首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism by which E colicins recognize and then bind to BtuB receptors in the outer membrane of Escherichia coli cells is a poorly understood first step in the process that results in cell killing. Using N- and C-terminal deletions of the N-terminal 448 residues of colicin E9, we demonstrated that the smallest polypeptide encoded by one of these constructs that retained receptor-binding activity consisted of residues 343-418. The results of the in vivo receptor-binding assay were supported by an alternative competition assay that we developed using a fusion protein consisting of residues 1-497 of colicin E9 fused to the green fluorescent protein as a fluorescent probe of binding to BtuB in E. coli cells. Using this improved assay, we demonstrated competitive inhibition of the binding of the fluorescent fusion protein by the minimal receptor-binding domain of colicin E9 and by vitamin B12. Mutations located in the minimum R domain that abolished or reduced the biological activity of colicin E9 similarly affected the competitive binding of the mutant colicin protein to BtuB. The sequence of the 76-residue R domain in colicin E9 is identical to that found in colicin E3, an RNase type E colicin. Comparative sequence analysis of colicin E3 and cloacin DF13, which is also an RNase-type colicin but uses the IutA receptor to bind to E. coli cells, revealed significant sequence homology throughout the two proteins, with the exception of a region of 92 residues that included the minimum R domain. We constructed two chimeras between cloacin DF13 and colicin E9 in which (i) the DNase domain of colicin E9 was fused onto the T+R domains of cloacin DF13; and (ii) the R domain and DNase domain of colicin E9 were fused onto the T domain of cloacin DF13. The killing activities of these two chimeric colicins against indicator strains expressing BtuB or IutA receptors support the conclusion that the 76 residues of colicin E9 confer receptor specificity. The minimum receptor-binding domain polypeptide inhibited the growth of the vitamin B12-dependent E. coli 113/3 mutant cells, demonstrating that vitamin B12 and colicin E9 binding is mutually exclusive.  相似文献   

2.
An Mr = 16,000 receptor-binding fragment of colicin E1 has been obtained by cyanogen bromide digestion of colicin E1. The purified 16-kDa fragment shows binding properties similar to those of an Mr = 38,000 colicin E1 receptor-binding fragment generated by thermolysin treatment. Treatment of the 38-kDa fragment with cyanogen bromide also yields the 16-kDa fragment. By comparing the NH2-terminal amino acid sequence of the 16-kDa fragment with the known colicin E1 sequence, the receptor-binding fragment can be shown to occupy the central region of the colicin molecule, extending from residue 231 to 370. It is inferred that the 16-kDa fragment binds efficiently to the colicin receptor because it is able to protect sensitive cells against the lethal effects of colicins E1 and E2 and, when pre-adsorbed to the cell, to physically displace colicin E1. Unlike the 38-kDa receptor-binding fragment, the 16-kDa fragment was found to be devoid of channel-forming ability previously shown to be associated with the COOH-terminal region of the colicin E1 polypeptide.  相似文献   

3.
The primary structures of the immunity (Imm) and lysis (Lys) proteins, and the C-terminal 205 amino acid residues of colicin E8 were deduced from nucleotide sequencing of the 1,265 bp ClaI-PvuI DNA fragment of plasmid ColE8-J. The gene order is col-imm-lys confirming previous genetic data. A comparison of the colicin E8 peptide sequence with the available colicin E2-P9 sequence shows an identical receptor-binding domain but 20 amino acid replacements and a clustering of synonymous codon usage in the nuclease-active region. Sequence homology of the two colicins indicates that they are descended from a common ancestral gene and that colicin E8, like colicin E2, may also function as a DNA endonuclease. The native ColE8 imm (resident copy) is 258 bp long and is predicted to encode an acidic protein of 9,604 mol. wt. The six amino acid replacements between the resident imm and the previously reported non-resident copy of the ColE8 imm ([E8 imm]) found in the ribonuclease-producing ColE3-CA38 plasmid offer an explanation for the incomplete protection conferred by [E8 Imm] to exogenously added colicin E8. Except for one nucleotide and amino acid change in the putative signal peptide sequence, the ColE8 lys structure is identical to that present in ColE2-P9 and ColE3-CA38.  相似文献   

4.
A major group of colicins comprises molecules that possess nuclease activity and kill sensitive cells by cleaving RNA or DNA. Recent data open the possibility that the tRNase colicin D, the rRNase colicin E3 and the DNase colicin E7 undergo proteolytic processing, such that only the C-terminal domain of the molecule, carrying the nuclease activity, enters the cytoplasm. The proteases responsible for the proteolytic processing remain unidentified. In the case of colicin D, the characterization of a colicin D-resistant mutant shows that the inner membrane protease LepB is involved in colicin D toxicity, but is not solely responsible for the cleavage of colicin D. The lepB mutant resistant to colicin D remains sensitive to other colicins tested (B, E1, E3 and E2), and the mutant protease retains activity towards its normal substrates. The cleavage of colicin D observed in vitro releases a C-terminal fragment retaining tRNase activity, and occurs in a region of the amino acid sequence that is conserved in other nuclease colicins, suggesting that they may also require a processing step for their cytotoxicity. The immunity proteins of both colicins D and E3 appear to have a dual role, protecting the colicin molecule against proteolytic cleavage and inhibiting the nuclease activity of the colicin. The possibility that processing is an essential step common to cell killing by all nuclease colicins, and that the immunity protein must be removed from the colicin prior to processing, is discussed.  相似文献   

5.
Comparison of the amino acid sequences of the C-terminal domain of three DNAase type E colicins has identified six candidate specificity determinants for the interaction of these E colicins with their homologous immunity proteins. We have changed these candidate specificity determinants of colicin E9, using site-directed mutagenesis, to the corresponding amino-acids of colicin E8. A 'mutant' colicin E9, in which four of the six candidate specificity determinants have been changed, demonstrated colicin activity against Escherichia coli indicator strains which carried either the E8imm or the E9imm genes, indicative of a 'novel' E. colicin. After changing all six of the candidate specificity determinants, the resulting colicin E9 'mutant' exhibited a phenotype very similar to that of colicin E8.  相似文献   

6.
E Schramm  J Mende  V Braun    R M Kamp 《Journal of bacteriology》1987,169(7):3350-3357
Colicin B formed by Escherichia coli kills sensitive bacteria by dissipating the membrane potential through channel formation. The nucleotide sequence of the structural gene (cba) which encodes colicin B and of the upstream region was determined. A polypeptide consisting of 511 amino acids was deduced from the open reading frame. The active colicin had a molecular weight of 54,742. The carboxy-terminal amino acid sequence showed striking homology to the corresponding channel-forming region of colicin A. Of 216 amino acids, 57% were identical and an additional 19% were homologous. In this part 66% of the nucleotides were identical in the colicin A and B genes. This region contained a sequence of 48 hydrophobic amino acids. Sequence homology to the other channel-forming colicins, E1 and I, was less pronounced. A homologous pentapeptide was detected in colicins B, M, and I whose uptake required TonB protein function. The same consensus sequence was found in all outer membrane proteins involved in the TonB-dependent uptake of iron siderophores and of vitamin B12. Upstream of cba a sequence comprising 294 nucleotides was identical to the sequence upstream of the structural gene of colicin E1, with the exception of 43 single-nucleotide replacements, additions, or deletions. Apparently, the region upstream of colicins B and E1 and the channel-forming sequences of colicins A and B have a common origin.  相似文献   

7.
DNase colicins E2 and E7, both of which appropriate the BtuB/Tol translocation machinery to cross the outer membrane, undergo a processing step as they enter the cytoplasm. This endoproteolytic cleavage is essential for their killing action. A processed form of the same size, 18.5 kDa, which corresponds to the C-terminal catalytic domain, was detected in the cytoplasm of bacteria treated with either of the two DNase colicins. The inner-membrane protease FtsH is necessary for the processing that allows the translocation of the colicin DNase domain into the cytoplasm. The processing occurs near residue D420, at the same position as the FtsH-dependent cleavage in RNase colicins E3 and D. The cleavage site is located 30 amino acids upstream of the DNase domain. In contrast, the previously reported periplasm-dependent colicin cleavage, located at R452 in colicin E2, was shown to be generated by the outer-membrane protease OmpT and we show that this cleavage is not physiologically relevant for colicin import. Residue R452, whose mutated derivatives led to toxicity defect, was shown to have no role in colicin processing and translocation, but it plays a key role in the catalytic activity, as previously reported for other DNase colicins. Membrane associated forms of colicins E2 and E7 were detected on target cells as proteinase K resistant peptides, which include both the receptor-binding and DNase domains. A similar, but much less proteinase K-resistant form was also detected with RNase colicin E3. These colicin forms are not relevant for colicin import, but their detection on the cell surface indicates that whole nuclease-colicin molecules are found in a stable association with the outer-membrane receptor BtuB of the target cells.  相似文献   

8.
Enzymatic colicins such as colicin E9 (ColE9) bind to BtuB on the cell surface of Escherichia coli and rapidly recruit a second coreceptor, either OmpF or OmpC, through which the N-terminal natively disordered region (NDR) of their translocation domain gains entry into the cell periplasm and interacts with TolB. Previously, we constructed an inactive disulfide-locked mutant ColE9 (ColE9(s-s)) that binds to BtuB and can be reduced with dithiothreitol (DTT) to synchronize cell killing. By introducing unique enterokinase (EK) cleavage sites in ColE9(s-s), we showed that the first 61 residues of the NDR were inaccessible to cleavage when bound to BtuB, whereas an EK cleavage site inserted at residue 82 of the NDR remained accessible. This suggests that most of the NDR is occluded by OmpF shortly after binding to BtuB, whereas the extreme distal region of the NDR is surface exposed before unfolding of the receptor-binding domain occurs. EK cleavage of unique cleavage sites located in the ordered region of the translocation domain or in the distal region of the receptor-binding domain confirmed that these regions of ColE9 remained accessible at the E. coli cell surface. Lack of EK cleavage of the DNase domain of the cell-bound, oxidized ColE9/Im9 complex, and the rapid detection of Alexa Fluor 594-labeled Im9 (Im9(AF)) in the cell supernatant following treatment of cells with DTT, suggested that immunity release occurred immediately after unfolding of the colicin and was not driven by binding to BtuB.  相似文献   

9.
A Akutsu  H Masaki    T Ohta 《Journal of bacteriology》1989,171(12):6430-6436
The primary structure of a 3.1-kilobase E6 or E3 segment carrying colicin and related genes was determined. Plasmid ColE6-CT14 showed striking homology to ColE3-CA38 throughout this segment, including homology to the secondary immunity gene, immE8, downstream of the E6 or E3 immunity gene. The ColE3-CA38 and ColE6-CT14 sequences, however, contained an exceptional hot spot region encoding both the colicin-active domain (RNase region) and the immunity protein, reflecting their different immunity specificities. On the other hand, some chimeric plasmids were constructed through homologous recombination between colicin E3 and cloacin DF13 operons. The resulting plasmids were deduced to produce chimeric colicins with a colicin E3-type N-terminal part, a cloacin DF13-type C-terminal-active domain, and the DF13 immunity protein. The killing spectra of the chimeric colicins and the immunities of the plasmids were identical to those of colicin E6 and ColE6-CT14, respectively, showing that the colicin E6 immunity specificity is completely equivalent to that of cloacin DF13. Nevertheless, colicin E6 has been found to show a sequence diversity from cloacin DF13 almost to the same extent as that from colicin E3 in their RNase and immunity regions, indicating that only a small number of amino acids defines the immunity specificity for discrimination between colicins E3 and E6 (or cloacin DF13).  相似文献   

10.
The DNA sequence of the colicin M activity gene cma was determined. A polypeptide consisting of 271 amino acids was deduced from the nucleotide sequence. The amino acid sequence agreed with the peptide sequences determined from the isolated colicin. The molecular weight of active colicin M was 29,453. The primary translation product was not processed. In the domain required for uptake into cells, colicin M contained the pentapeptide Glu-Thr-Leu-Thr-Val. A similar sequence was found in all colicins which are taken up by a TonB-dependent mechanism and in outer membrane receptor proteins which are constituents of TonB-dependent transport systems. The structure of colicin M in the carboxy-terminal activity domain had no resemblance to the pore-forming colicins or colicins with endonuclease activity. Instead, the activity domain contained a sequence which exhibited homology to the sequence around the serine residue in the active site of penicillin-binding proteins of Escherichia coli. The colicin M activity gene was regulated from an SOS box upstream of the adjacent colicin B activity gene on the natural plasmid pColBM-Cl139.  相似文献   

11.
H Pilsl  V Braun 《Journal of bacteriology》1995,177(23):6973-6977
Sequence determination of the Escherichia coli colicin K determinant revealed identity with the E. coli colicin 5 determinant in the immunity and lysis proteins, strong homologies in the pore-forming region (93.7%) and the Tsx receptor-binding region (77%) of the colicins, and low levels of homology (20.3%) in the N-terminal region of the colicins. This latter region is responsible for the Tol-dependent uptake of colicin K and the Ton-dependent uptake of colicin 5 in the respective colicins. During evolution, the DNA encoding colicin activity and binding to the Tsx receptor was apparently recombined with two different DNA fragments that determined different uptake routes, leading to the differences observed in colicin K and colicin 5 import.  相似文献   

12.
Six different hybrid colicins were constructed by recombining various domains of the two pore-forming colicins A and E1. These hybrid colicins were purified and their properties were studied. All of them were active against sensitive cells, although to varying degrees. From the results, one can conclude that: (1) the binding site of OmpF is located in the N-terminal domain of colicin A; (2) the OmpF, TolB and TolR dependence for translocation is also located in this domain; (3) the TolC dependence for colicin E1 is located in the N-terminal domain of colicin E1; (4) the 183 N-terminal amino acid residues of colicin E1 are sufficient to promote E1AA uptake and thus probably colicin E1 uptake; (5) there is an interaction between the central domain and C-terminal domain of colicin A; (6) the individual functioning of different domains in various hybrids suggests that domain interactions can be reconstituted in hybrids that are fully active, whereas in others that are much less active, non-proper domain interactions may interfere with translocation; (7) there is a specific recognition of the C-terminal domains of colicin A and colicin E1 by their respective immunity proteins.  相似文献   

13.
Using the M13 dideoxy sequencing technique, we have established the DNA sequences of colicins E2 and E3 which encompass the receptor-binding and the catalytic domains of each of the nucleases, and their immunity (imm) genes. The imm gene of plasmid ColE2-P9 is 255 bp long and is separated from the end of the col gene by a dinucleotide. This gene pair is arranged similarly in plasmid ColE3-CA38 except that the intergenic space is 9 bp and the E3 imm gene is one codon shorter than its E2 counterpart. Comparisons of the E2 and E3 imm sequences indicate considerable divergence whereas the receptor-binding domains of both colicins are highly conserved. The two nuclease domains appear to share some sequence homology. A possible evolutionary relationship between colicin E3 and other microbial extracellular ribonucleases is also suggested from the sequence alignment analysis.  相似文献   

14.
BACKGROUND: E colicin proteins have three functional domains, each of which is implicated in one of the stages of killing Escherichia coli cells: receptor binding, translocation and cytotoxicity. The central (R) domain is responsible for receptor-binding activity whereas the N-terminal (T) domain mediates translocation, the process by which the C-terminal cytotoxic domain is transported from the receptor to the site of its cytotoxicity. The translocation of enzymatic E colicins like colicin E9 is dependent upon TolB but the details of the process are not known. RESULTS: We have demonstrated a protein-protein interaction between the T domain of colicin E9 and TolB, an essential component of the tol-dependent translocation system in E. coli, using the yeast two-hybrid system. The crystal structure of TolB, a procaryotic tryptophan-aspartate (WD) repeat protein, reveals an N-terminal alpha + beta domain based on a five-stranded mixed beta sheet and a C-terminal six-bladed beta-propeller domain. CONCLUSIONS: The results suggest that the TolB-box residues of the T domain of colicin E9 interact with the beta-propeller domain of TolB. The protein-protein interactions of other beta-propeller-containing proteins, the yeast yPrp4 protein and G proteins, are mediated by the loops or outer sheets of the propeller blades. The determination of the three-dimensional structure of the T domain-TolB complex and the isolation of mutations in TolB that abolish the interaction with the T domain will reveal fine details of the protein-protein interaction of TolB and the T domain of E colicins.  相似文献   

15.
The nucleotide sequences for colicin Ia and colicin Ib structural and immunity genes were determined. The two colicins each consist of 626 amino acid residues. Comparison of the two sequences along their lengths revealed that the two colicins are nearly identical in the N-terminal 426 amino acid residues. The C-terminal 220 amino acid residues of the colicins are only 60% identical, suggesting that this is the region most likely recognized by their cognate immunity proteins. The predicted proteins for the colicin immunity proteins would contain 111 amino acids for the colicin Ia immunity protein and 115 amino acids for the colicin Ib immunity protein. The colicin immunity proteins have no detectable DNA or amino acid homology but do exhibit a conservation of overall hydrophobicity. The colicin immunity genes lie distal to and in opposite orientation to the colicin structural genes. The colicin Ia immunity protein was purified to apparent homogeneity by a combination of isoelectric focusing and preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The N-terminal amino acid sequence of the purified Ia immunity protein was determined and was found to be in perfect agreement with that predicted from the DNA sequence of its structural gene. The Ia immunity protein is not a processed membrane protein.  相似文献   

16.
The nucleotide sequence of a 2.4 kb Dral-EcoRV fragment of pColD-CA23 DNA was determined. The segment of DNA contained the colicin D structural gene (cda) and the colicin D immunity gene (cdi). From the nucleotide sequence it was deduced that colicin D had a molecular weight of 74683D and that the immunity protein had a molecular weight of 10057D. The amino-terminal portion of colicin D was found to be 96% homologous with the same region of colicin B. Both colicins share the same cell-surface receptor, FepA, and require the TonB protein for uptake. A putative TonB box pentapeptide sequence was identified in the amino terminus of the colicin D protein sequence. Since colicin D inhibits protein synthesis, it was unexpected that no homology was found between the carboxy-terminal part of this colicin and that of the protein synthesis inhibiting colicin E3 and cloacin DF13. This could indicate that colicin D does not function in the same manner as the latter two bacteriocins. The observed homology with colicin B supports the domain structure concept of colicin organization. The structural organization of the colicin operon is discussed. The extensive amino-terminal homology between colicins D and B, and the strong carboxy-terminal homology between colicins B, A, and N suggest an evolutionary assembly of colicin genes from a few DNA fragments which encode the functional domains responsible for colicin activity and uptake.  相似文献   

17.
Colicin B (55 kDa) is a cytotoxic protein that recognizes the outer membrane transporter, FepA, as a receptor and, after gaining access to the cytoplasmic membranes of sensitive Escherichia coli cells, forms a pore that depletes the electrochemical potential of the membrane and ultimately results in cell death. To begin to understand the series of dynamic conformational changes that must occur as colicin B translocates from outer membrane to cytoplasmic membrane, we report here the crystal structure of colicin B at 2.5 A resolution. The crystal belongs to the space group C2221 with unit cell dimensions a = 132.162 A, b = 138.167 A, c = 106.16 A. The overall structure of colicin B is dumbbell shaped. Unlike colicin Ia, the only other TonB-dependent colicin crystallized to date, colicin B does not have clearly structurally delineated receptor-binding and translocation domains. Instead, the unique N-terminal lobe of the dumbbell contains both domains and consists of a large (290 residues), mostly beta-stranded structure with two short alpha-helices. This is followed by a single long ( approximately 74 A) helix that connects the N-terminal domain to the C-terminal pore-forming domain, which is composed of 10 alpha-helices arranged in a bundle-type structure, similar to the pore-forming domains of other colicins. The TonB box sequence at the N-terminus folds back to interact with the N-terminal lobe of the dumbbell and leaves the flanking sequences highly disordered. Comparison of sequences among many colicins has allowed the identification of a putative receptor-binding domain.  相似文献   

18.
It has long been suggested that the import of nuclease colicins requires protein processing; however it had never been formally demonstrated. Here we show that two RNase colicins, E3 and D, which appropriate two different translocation machineries to cross the outer membrane (BtuB/Tol and FepA/TonB, respectively), undergo a processing step inside the cell that is essential to their killing action. We have detected the presence of the C-terminal catalytic domains of these colicins in the cytoplasm of target bacteria. The same processed forms were identified in both colicin-sensitive cells and in cells immune to colicin because of the expression of the cognate immunity protein. We demonstrate that the inner membrane protease FtsH is necessary for the processing of colicins D and E3 during their import. We also show that the signal peptidase LepB interacts directly with the central domain of colicin D in vitro and that it is a specific but not a catalytic requirement for in vivo processing of colicin D. The interaction of colicin D with LepB may ensure a stable association with the inner membrane that in turn allows the colicin recognition by FtsH. We have also shown that the outer membrane protease OmpT is responsible for alternative and distinct endoproteolytic cleavages of colicins D and E3 in vitro, presumably reflecting its known role in the bacterial defense against antimicrobial peptides. Even though the OmpT-catalyzed in vitro cleavage also liberates the catalytic domain from colicins D and E3, it is not involved in the processing of nuclease colicins during their import into the cytoplasm.  相似文献   

19.
Colicins use two envelope multiprotein systems to reach their cellular target in susceptible cells of Escherichia coli : the Tol system for group A colicins and the TonB system for group B colicins. The N-terminal domain of colicins is involved in the translocation step. To determine whether it interacts in vivo with proteins of the translocation system, constructs were designed to produce and export to the cell periplasm the N-terminal domains of colicin E3 (group A) and colicin B (group B). Producing cells became specifically tolerant to entire extracellular colicins of the same group. The periplasmic N-terminal domains therefore compete with entire colicins for proteins of the translocation system and thus interact in situ with these proteins on the inner side of the outer membrane. In vivo cross-linking and co-immunoprecipitation experiments in cells producing the colicin E3 N-terminal domain demonstrated the existence of a 120 kDa complex containing the colicin domain and TolB. After in vitro cross-linking experiments with these two purified proteins, a 120 kDa complex was also obtained. This suggests that the complex obtained in vivo contains exclusively TolB and the colicin E3 domain. The N-terminal domain of a translocation-defective colicin E3 mutant was found to no longer interact with TolB. Hence, this interaction must play an important role in colicin E3 translocation.  相似文献   

20.
Eight reagents specifically modifying amino acids were applied to cells of a standardEscherichia coli colicin indicator strain to followin vivo changes of its binding capacity for colicins E1–E3 and hence the binding domains (epitopes) for them in the outer membrane receptor protein BtuB. The effect of these reagents was also investigated in a mutant strain carrying an extensive BtuB deletion. The following differences of the binding epitopes could be ascertained.Colicin E1: Blockage of OH-groups, just as N-substitution of His and modification of Arg and Trp enhance binding of colicin E1. In the deleted receptor, also abolition of carboxylic anion bonds enhances its affinity for colicin E1. It follows that colicin E1 is bound, most of all, to the hydrophobic domain A (loops 1+2) of BtuB.Colicins E2 and E3: both exert rather analogous binding parameters. In contrast to E1, O-substitution of Ser and Thr dramatically decreases the E2 and E3 binding, similarly to modification of Lys. There is also a clear difference in the binding affinity of the domain for E2 and/or E3 and for E1 following modifications of their Arg and His. Colicins E2 and E3 are rather bound to the hydrophilic domain B (loops 5–7) of the receptor. In this respect, interactions of colicins E2 and E3 with deeper parts of A and B domains (Trp, several Arg, Lys and His residues) exhibited subtle differences. Acidic pH (4.5–6.0) shows a positive, while pH 7.0–8.5 a rather negative impact on the receptor-binding function for the colicins. It was clearly demonstrated that there is just a partial difference between the binding behavior of colicins E1, E2 and/or E3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号