completely in cells in N-methyl-d-glucamine chloride medium. The p38 MAPK inhibitors SB202190 and SB203580, and the caspase inhibitor Z-VAD-FMK, but not N-acetyl-l-cysteine, impaired P2X7-induced MEL cell apoptosis. ATP also stimulated p38 MAPK and caspase activation, both of which could be impaired by A-438079. In conclusion, these findings indicate that P2X7 activation induces ROS formation in MEL cells and that this process may be involved in events downstream of P2X7 activation, other than apoptosis, in erythroid cells.  相似文献   

20.
Gliomas have one of the worst prognosis among cancers. Their resistance to cell death induced by endogenous neurotoxic agents, such as extracellular ATP, seems to play an important role in their pathobiology since alterations in the degradation rate of extracellular ATP drastically affects glioma growth in rats. In the present work we characterized the mechanisms of cell death induced by extracellular ATP in a murine glioma cell line, GL261. ATP and BzATP, a P2X7 agonist, induced cell death at concentrations that are described to activate the P2X7 receptor in mouse. oATP, an antagonist of P2X7, blocked the ATP‐induced cell death. Agonists of purinergic receptors expressed in GL261 such as adenosine, ADP, UTP did not cause any cell death, even at mM concentrations. A sub‐population of cells more sensitive to ATP expressed more P2X7 when compared to a less sensitive subpopulation. Accordingly, RNA interference of the P2X7 receptor drastically reduced ATP‐induced cell death, suggesting that this receptor is necessary for this effect. The mechanism of ATP‐induced cell death is predominantly necrotic, since cells presented shrinkage accompanied by membrane permeabilization, but not apoptotic, since no phosphatidylserine externalization or caspase activity was observed. These data show the importance of P2X7 in ATP‐induced cell death and shed light on the importance of ATP‐induced cell death in glioma development. J. Cell. Biochem. 109: 983–991, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号