首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
膀胱ICC细胞(Interstitial cells of Cajal in bladder)早在上个世纪已被发现,与胃肠道ICC细胞同族,膀胱ICC以自发电活动为特性,源于胞内贮存钙离子释放和钙激活的氯同道开放引起自发短暂去极化。膀胱ICC细胞起初被理解为起搏细胞,其自发的电活动作为起搏器引起下游平滑肌的收缩,这种假说尚缺乏立足的直接证据,目前认为ICC细胞仅仅是膀胱平滑肌收缩活动的调节器,与上皮-传入神经以及神经-平滑肌的信号传递密切相关。病理状态下ICC细胞的作用似乎比生理状态下更为突出,例如膀胱过度活动症,多篇文献报道膀胱过度活动症患者膀胱的ICC细胞数目比正常增多,而且其平滑肌的收缩对酪氨酸激酶受体(tyrosine kinase receptor,c-Kit)拮抗剂格列卫更加敏感。未来膀胱ICC细胞的研究集中在阐明病理及生理状态下ICC的作用机制和信号通路。  相似文献   

2.
马静  张铁民 《现代生物医学进展》2012,12(31):6195-6197,6194
Cajal间质细胞(interstitial cells of cajal,ICC)主要分布在胃肠道平滑肌细胞与神经纤维之间,是一类特殊的间质细胞,它是胃肠运动的起搏细胞,具有产生、传导慢波,调节胃肠道平滑肌运动的功能。而慢性假性肠梗阻是由于胃肠神经抑制,毒素刺激或肠壁平滑肌本身病变,导致的肠壁肌肉运动功能减弱,临床上具有肠梗阻的症状和体征,但无肠内外机械性肠梗阻因素存在,故又称动力性肠梗阻,按病程有急性和慢性之分,麻痹性肠梗阻和痉挛性肠梗阻属于急性假性肠梗阻,深入研究Cajal间质细胞,对进一步认识胃肠运动的生理及胃肠动力疾病的发生机制有重要意义。  相似文献   

3.
The present study investigated the effect of actin microfilament structure on pacemaker currents and calcium oscillation in cultured murine intestinal interstitial cells of Cajal (ICCs) by whole-cell patch-clamp technique and calcium imaging technique. Cytochalasin B, a disruptor of actin microfilaments, decreased the amplitude and frequency of pacemaker currents from 491.32 ± 160.33 pA and 11.73 ± 0.79 cycles/min to 233.12 ± 92.00 pA and 10.29 ± 0.76 cycles/min. Cytochalasin B also decreased the amplitude and frequency of calcium oscillation from 0.32 ± 0.08 (ΔF/F0) and 2.75 ± 0.17 cycles/min to 0.02 ± 0.01 (ΔF/F0) and 1.20 ± 0.08 cycles/min. Phalloidin, a stabilizer of actin microfilaments, increased the amplitude and frequency of pacemaker currents from 751.79 ± 282.82 pA and 13.93 ± 1.00 cycles/min to 1234.34 ± 607.83 pA and 14.68 ± 1.00 cycles/min. Phalloidin also increased the amplitude and frequency of calcium oscillation from 0.26 ± 0.01 (ΔF/F0) and 2.27 ± 0.18 cycles/min to 0.43 ± 0.03 (ΔF/F0) and 2.87 ± 0.07 cycles/min. 2-Aminoethoxydiphenyl borane (2-APB), an IP3 receptor blocker, suppressed both pacemaker currents and calcium oscillations. 2-APB also blocked the phalloidin-induced increase in pacemaker currents and calcium oscillation. Ryanodine, an inhibitor of calcium-induced calcium release, did not affect pacemaker current but suppressed calcium oscillations. Ryanodine had no effect on altering phalloidin-induced increases in pacemaker current and calcium oscillation. These results suggest that actin microfilaments regulate pacemaker activity via the IP3-induced calcium release signaling pathway.  相似文献   

4.
The term 'Interstitial cells of Cajal' (ICC) designates several groups of mesenchymal cells present along the gastro-intestinal tract (GI), in close association with smooth muscle cells and elements of the enteric nervous system (ENS). For years, transmission electron microscopy (TEM) has been the only reliable tool to study ICC. Whilst TEM remains the golden standard for identification of ICC, the observation that the tyrosine kinase receptor c-kit plays a crucial role in their development recently resulted in numerous immunohistochemical studies and also led to a better characterization of their roles. ICC form extensive networks of electrically coupled cells and certain groups of ICC are currently regarded as the source of the spontaneous slow waves of the gut musculature (pacemaker cells). Other ICC appear to be involved in the transduction of the relaxation of smooth muscle triggered by nitric oxide. Abnormal distribution of ICC has been reported in several human diseases and abnormal functioning of ICC might actually be involved in many disorders of GI transit. This review addresses (1) the morphology and relationships of ICC along the GI tract in man and mouse, mainly based on data from immunohistochemistry and confocal microscopy, (2) the emerging role of ICC in the pathophysiology of human diseases, like infantile hypertrophic pyloric stenosis (a common disorder with a dysfunction of the pyloric sphincter), Hirschsprung's disease (aganglion-osis coli) and intestinal pseudo-obstruction, (3) developmental issues, (4) recent reports suggesting a possible link between ICC and gastrointestinal stromal tumors.  相似文献   

5.
目的:探索大鼠膀胱Cajal间质细胞(ICC)的分离和培养方法,为进一步研究其在膀胱中的作用提供条件.方法:取大鼠的膀胱组织,采用Ⅱ型胶原酶酶解法分离细胞,将细胞悬液接种于含50ng/ml SCF、15%(v/v)FBS的DMEM培养基中,进行培养.用c-kit特异性杭体标记细胞,免疫荧光鉴定ICC细胞.结果:培养8小时后的ICC贴壁良好,并保持其固有特征:两个长的突起,多个短的侧突.胞体小,核大,c-kit抗体荧光染色阳性.结论:酶解法分离大鼠膀胱ICC并培养成功.  相似文献   

6.
目的:尝试优化体外培养Balb/c小鼠胃Cajal间质细胞(interstitial cells of Cajal,ICC)的实验方法,为深入探索该细胞的生理病理作用机制提供基础。方法:无菌条件下取出小鼠胃组织,使用酶解法消化分离细胞,将细胞悬液接种于含有SCF(干细胞因子)的M199培养基中培养,并进行传代。倒置显微镜下观察不同时间段细胞生长状态,采用ICC特异性标志物c-Kit(酪氨酸激酶受体)进行免疫荧光鉴定。结果:细胞培养24 h后基本已贴壁,呈梭形或三角形,有短突起;72 h后细胞胞体变大,突起伸长;5 d后,细胞之间通过突起彼此相互连接,开始形成网状结构;传代后细胞依然保持其固有特征。免疫荧光鉴定可见细胞c-Kit抗体荧光染色阳性。结论:使用酶解法成功分离细胞,细胞数量较多但不增殖,传代后可见细胞纯度较好,稳定培养3周以上后细胞形态逐渐发生变化并开始凋亡。  相似文献   

7.
Cajal间质细胞(interstitial cells of Cajal,ICC)是一类主要分布于胃肠道的间质细胞,与平滑肌细胞以及肠神经细胞有着紧密的关系。ICC分布于整个胃肠道,是胃肠道起搏细胞,具有产生和传播慢波的功能,参与神经递质调节,在一些胃肠动力性疾病中表现为异常状态。近期,关于ICC的生理功能、损伤和恢复机制的研究取得了显著的进展。ICC网络存在动态平衡,为了维持ICC网络功能,ICC周期代谢需要被紧密的控制调节平衡ICC死亡和更替。研究表明,ICC具有高度的可塑性,在一些缺失ICC的疾病中ICC并不一定死亡,转分化、去分化和细胞凋亡可能是ICC丢失的机制。。本文主要对Cajal间质细胞及其可塑性的研究进展进行了综述。  相似文献   

8.
Spontaneously rhythmic pacemaker activity produced by interstitial cells of Cajal (ICC) is the result of the entrainment of unitary potential depolarizations generated at intracellular sites termed pacemaker units. In this study, we present a mathematical modeling framework that quantitatively represents the transmembrane ion flows and intracellular Ca2+ dynamics from a single ICC operating over the physiological membrane potential range. The mathematical model presented here extends our recently developed biophysically based pacemaker unit modeling framework by including mechanisms necessary for coordinating unitary potential events, such as a T-Type Ca2+ current, Vm-dependent K+ currents, and global Ca2+ diffusion. Model simulations produce spontaneously rhythmic slow wave depolarizations with an amplitude of 65 mV at a frequency of 17.4 cpm. Our model predicts that activity at the spatial scale of the pacemaker unit is fundamental for ICC slow wave generation, and Ca2+ influx from activation of the T-Type Ca2+ current is required for unitary potential entrainment. These results suggest that intracellular Ca2+ levels, particularly in the region local to the mitochondria and endoplasmic reticulum, significantly influence pacing frequency and synchronization of pacemaker unit discharge. Moreover, numerical investigations show that our ICC model is capable of qualitatively replicating a wide range of experimental observations.  相似文献   

9.
10.
朱琳  贺巍  杨生岳  范兴爱  刘睿年 《生物磁学》2013,(34):6786-6789
急进高原胃肠动力紊乱是高原胃肠应激反应的主要表现之一,腹胀、恶心、呕吐、腹泻、食欲减退等是其最突出的临床症状,目前有关其的研究多集中于临床及部分基础研究上,但在探讨有关高原胃肠动力紊乱形成机制的细胞分子生物学领域的研究则少见报道。而大量研究指出,慢波起源细胞Cajal间质细胞在胃肠动力调控中具有重要作用,并成为的研究的热点,那么Cajal间质细胞是否同样在急进高原胃肠动力紊乱中发挥同样重要的作用,这不但对从细胞分子生物学角度来解释急进高原胃肠动力紊乱的机制有着重要的意义,而且还可以对未来的临床干预提供新的思路。因此,本文拟对Cajal间质细胞在急进高原胃肠动力紊乱中的潜在作用作一综述。  相似文献   

11.
Pacemaker cells play a fundamental role in generating or regulating many essential biological rhythms. Spontaneous pacemaker activity is dependent on the function of an array of ion channels expressed in these cells. Recent characterization of a Na(+) leak channel (NALCN) has linked to its role in conducting the background Na(+) current that depolarizes resting membrane properties of pacemaker neurons. NALCN, along with Unc79 and Unc80, forms a protein complex that is involved in regulating intrinsic membrane and synaptic activities. In this review, we will discuss the current understanding of NALCN channel physiology and its role in regulating cell excitability and pacemaker activity.  相似文献   

12.
A. Revonsuo (2000b) proposed an evolutionary theory of dreaming, stating it is a threat simulation mechanism that allowed early humans to rehearse threat perception and avoidance without biological cost. The present study aimed to establish the proportion of dreams containing physical threats to the dreamer, whether these represent realistic life-threatening events, and whether the dreamer successfully and realistically escapes. It also examined incidence of threatening events in real life. A sample of most recent dreams was collected (N = 401). Only 8.48% of dreamers reported realistic life-threatening events in dreams and a realistic escape subsequently occurred in only one third of these reports. Actual severe life-threatening events were experienced by 44.58% of the sample. These findings contradict key aspects of Revonsuo's theory. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

13.
Ramon y Cajal discovered a particular cell type in the gut, which he named ‘interstitial neurons’ more that 100 years ago. In the early 1970s, electron microscopy/electron microscope (EM) studies showed that indeed a special interstitial cell type corresponding to the cells discovered by Cajal is localized in the gut muscle coat, but it became obvious that they were not neurons. Consequently, they were renamed ‘interstitial cells of Cajal’ (ICC) and considered to be pace-makers for gut motility. For the past 10 years many groups were interested in whether or not ICC are present outside the gastrointestinal tract, and indeed, peculiar interstitial cells were found in: upper and lower urinary tracts, blood vessels, pancreas, male and female reproductive tracts, mammary gland, placenta, and, recently, in the heart as well as in the gut. Such cells, now mostly known as interstitial Cajal-like cells (ICLC), were given different and confusing names. Moreover, ICLC are only apparently similar to canonical ICC. In fact, EM and cell cultures revealed very particular features of ICLC, which unequivocally distinguishes them from ICC and all other interstitial cells: the presence of 2–5 cell body prolongations that are very thin (less than 0.2 μm, under resolving power of light microscopy), extremely long (tens to hundreds of μm), with a moniliform aspect (many dilations along), as well as caveolae. Given the unique dimensions of these prolongations (very long and very thin) and to avoid further confusion with other interstitial cell types (e.g. fibroblast, fibrocyte, fibroblast-like cells, mesenchymal cells), we are proposing the term TELOCYTES for them, and TELOPODES for their prolongations, by using the Greek affix ‘telos’.  相似文献   

14.

Background

Interstitial cells of Cajal (ICC) have been identified in urinary bladder of several species, but their presence in mice remains uncertain. Meanwhile, dozens of reports indicate that dysregulation of connexin 43 plays an important role in bladder overactivity, but its localization has not been clearly defined, with reports of expression in either the smooth muscle or in myofibroblasts. We recently identified a population of ectonucleoside triphosphate diphosphohydrolase 2 (NTPDase2) positive cells that resemble ICC and are distinct from smooth muscle, fibroblasts, myofibroblasts and neurons. Thus we sought to define more clearly the molecular signature of ICC and in doing so resolve some of these uncertainties.

Principle findings

Immunofluorescent localization revealed that NTPDase2-positive cells lie closely adjacent to smooth muscle but are separate from them. NTPDase2 positive cells exhibited co-localization with the widely accepted ICC marker - c-kit. They were further shown to co-localize with other ICC markers CD34 and Ano1, but not with mast cell marker tryptase. Significantly, they show convincing co-localization with connexin 43, which was not present in smooth muscle. The identity of these cells as ICC was further confirmed by the presence of three mesenchymal markers – vimentin, desmin, and PDGFβ receptor, which indicates their mesenchymal origin. Finally, we observed for the first time, the presence of merlin/neurofibromin 2 in ICC. Normally considered a neuronal protein, the presence of merlin suggests ICC in bladder may have a role in neurotransmission.

Conclusions

NTPDase2 positive cells in mice bladder are ICC, which can be defined by the presence of c-Kit, CD34, Ano1, NTPDase2, connexin 43, vimentin, desmin, PDGFβ receptor and merlin/NF2. These data establish a definitive molecular expression profile, which can be used to assist in explorations of their functional roles, and the presence of NTPDase2 suggests that purinergic signaling plays a role in regulation of ICC function.  相似文献   

15.
Interstitial cells of Cajal (ICC) are pacemaker cells in the gastrointestinal (GI) tract and loss of ICC is associated with many GI motility disorders. Previous studies have shown that ICC have the capacity to regenerate or restore, and several growth factors are critical to their growth, maintenance or regeneration. The present study aimed to investigate the roles of interleukin-9 (IL-9) in the growth, maintenance and pacemaker functions of cultured ICC. Here, we report that IL-9 promotes proliferation of ICC, and culturing ICC with IL-9 enhances cholecystokinin-8-induced Ca2+ transients, which is probably caused by facilitating maintenance of ICC functions under culture condition. We also show co-localizations of cholecystokinin-1 receptor and IL-9 receptor with c-kit by double-immunohistochemical labeling. In conclusion, IL-9 can promote ICC growth and help maintain ICC functions; IL-9 probably performs its functions via IL-9 receptors on ICC.  相似文献   

16.
Recent studies have suggested a role for a chloride current in the modulation of pacemaker potentials generated by interstitial cells of Cajal. Patch-clamp recordings were made from inside–out patches of cultured interstitial cells of Cajal from the murine small intestine. The majority of patches were quiescent immediately after excision, but in some patches currents activated spontaneously after a period of 10 min to 1 h. Currents could also be activated by strongly polarizing the patch. It was found that the currents activated in both cases included a chloride channel. This channel could also be activated by ATP and the catalytic subunit of protein kinase A. The channel had conductance states (±SD) of 53 ± 25.35, 126 ± 21.44, 180 ± 12.57 and 211 ± 8.86 pS. It was outwardly rectifying (as a function of open probability) and deactivated (i.e., gave a tail current) but showed no inactivation. The permeability sequence of the channel was I>>Br≥Cl>Asp. It was unaffected in magnitude or rectification by changing the free Ca2+ concentration of the bath between <10 nm, 100 nm (control) and 2 mm.  相似文献   

17.
Secretion of progesterone (P4) estradiol (E4) and androgen (A) by follicular (FC) and interstitial (IC) cells isolated from carp ovaries at prespawning (April) and resting time (December) was investigated. Cells were cultured as separate monolayers. FC secreted more P4 and E2 than corresponding IC. At the time of diapause there was no significant difference in P4 and E2 secretion by both FC and IC. However, secretion of A, which declined in cultures of FC, had an increasing tendency in cultures of IC. It seems that interstitial tissue is the main source of androgen in the carp ovary.  相似文献   

18.
Depletion of interstitial cells of Cajal (ICC) is certified in the stomach of diabetic patients. Though electroacupuncture (EA) at ST36 is an effective therapy to regulate gastric motility, the mechanisms of EA at ST36 on gastric emptying and networks of ICC remain to be elucidated. The aims of this study were to investigate the effects of EA on gastric emptying and on the alterations of ICC networks. Rats were randomized into the control, diabetic rats (DM), diabetic rats with sham EA (DM+SEA), diabetic rats with low frequency EA (DM+LEA) and diabetic rats with high frequency EA groups (DM+HEA). The expression of c-kit in each layer of gastric wall was assessed by western blotting. The proliferation of ICC was identified by immunolabeling of c-kit and Ki67 as the apoptosis of ICC was examined by TUNEL staining. The results were as follows: (1) Gastric emptying was severely delayed in the DM group, but accelerated in the LEA and HEA group, especially in the LEA group. (2) The expression of c-kit in each layer was reduced apparently in the DM group, but also up-regulated in the LEA and HEA group. (3) Plentiful proliferated ICC (c-kit+/Ki67+) forming bushy networks with c-kit+ cells were observed in the LEA and HEA group, while the apoptotic cells (c-kit+/TUNEL+) were hardly captured in the LEA and HEA group. Collectively, low and high frequency EA at ST36 rescue the damaged networks of ICC by inhibiting the apoptosis and enhancing the proliferation in the stomach of diabetic rats, resulting in an improved gastric emptying.  相似文献   

19.
20.
The network of interstitial cells of Cajal associated with Auerbach’s (myenteric) plexus in the canine colon was investigated to determine its role in facilitating communication between circular and longitudinal muscle layers. Electrical coupling between the muscle layers was demonstrated by propagating extracellularly evoked electrotonic pulses from circular muscle cells to nearby longitudinal muscle cells. The likelihood of cytoplasmic continuity across Auerbach’s plexus was further demonstrated by the ability of neurobiotin to spread between the interstitial cells and the circular and longitudinal muscle cells. Importantly, direct neurobiotin spread between circular and longitudinal muscle cells was not observed even when they were in close proximity as determined by confocal microscopy. When neurobiotin did spread across the two muscle layers, the intervening interstitial cells were always neurobiotin-positive. In regions where circular and longitudinal muscle cells approach each other closely, electron microscopy revealed the presence of close appositions between interstitial cells and smooth muscle cells. Gap junctions between interstitial cells and smooth muscle cells of both layers, as judged by electron microscopy, were extremely rare. Neither gap junctions nor close appositions were observed between longitudinal and circular muscle cells. The special arrangement for electrotonic coupling across Auerbach’s plexus through interstitial cells of Cajal suggests controlled coupling between the two muscle layers, explaining the preservation of their distinct electrical activities. Received: 21 July 1995 / Accepted: 22 April 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号