首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A human isolate of Salmonella enteritidis which displayed strong pellicle formation during static broth culture and mannose-sensitive hemagglutination produced fimbriae which were morphologically indistinguishable from type 1 fimbriae of members of the family Enterobacteriaceae. Fimbrin was purified to homogeneity, and the apparent molecular weight (Mr, 14,400) was markedly lower than that reported for the type 1 fimbrin of Salmonella typhimurium (Mr, 22,100). This fimbrin contained 40% hydrophobic amino acids and lacked cysteine. The sequence of the N-terminal 64 amino acids was determined, and sequence alignment revealed that although the 18 N-terminal residues of the S. enteritidis molecule shared considerable homology with Escherichia coli and S. typhimurium type 1 fimbrins, the S. enteritidis fimbrin lacked a 6- to 9-residue terminal sequence present in the other type 1 fimbrins and, after residue 18, shared little homology with the E. coli sequence. Antibodies raised to the purified S. enteritidis fimbrin bound to surface-exposed conformational epitopes on the native fimbriae and displayed pronounced serospecificity. These antibodies were used in the isolation of a nonfimbriated Tn10 insertion mutant which was unable to hemagglutinate.  相似文献   

2.
Type 1 fimbriae of Salmonella enteritidis.   总被引:11,自引:0,他引:11       下载免费PDF全文
Salmonella enteritidis was previously shown to produce fimbriae composed of 14,000-molecular-weight (Mr) fimbrin monomers (J. Feutrier, W. W. Kay, and T. J. Trust, J. Bacteriol. 168:221-227, 1986). Another distinct fimbrial structure, comprising 21,000-Mr fimbrin monomers, has now been identified. These fimbriae are simply designated as SEF 14 and SEF 21, respectively (for S. enteritidis fimbriae and the Mr [in thousands] of the fimbrin monomer). A simple method for the purification of both structures was developed by using the different biochemical properties of these fimbriae. SEF 21 remained intact after being boiled in sodium dodecyl sulfate but readily dissociated into subunits of 21,000 Mr at pH 2.2. The overall amino acid composition and the N-terminal amino acid sequence of the SEF 21 fimbrin were distinct from those of SEF 14 but were virtually identical to the predicted sequence for type 1 fimbrin of Salmonella typhimurium. Immunoelectron microscopy of S. enteritidis clearly revealed fimbrial structures that reacted with immune serum specific to the 21,000-Mr fimbrin. Immune sera raised against this subunit were cross-reactive with type 1 fimbrins found in whole-cell lysates of S. typhimurium, Salmonella illinois, and Salmonella cubana. However, there was no cross-reaction with Escherichia coli type 1 fimbriae or with other fimbrins produced by S. enteritidis. Under certain growth conditions, S. enteritidis produced both SEF 14 and SEF 21. However, when S. enteritidis was grown at 30 degrees C or lower, only the 21,000-Mr SEF 21 fimbrin could be detected. There was a direct correlation between mannose-sensitive hemagglutination and the presence of SEF 21.  相似文献   

3.
Two distinct Salmonella fimbrins, AgfA and SefA, comprising thin aggregative fimbriae SEF17 and SEF14, respectively, were each genetically engineered to carry PT3, an alpha-helical 16-amino acid Leishmania T-cell epitope derived from the metalloprotease gp63. To identify regions within AgfA and SefA fimbrins amenable to replacement with this epitope, PCR-generated chimeric fimbrin genes were constructed and used to replace the native chromosomal agfA and sefA genes in Salmonella enteritidis. Immunoblot analysis using anti-SEF17 and anti-PT3 sera demonstrated that all ten AgfA chimeric fimbrin proteins were expressed by S. enteritidis under normal growth conditions. Immunoelectron microscopy confirmed that eight of the AgfA::PT3 proteins were effectively assembled into cell surface-exposed fimbriae. The PT3 replacements in AgfA altered Congo red (CR) binding, cell-cell adhesion and cell surface properties of S. enteritidis to varying degrees. However, these chimeric fimbriae were still highly stable, being resistant to proteinase K digestion and requiring harsh formic acid treatment for depolymerization. In marked contrast to AgfA, none of the chimeric SefA proteins were expressed or assembled into fimbriae. Since each PT3 replacement constituted over 10% of the AgfA amino acid sequence and all ten replacements collectively represented greater than 75% of the entire AgfA primary sequence, the ability of AgfA to accept large sequence substitutions and still assemble into fibers is unique among fimbriae and other structural proteins. This structural flexibility may be related to the novel fivefold repeating sequence of AgfA and its recently proposed structure Proper formation of chimeric fimbrial fibers suggests an unusual assembly mechanism for thin aggregative fimbriae which tolerates aberrant structures. This study opens a range of possibilities for Salmonella thin aggregative fimbriae as a carrier of heterologous epitopes and as an experimental model for studies of protein structure.  相似文献   

4.
Novel fimbriae were isolated and purified from the human enteropathogen Salmonella enteritidis 27655. These fimbriae were thin (measuring 3 to 4 nm in diameter), were extremely aggregative, and remained cell associated despite attempts to separate them from blended cells by centrifugation. The thin fimbriae were not solubilized in 5 M NaOH or in boiling 0.5% deoxycholate, 8 M urea, or 1 to 2% sodium dodecyl sulfate (SDS) with or without 5% beta-mercaptoethanol. Therefore, an unconventional purification procedure based on the removal of contaminating cell macromolecules in sonicated cell extracts by enzymatic digestion and preparative SDS-polyacrylamide gel electrophoresis (PAGE) was used. The insoluble fimbriae recovered from the well of the gel required depolymerization in formic acid prior to analysis by SDS-PAGE. Acid depolymerization revealed that the fimbriae were composed of fimbrin subunits, each with an apparent molecular mass of 17 kDa. Although their biochemical characteristics and amino acid composition were typical of fimbriae in general, these thin fimbriae were clearly distinct from other previously characterized fimbriae. Moreover, their fimbrin subunits had a unique N-terminal amino acid sequence. Native fimbriae on whole cells were specifically labeled with immune serum raised to the purified fimbriae. This immune serum also reacted with the denatured 17-kDa fimbrin protein in Western blots. The polyclonal immune serum did not cross-react with the other two native fimbrial types produced by this strain or with their respective fimbrins on Western blots (immunoblots). Therefore, these fimbriae represent the third fimbrial type produced by the enteropathogen S. enteritidis.  相似文献   

5.
The binding of human fibronectin and Congo red by an autoaggregative Salmonella enteritidis strain was found to be dependent on its ability to produce thin, aggregative fimbriae, named SEF 17 (for Salmonella enteritidis fimbriae with an apparent fimbrin molecular mass of 17 kDa). Two other fimbrial types produced by S. enteritidis, SEF 14 and SEF 21, were not responsible for the aggregative phenotype or for fibronectin binding. SEF 17-negative TnphoA mutants which retained the ability to produce SEF 14 and SEF 21 were unable to bind human fibronectin or Congo red and lost the ability to autoaggregate. Only purified SEF 17 but not purified SEF 14 or SEF 21 bound fibronectin in a solid-phase binding assay. Furthermore, only SEF 17 was able to inhibit fibronectin binding to S. enteritidis whole cells in a direct competition enzyme-linked immunosorbent assay. These results indicate that SEF 17 are the fimbriae responsible for binding fibronectin by this enteropathogen.  相似文献   

6.
The agfBAC operon of Salmonella enteritidis encodes thin aggregative fimbriae, fibrous, polymeric structures primarily composed of AgfA fimbrins. Although uncharacterized, AgfB shows a 51 % overall amino acid sequence similarity to AgfA. Using AgfB epitope-specific antiserum, AgfB was detected as a minor component of whole, purified fimbriae. Like AgfA, AgfB was released from purified fimbriae by >70 % formic acid, whereupon both AgfA-AgfA and AgfA-AgfB dimers as well as monomers were detected. This suggested that AgfB may form specific, highly stable, structural associations with AgfA in native fimbrial filaments, associations that were weakened in structurally unstable fibers derived from AgfA chimeric fimbrial mutants. Detailed sequence comparisons between AgfA and AgfB showed that AgfB harbored a similar fivefold repeated sequence pattern (x(6)QxGx(2)NxAx(3)Q), and contained structural motifs similar to the parallel beta helix model proposed for AgfA. Molecular modeling of AgfB revealed a 3D structure remarkably similar to that of AgfA, the structures differing principally in the surface disposition of non-conserved, basic, acidic and non-polar residues. Thus AgfB is a fimbrin-like structural homologue of AgfA and an integral, minor component of native thin aggregative fimbrial fibers. AgfB from an agfA deletion strain was detected as a non-fimbrial, SDS-insoluble form in the supernatant and was purified. AgfA from an agfB deletion strain was found in both SDS-soluble and insoluble, non-fimbrial forms. No AgfA-AgfA dimers were detected in the absence of AgfB. Fimbriae formation by intercellular complementation between agfB and agfA deletion strains could not be shown under a variety of conditions, indicating that AgfA and AgfB are not freely diffusible in S. enteritidis. This has important implications on the current assembly hypothesis for thin aggregative fimbriae.  相似文献   

7.
A chromosomal region present in Salmonella typhimurium but absent from related species was identified by hybridization. A DNA probe originating from 78 min on the S. typhimurium chromosome hybridized with DNA from Salmonella enteritidis, Salmonella heidelberg, and Salmonella dublin but not with DNA from Salmonella typhi, Salmonella arizonae, Escherichia coli, and Shigella serotypes. Cloning and sequence analysis revealed that the corresponding region of the S. typhimurium chromosome encodes a fimbrial operon. Long fimbriae inserted at the poles of the bacterium were observed by electron microscopy when this fimbrial operon was introduced into a nonpiliated E. coli strain. The genes encoding these fimbriae were therefore termed lpfABCDE, for long polar fimbriae. Genetically, the lpf operon was found to be most closely related to the fim operon of S. typhimurium, both in gene order and in conservation of the deduced amino acid sequences.  相似文献   

8.
Abstract The fimA gene coding for the major component (fimbrin) of type 1 fimbriae was mapped within the Salmonella typhi fim gene cluster, and its nucleotide sequence determined. The deduced amino acid sequence of S. typhi fimbrin is highly homologous to that of S. typhimurium type 1 fimbrin and showed similarity to that of other enterobacterial type 1 fimbrins. Downstream of fimA , an open reading frame was found, named fimI , able to encode a fimbrin-like protein. The fimI product could represent the counterpart, in type 1 fimbriae, of the PapH protein involved in cell anchoring and length modulation of Escherichia coli Pap pili. This genetic organization was found to be common to other Salmonella serovars, including S. typhimurium and S. choleraesuis .  相似文献   

9.
10.
Abstract A commercial kit (SEFEX), designed to detect strains of Salmonella enteritidis , was used to demonstrate antigenic cross-reactions between the fimbriae of S. enteritidis and an 18 kDa outer membrane protein expressed by enteroaggregative strains of E. coli O126: H27.  相似文献   

11.
M. DIBB-FULLER, E. ALLEN-VERCOE, M. J. WOODWARD AND C. J. THORNS. 1997. Specific immunological reagents were used to investigate the expression of SEF17 fimbriae by cultured strains of Salmonella enteritidis . Most strains of Salm. enteritidis tested expressed SEF17 when cultured at temperatures of 18–30°C. However, two wild-type strains produced SEF17 when also grown at 37 °C and 42 °C. Colonization factor antigen agar was the optimum medium for SEF17 expression, whereas Drigalski and Sensitest agars poorly supported SEF17 production. Very fine fimbriae produced by a strain of Salm. typhimurium were specifically and strongly labelled by SEF17 monoclonal and polyclonal antibodies, indicating considerable antigenic conservation between the two. Curli fimbriae from Escherichia coli were similarly labelled. The production of these fimbriae corellated with the binding of fibronectin by the organism. Congo red binding by cultured bacteria was not a reliable criterion for the expression of SEF17 fimbriae.  相似文献   

12.
Stenotrophomonas maltophilia is an emerging nosocomial bacterial pathogen associated with several infectious diseases and opportunistic infections, especially in immunocompromised patients. These bacteria adhere avidly to medical implants and catheters forming a biofilm that confers natural protection against host immune defences and different antimicrobial agents. The nature of the bacterial surface factors involved in biofilm formation on inert surfaces and in adherence of S. maltophilia to epithelial cells is largely unknown. In this study, we identified and characterized fimbrial structures produced by S. maltophilia grown at 37 degrees C. The S. maltophilia fimbriae 1 (SMF-1) are composed of a 17 kDa fimbrin subunit which shares significant similarities with the N-terminal amino acid sequences of several fimbrial adhesins (G, F17, K99 and 20K) found in Escherichia coli pathogenic strains and the CupA fimbriae of Pseudomonas aeruginosa. All of the clinical S. maltophilia isolates tested produced the 17 kDa fimbrin. Antibodies raised against SMF-1 fimbriae inhibited the agglutination of animal erythrocytes, adherence to HEp-2 cells and biofilm formation by S. maltophilia. High resolution electron microscopy provided evidence of the presence of fimbriae acting as bridges between bacteria adhering to inert surfaces or to cultured epithelial cells. This is the first characterization of fimbriae in this genus. We provide compelling data suggesting that the SMF-1 fimbriae are involved in haemagglutination, biofilm formation and adherence to cultured mammalian cells.  相似文献   

13.
The unusually stable and multifunctional, thin aggregative fimbriae common to all Salmonella spp. are principally polymers of the fimbrin subunit, AgfA. AgfA of Salmonella enteritidis consists of two domains: a protease-sensitive, 22 amino acid residue N-terminal region and a protease-resistant, 109 residue C-terminal core. The unusual amino acid sequence of the AgfA core region comprises two-, five- and tenfold internal sequence homology patterns reflected in five conserved, 18-residue tandem repeats. These repeats have the consensus sequence, Sx5QxGx2NxAx3Q and are linked together by four or five residues, (x)xAx2. The predicted secondary structure for this unusual arrangement of tandem repeats in AgfA indicates mainly extended conformation with the beta strands linked by four to six residues. Candidate proteins of known structure with motifs of alternating beta strands and short loops were selected from folds described in SCOP as a source of coordinates for AgfA model construction. Three all-beta class motifs selected from the Serratia marcescens metalloprotease, myelin P2 protein or vitelline membrane outer protein I were used for initial AgfA homology build-up procedures ultimately resulting in three structural models; beta barrel, beta prism and parallel beta helix. The beta barrel model is a compact, albeit irregular structure, with the beta strands arranged in two antiparallel beta sheet faces. The beta prism model does not reflect the 5 or 10-fold symmetry of the AgfA primary sequence. However, the favored, parallel beta helix model is a compact coil of ten helically arranged beta strands forming two parallel beta sheet faces. This arrangement predicts a regular, potentially stable, C-terminal core region consistent with the observed tandem repeat sequences, protease-resistance and strong tendency of this fimbrin to oligomerize and aggregate. Positional conservation of amino acid residues in AgfA and the Escherichia coli AgfA homologue, CsgA, provides strong support for this model. The parallel beta helix model of AgfA offers an interesting solution to a multifunctional fimbrin molecular surface having solvent exposed areas, regions for major and minor subunit interactions as well as fiber-fiber interactions common to many bacterial fimbriae.  相似文献   

14.
A determination was made of the nucleotide sequence of the 2719 bp region of a ribosomal protein gene cluster (PfeL32-PfeL19-PfL18-PfS5-PfL30) containing a 5S rRNA binding protein L18 homolog of hyperthermophilic archaea Pyrococcus furiosus. The organization of the archaeal ribosomal protein gene cluster is similar to that in the spc-operon of Escherichia coli (L6-L18-S5-L30-L15) but has two additional genes, namely those encoding PfeL32 and PfeL19, which were identified as extra proteins that are apparently not present in bacterial E. coli. Using an inducible expression system, P. furiosus mature PfL18 protein and a mutant PfL18 with the basic N-terminal amino acid region deleted were produced in large amounts in E. coli and Northwestern analysis showed the N-terminal region of PfL18, including the conserved arginine-rich region, to have a significant role in 5S rRNA-PfL18 interaction.  相似文献   

15.
Adherence and pathogenesis of Salmonella enteritidis in mice   总被引:2,自引:0,他引:2  
Adherence of many pathogenic organisms to the host cells has been associated with the presence of fimbriae. The exact role of these organelles in the adherence and pathogenesis of Salmonella enteritidis is not well established. Utilizing hemagglutination tests, S. enteritidis was shown to possess type 1 and type 3 fimbriae. Polyacrylamide gel electrophoresis of the isolated fimbriae showed that type 1 and 3 fimbriae of S. enteritidis had subunit M.r of 17 and 22 kDa, respectively. In vitro adherence assays suggested that S. enteritidis utilized type 1 fimbriae to adhere to human buccal and mouse small intestine epithelial cells. In addition, antibody produced against type 1 and type 3 fimbriae protected the mice from infection with a lethal dose of S. enteritidis. These results suggest that type 1 and possibly type 3 fimbriae are involved in the adherence and pathogenesis of S. enteritidis. The data further suggest that they may have a role in the adherence and pathogenesis of the other enteric organisms.  相似文献   

16.
The human pathogen Shiga-toxigenic Escherichia coli (STEC) O157:H7 contains a ycbQRST fimbrial-like operon, which shares significant homology to the family of F17 fimbrial biogenesis genes f17ADCG found in enterotoxigenic E. coli . We report that growth of STEC O157:H7 strain EDL933 in minimal Minca medium at 37°C and during adherence to epithelial cells led to the production of fine peritrichous fimbriae, which were found to be composed of a major subunit of 18 kDa whose N-terminal amino acid sequence matched the predicted protein product of the ycbQ gene; and showed significant homology to the F17a-A fimbrin. Similar to the F17 fimbriae, the purified STEC fimbriae and the recombinant YcbQ protein fused to a His peptide tag bound laminin, but not fibronectin or collagen. Thus, we propose the name E . coli YcbQ l aminin-binding f imbriae (ELF) to designate the fimbriae encoded by the ycbQRST operon. The role of ELF as an adherence factor of STEC to cultured epithelial cells was investigated. We provide compelling evidence demonstrating that ELF contributes to adherence of STEC to human intestinal epithelial cells and to cow and pig gut tissue in vitro . Deletion in the fimbrin subunit gene elfA (or ycbQ ) in STEC strain EDL933 led to an isogenic strain, which showed significant reduction (60%) in adherence to HEp-2 cells in comparison with the parental strain. In addition, antibodies against the purified ELF also partially blocked adherence of two STEC O157:H7 strains. These observations suggest that ELF functions as an accessory adherence factor that, along with other known redundant adhesins, contributes to the overall adhesive properties of STEC O157:H7 providing these organisms with ecological advantages to survive in different hosts and in the environment.  相似文献   

17.
The molecular basis for the survival of bacteria under extreme conditions in which growth is inhibited is a question of great current interest. A preliminary study was carried out to determine residue pattern conservation among the antiporters of enteric bacteria, responsible for extreme acid sensitivity especially in Escherichia coli and Shigella flexneri. Here we found the molecular evidence that proved the relationship between E. coli and S. flexneri. Multiple sequence alignment of the gadC coded acid sensitive antiporter showed many conserved residue patterns at regular intervals at the N-terminal region. It was observed that as the alignment approaches towards the C-terminal, the number of conserved residues decreases, indicating that the N-terminal region of this protein has much active role when compared to the carboxyl terminal. The motif, FHLVFFLLLGG, is well conserved within the entire gadC coded protein at the amino terminal. The motif is also partially conserved among other antiporters (which are not coded by gadC) but involved in acid sensitive/resistance mechanism. Phylogenetic cluster analysis proves the relationship of Escherichia coli and Shigella flexneri. The gadC coded proteins are converged as a clade and diverged from other antiporters belongs to the amino acid-polyamine-organocation (APC) superfamily.  相似文献   

18.
Autoaggregation is a phenomenon thought to contribute to colonization of mammalian hosts by pathogenic bacteria. Type 1 fimbriae are surface organelles of Escherichia coli that mediate d-mannose-sensitive binding to various host surfaces. This binding is conferred by the minor fimbrial component FimH. In this study, we have used random mutagenesis to identify variants of the FimH adhesin that confer the ability of E. coli to autoaggregate and settle from liquid cultures. Three separate autoaggregating clones were identified, all of which contained multiple amino acid changes located within the N-terminal receptor-binding domain of FimH. Autoaggregation could not be inhibited by mannose, but was inhibited by growth at temperatures at or below 30 degrees C. Using green fluorescent protein (GFP) as a reporter, we show that the autoaggregating clones do not mix with wild-type fimbriated cells. Electron microscopy shows that autoaggregating cells produce fimbriae with a twisted and entangled appearance. We present evidence that autoaggregating versions of FimH also occur in nature. Our results stress the highly adaptive nature of the ubiquitous FimH adhesin.  相似文献   

19.
Abstract The optimal conditions for the binding of fibronectin to Salmonella enteritidis strain 27655R, and the cell-surface components involved in the binding, were identified. Cultivation on colonisation factor antigen (CFA) agar or in CFA broth at 33°C for 24 h were found to be optimal for the expression of fibronectin binding. Such cultures exhibited 88% and 70% binding of 125I-labelled fibronectin and its 29-kDa N-terminal domain, respectively. The fibronectin binding was reversed by the addition of unlabelled fibronectin or its 29-kDa fragment. Scatchard plot analysis of the binding showed that the strain possessed one high-affinity ( K d= 5.8 × 10−10 M) and one low-affinity ( K d= 2 × 10−8 M) binding site. The fibronectin-binding could be inhibited by cell surface components of S. enteritidis 27655R released by 30 min treatment at 65°C or 95°C. Inhibition could also be achieved using purified fimbriae. A non-fimbriated mutant of strain 27655R showed a much reduced binding of fibronectin (15%). Electron microscopic analysis showed association of the gold-labelled 29-kDa N-terminal fragment with S. enteritidis 27655R fimbriae. In conclusion, the findings suggest that S. enteritidis (strain 27655R) possesses fibronectin-binding fimbriae.  相似文献   

20.
A genomic library of Actinomyces naeslundii WVU45 DNA in Escherichia coli was screened for antigen expression with rabbit antibody against A. naeslundii fimbriae. Western blotting (immunoblotting) of one recombinant clone carrying a 13.8-kilobase-pair insert revealed a 59-kilodalton (kDa) immunoreactive protein. A protein of similar electrophoretic mobility was detected from the isolated fimbrial antigen. Expression of the 59-kDa cloned protein in E. coli was directed by a promoter from the insert. The DNA sequence of the subunit gene was determined, and an open reading frame of 1,605 nucleotides was identified which was preceded by a putative ribosome-binding site and followed by two inverted repeats of 14 and 17 nucleotides, respectively. The reading frame encoded a protein of 534 amino acids (calculated molecular weight, 57,074), and the N-terminal sequence resembled that of a signal peptide. The presence of a 32-amino-acid signal peptide was indicated by amino-terminal sequencing of the fimbriae from A. naeslundii. The sequence, as determined by Edman degradation, was identical to that deduced from the DNA sequence beginning at predicted residue 33 of the latter sequence. Moreover, the amino acid composition of the predicted mature protein was similar to that of the isolated fimbriae from A. naeslundii. Thus, the cloned gene encodes a subunit of A. naeslundii fimbriae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号