首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Using recombinant retroviral transduction, we have introduced the heparin/heparan sulfate (HS) 3-O-sulfotransferase 1 (3-OST-1) gene into Chinese hamster ovary (CHO) cells. Expression of 3-OST-1 confers upon CHO cells the ability to produce anticoagulantly active HS (HS(act)). To understand how 6-OST and other proteins regulate HS(act) biosynthesis, a CHO cell clone with three copies of 3-OST-1 was chemically mutagenized. Resulting mutants that make HS but are defective in generating HS(act) were single-cell-cloned. One cell mutant makes fewer 6-O-sulfated residues. Modification of HS chains from the mutant with pure 6-OST-1 and 3'-phosphoadenosine 5'-phosphosulfate increased HS(act) from 7% to 51%. Transfection of this mutant with 6-OST-1 created a CHO cell line that makes HS, 50% of which is HS(act). We discovered in this study that (i) 6-OST-1 is a limiting enzyme in the HS(act) biosynthetic pathway in vivo when the limiting nature of 3-OST-1 is removed; (ii) HS chains from the mutant cells serve as an excellent substrate for demonstrating that 6-OST-1 is the limiting factor for HS(act) generation in vitro; (iii) in contradiction to the literature, 6-OST-1 can add 6-O-sulfate to GlcNAc residues, especially the critical 6-O-sulfate in the antithrombin binding motif; (iv) both 3-O- and 6-O-sulfation can be the final step in HS(act) biosynthesis in contrast to prior publications that concluded 3-O-sulfation is the final step in HS(act) biosynthesis; (v), in the presence of HS interacting protein peptide, 3-O-sulfate-containing sugars can be degraded into disaccharides by heparitinase digestion as demonstrated by capillary high performance liquid chromatography coupled with mass spectrometry.  相似文献   

2.
3-O-Sulfation of glucosamine by heparan sulfate D-glucosaminyl 3-O-sulfotransferase (3-OST-1) is the key modification in anticoagulant heparan sulfate synthesis. However, the heparan sulfates modified by 3-OST-2 and 3-OST-3A, isoforms of 3-OST-1, do not have anticoagulant activity, although these isoforms transfer sulfate to the 3-OH position of glucosamine residues. In this study, we characterize the substrate specificity of purified 3-OST-3A at the tetrasaccharide level. The 3-OST-3A enzyme was purified from Sf9 cells infected with recombinant baculovirus containing 3-OST-3A cDNA. Two 3-OST-3A-modified tetrasaccharides were purified from the 3-O-(35)S-sulfated heparan sulfate that was digested by heparin lyases. These tetrasaccharides were analyzed using nitrous acid and enzymatic degradation combined with matrix-assisted laser desorption/ionization-mass spectrometry. Two novel tetrasaccharides were discovered with proposed structures of DeltaUA2S-GlcNS-IdoUA2S-[(35)S]GlcNH(2)3S and DeltaUA2S-GlcNS-IdoUA2S-[3-(35)S]GlcNH(2)3S6S . The results demonstrate that 3-OST-3A sulfates N-unsubstituted glucosamine residues, and the 3-OST-3A modification sites are probably located in defined oligosaccharide sequences. Our study suggests that oligosaccharides with N-unsubstituted glucosamine are precursors for sulfation by 3-OST-3A. The intriguing linkage between N-unsubstituted glucosamine and the 3-O-sulfation by 3-OST-3A may provide a clue to the potential biological functions of 3-OST-3A-modified heparan sulfate.  相似文献   

3.
The 3-O-sulfation of glucosamine by heparan sulfate 3-O-sulfotransferase-1 (3-OST-1) is a key modification step during the biosynthesis of anticoagulant heparan sulfate (HS). In this paper, we present evidence of a conformational change that occurs in 3-OST-1 upon binding to heparan sulfate. The intrinsic fluorescence of 3-OST-1 was increased in the presence of HS, suggesting a conformational change. This apparent conformational change was further investigated using differential chemical modification of 3-OST-1 to measure the solvent accessibility of the lysine residues. 3-OST-1 was treated with acetic anhydride in either the presence or absence of HS using both acetic anhydride and hexadeuterioacetic anhydride under nondenaturing and denaturing conditions, respectively. The relative reactivity of the lysine residues to acetylation and [2H] acetylation in the presence or absence of HS was analyzed by measuring the ratio of acetylated and deuterioacetylated peptides using matrix-assisted laser desorption ionization mass spectrometry. The solvent accessibilities of the lysine residues were altered differentially depending on their location. In particular, we observed a group of lysine residues in the C-terminus of 3-OST-1 that become more solvent accessible when 3-OST-1 binds to HS. This observation indicates that a conformational change could be occurring during substrate binding. A truncated mutant of 3-OST-1 that lacked this C-terminal region was expressed and found to exhibit a 200-fold reduction in sulfotransferase activity. The results from this study will contribute to our understanding of the interactions between 3-OSTs and HS.  相似文献   

4.
The 3-O-sulfation of glucosamine is a key modification step during the biosynthesis of anticoagulant heparan sulfate (HS). Both heparan sulfate 3-O-sulfotransferase -1 (3-OST-1) and 3-O-sulfotransferase-5 (3-OST-5) transfer sulfate to the 3-OH group of glucosamine to generate antithrombin-binding heparan sulfate (HS(act)). Here, we reported the isolation and characterization of the antithrombin-binding HS oligosaccharides generated by 3-OST-5 (3-OST-5 oligo(act)). (3)H-labeled HS of Chinese hamster ovary cells was exhaustively modified by 3-OST-1 to remove the 3-OST-1 modification sites followed by antithrombin-affinity fractionation. The non-antithrombin-binding fraction of 3-OST-1 pretreated HS was further modified by 3-OST-5 to generate additional antithrombin-binding HS, which was designated as 3-OST-5 HS(act). Structural analysis of 3-OST-5 HS(act) revealed that the antithrombin-binding site of 3-OST-5 HS(act) is located within a domain clustered with N-sulfated glucosamine units. We also isolated 3-OST-5 antithrombin-binding oligosaccharides (3-OST-5 oligo(act)) from high pH nitrous acid degraded 3-OST-5 HS(act). A disaccharide analysis revealed that 3-OST-5 oligo(act) were composed of multiple 3-O-sulfated glucosamine units. Our results provide additional insights on the relationship between the anticoagulant activity and structure of HS.  相似文献   

5.
Chen J  Duncan MB  Carrick K  Pope RM  Liu J 《Glycobiology》2003,13(11):785-794
Heparan sulfate 3-O-sulfotransferase transfers sulfate to the 3-OH position of a glucosamine to generate 3-O-sulfated heparan sulfate (HS), which is a rare component in HS from natural sources. We previously reported that 3-O- sulfotransferase isoform 5 (3-OST-5) generates both an antithrombin-binding site to exhibit anticoagulant activity and a binding site for herpes simplex virus 1 glycoprotein D to serve as an entry receptor for herpes simplex virus. In this study, we characterize the substrate specificity of 3-OST-5 using the purified enzyme. The enzyme was expressed in insect cells using the baculovirus expression approach and was purified by using heparin-Sepharose and 3',5'-ADP- agarose chromatographies. As expected, the purified enzyme generates both an antithrombin binding site and a glycoprotein D binding site. We isolated IdoUA-AnMan3S and IdoUA-AnMan3S6S from nitrous acid-degraded 3-OST-5-modified HS (pH 1.5), suggesting that 3-OST-5 enzyme sulfates the glucosamine residue that is linked to an iduronic acid residue at the nonreducing end. We also isolated a disaccharide with a structure of DeltaUA2S-GlcNS3S and a tetrasaccharide with a structure of DeltaUA2S-GlcNS-IdoUA2S-GlcNH23S6S from heparin lyases-digested 3-OST-5-modified HS. Our results suggest that 3-OST-5 enzyme sulfates both N-sulfated glucosamine and N-unsubstituted glucosamine residues. Taken together, the results indicate that 3-OST-5 has broader substrate specificity than those of 3-OST-1 and 3-OST-3. The unique substrate specificity of 3-OST-5 serves as an additional tool to study the mechanism for the biosynthesis of biologically active HS.  相似文献   

6.
Heparan sulfate 3-O-sulfotransferase transfers sulfate to the 3-OH position of a glucosamine residue of heparan sulfate (HS) to form 3-O-sulfated HS. The 3-O-sulfated glucosamine residue contributes to two important biological functions of HS: binding to antithrombin and thereby carrying anticoagulant activity, and binding to herpes simplex viral envelope glycoprotein D to serve as an entry receptor for herpes simplex virus 1. A total of five HS 3-O-sulfotransferase isoforms were reported previously. Here we report the isolation and characterization of a novel HS 3-O-sulfotransferase isoform, designated as HS 3-O-sulfotransferase isoform 5 (3-OST-5). 3-OST-5 cDNA was isolated from a human placenta cDNA library and expressed in COS-7 cells. The disaccharide analysis of 3-OST-5-modified HS revealed that 3-OST-5 generated at least three 3-O-sulfated disaccharides as follows: IdoUA2S-AnMan3S, GlcUA-AnMan3S6S, and IdoUA2S-AnMan3S6S. Transfection of the plasmid expressing 3-OST-5 rendered wild type Chinese hamster ovary cells susceptible to the infection by herpes simplex virus 1, suggesting that 3-OST-5-modified HS serves as an entry receptor for herpes simplex virus 1. In addition, 3-OST-5-modified HS bound to herpes simplex viral envelope protein glycoprotein D. Furthermore, we found that 3-OST-5-modified HS also bound to antithrombin, suggesting that 3-OST-5 also produces anticoagulant HS. In summary, our results indicate that a new member of 3-OST family generates both anticoagulant HS and an entry receptor for herpes simplex virus 1. These results provide a new insight regarding the mechanism for the biosynthesis of biologically active HS.  相似文献   

7.
Many of the biological functions of heparan sulfate (HS) proteoglycans can be attributed to specialized structures within HS moieties, which are thought to modulate binding and function of various effector proteins. Cyclophilin B (CyPB), which was initially identified as a cyclosporin A-binding protein, triggers migration and integrin-mediated adhesion of peripheral blood T lymphocytes by a mechanism dependent on interaction with cell surface HS. Here we determined the structural features of HS that are responsible for the specific binding of CyPB. In addition to the involvement of 2-O,6-O, and N-sulfate groups, we also demonstrated that binding of CyPB was dependent on the presence of N-unsubstituted glucosamine residues (GlcNH2), which have been reported to be precursors for sulfation by 3-O-sulfotransferases-3 (3-OST-3). Interestingly, 3-OST-3B isoform was found to be the main 3-OST isoenzyme expressed in peripheral blood T lymphocytes and Jurkat T cells. Moreover, down-regulation of the expression of 3-OST-3 by RNA interference potently reduced CyPB binding and consequent activation of p44/42 mitogen-activated protein kinases. Altogether, our results strongly support the hypothesis that 3-O-sulfation of GlcNH2 residues could be a key modification that provides specialized HS structures for CyPB binding to responsive cells. Given that 3-O-sulfation of GlcNH2-containing HS by 3-OST-3 also provides binding sites for glycoprotein gD of herpes simplex virus type I, these findings suggest an intriguing structural linkage between the HS sequences involved in CyPB binding and viral infection.  相似文献   

8.
Safaiyan F  Lindahl U  Salmivirta M 《Biochemistry》2000,39(35):10823-10830
The N-sulfated regions (NS domains) represent the modified sequences of heparan sulfate chains and mediate interactions of the polysaccharide with proteins. We have investigated the relationship between the type/extent of polymer modification and the length of NS domains in heparan sulfate species from human aorta, bovine kidney, and cultured NMuMG and MDCK cells. C5 epimerization of D-glucuronic acid to L-iduronic acid was found to be extensive and essentially similar in all heparan sulfate species studied, regardless of domain size, whereas the subsequent 2-O-sulfation of the formed iduronic acid residues varies appreciably. In aorta heparan sulfate, up to 90% of the formed iduronate residues were 2-O-sulfated, whereas in kidney heparan sulfate 2-O-sulfation occurred only in 相似文献   

9.
Heparan sulfate (HS) glycosaminoglycans are a structurally diverse class of complex biomolecules that modulate many important events at the cell surface and within the extracellular matrix and whose structural heterogeneity derives largely from the sequence-specific N- and O-sulfations catalyzed by an extensive repertoire of sulfating enzymes. We have expressed the human heparan sulfate 3-OST-1 isoform in Escherichia coli and subsequently purified a soluble, active enzyme. To assess its functionality, we determined the kinetic parameters for the recombinant 3-O-sulfotransferase-1 using a radiochemical assay that directly measures the 3-O-sulfation of unlabeled bovine kidney heparan sulfate in vitro using [(35)S]PAPS as the sulfate donor. The apparent K(m) values measured were in the low micromolar range (K(HS)(m) = 4.3 microM; K(PAPS)(m) = 38.6 microM); V(max) values of 18 and 21 pmol sulfate/min/pmol of enzyme for HS and PAPS, respectively. These values were compared with kinetic parameters likewise measured for recombinant 3-OST-1 purified from baculovirus-infected sf9 cells. The two enzymes appear to modify heparan sulfate in vitro to roughly the same extent and with comparable specificities. The expression of 3-OST-1 in E. coli represents an important step in subsequent structure-function studies.  相似文献   

10.
3-O-sulfation of heparan sulfate (HS) is the rarest modification within heparan sulfate biosynthesis resulting in unique biological activities. Heparan sulfate d-glucosaminyl 3-O-sulfotransferase-3A (3-OST-3A) (EC 2.8.2.23) generates a binding site for the envelope glycoprotein D (gD) of herpes simplex virus 1. We have expressed the sulfotransferase domain of the human heparan sulfate 3-OST-3A isoform in Escherichia coli and subsequently purified the active enzyme which was found to be present as an oligomer under nonreducing conditions. The activity of the enzyme was tested by a novel gD-dependent gel mobility assay. A biophysical characterisation of 3-OST-3A was performed to study ligand binding and ligand-induced structural changes. Interestingly, the natural substrate HS did not cause a secondary structural change in the enzyme, whereas heparin and chondroitin sulfate did, both of which also exhibited similar high affinity binding to 3-OST-3A compared to HS as detected by isothermal fluorescence titrations. In cross-link assays, only HS was found to induce high molecular aggregates of 3-OST-3A whereas other GAG ligands did not or even inhibited enzyme oligomerisation like the K5 polysaccharide, which was nevertheless found to bind to the enzyme. We therefore conclude that since 3-OST-3A is able to bind also non-substrate GAG ligands with high affinity, discrimination among ligands is triggered by protein oligomerisation.  相似文献   

11.
Heparan sulfate (HS) glucosaminyl 3-O-sulfotranferases sulfate the C3-hydroxyl group of certain glucosamine residues on heparan sulfate. Six different 3-OST isoforms exist, each of which can sulfate very distinct glucosamine residues within the HS chain. Among these isoforms, 3-OST1 has been shown to play a role in generating ATIII-binding HS anticoagulants whereas 3-OST2, 3-OST3, 3-OST4 and 3OST-6 have been shown to play a vital role in generating gD-binding HS chains that permit the entry of herpes simplex virus type 1 into cells. 3-OST5 has been found to generate both ATIII- and gD-binding HS motifs. Previous studies have examined the substrate specificities of all the 3-OST isoforms using HS polysaccharides. However, very few studies have examined the contribution of the epimer configuration of neighboring uronic acid residues next to the target site to 3-OST action. In this study, we utilized a well-defined synthetic oligosaccharide library to examine the substrate specificity of 3-OST3a and compared it to 3-OST1. We found that both 3-OST1 and 3-OST3a preferentially sulfate the 6-O-sulfated, N-sulfoglucosamine when an adjacent iduronyl residue is located to its reducing side. On the other hand, 2-O-sulfation of this uronyl residue can inhibit the action of 3-OST3a on the target residue. The results reveal novel substrate sites for the enzyme actions of 3-OST3a. It is also evident that both these enzymes have promiscuous and overlapping actions that are differentially regulated by iduronyl 2-O-sulfation.  相似文献   

12.
Cell surface heparan sulfate (HS) proteoglycans are required in development and postnatal repair. Important classes of ligands for HS include growth factors and extracellular matrix macromolecules. For example, the focal adhesion component syndecan-4 interacts with the III(12-14) region of fibronectin (HepII domain) through its HS chains. The fine structure of HS is critical to growth factor responses, and whether this extends to matrix ligands is unknown but is suggested from in vitro experiments. Cell attachment to HepII showed that heparin oligosaccharides of >or=14 sugar residues were required for optimal inhibition. The presence of N-sulfated glucosamine in the HS was essential, whereas 2-O-sulfation of uronic acid or 6-O-sulfation of glucosamine had marginal effects. In the more complex response of focal adhesion formation through syndecan-4, N-sulfates were again required and also glucosamine 6-O-sulfate. The significance of polymer N-sulfation and sulfated domains in HS was confirmed by studies with mutant Chinese hamster ovary cells where heparan sulfation was compromised. Finally, focal adhesion formation was absent in fibroblasts synthesizing short HS chains resulting from a gene trap mutation in one of the two major glucosaminoglycan polymerases (EXT1). Several separate, specific properties of cell surface HS are therefore required in cell adhesion responses to the fibronectin HepII domain.  相似文献   

13.
Heparan sulfate interacts with antithrombin, a protease inhibitor, to regulate blood coagulation. Heparan sulfate 3-O-sulfotransferase isoform 1 performs the crucial last step modification in the biosynthesis of anticoagulant heparan sulfate. This enzyme transfers the sulfuryl group (SO(3)) from 3'-phosphoadenosine 5'-phosphosulfate to the 3-OH position of a glucosamine residue to form the 3-O-sulfo glucosamine, a structural motif critical for binding of heparan sulfate to antithrombin. In this study, we report the crystal structure of 3-O-sulfotransferase isoform 1 at 2.5-A resolution in a binary complex with 3'-phosphoadenosine 5'-phosphate. This structure reveals residues critical for 3'-phosphoadenosine 5'-phosphosulfate binding and suggests residues required for the binding of heparan sulfate. In addition, site-directed mutagenesis analyses suggest that residues Arg-67, Lys-68, Arg-72, Glu-90, His-92, Asp-95, Lys-123, and Arg-276 are essential for enzymatic activity. Among these essential amino acid residues, we find that residues Arg-67, Arg-72, His-92, and Asp-95 are conserved in heparan sulfate 3-O-sulfotransferases but not in heparan N-deacetylase/N-sulfotransferase, suggesting a role for these residues in conferring substrate specificity. Results from this study provide information essential for understanding the biosynthesis of anticoagulant heparan sulfate and the general mechanism of action of heparan sulfate sulfotransferases.  相似文献   

14.
Many heparan sulfate (HS) 3-O-sulfotransferase (3-OST) isoforms generate cellular receptors for herpes simplex virus type-1 (HSV-1) glycoprotein D (gD). Interestingly, the ability of 3-OST-4 to mediate HSV-1 entry and cell-to-cell fusion has not been determined, although it is predominantly expressed in the brain, a primary target of HSV-1 infections. We report that expression of 3-OST-4 can render Chinese hamster ovary K1 (CHO-K1) cells susceptible to entry of wild-type and a mutant (Rid1) strain of HSV-1. Evidence for generation of gD receptors by 3-OST-4 was suggested by gD-mediated interference assay and the ability of 3-OST-4 expressing CHO-K1 cells to preferentially bind HSV-1 gD, which could be reversed by prior treatment of cells with HS lyases (heparinases-II/III). In addition, 3-OST-4 expressing CHO-K1 cells acquired the ability to fuse with cells-expressing HSV-1 glycoproteins. Demonstrating specificity, the cell fusion was inhibited by soluble 3-O-sulfated forms of HS, but not unmodified HS. Taken together our results suggest a role of 3-OST-4 in HSV-1 pathogenesis.  相似文献   

15.
A heparan sulfate glycosaminoglycan chain, biotinylated at its reducing-end, was bound to a streptavidin-coated biochip. Surface plasmon resonance spectroscopy showed a low affinity interaction with antithrombin III (ATIII) when it was flowed over a surface containing heparan sulfate. ATIII bound tightly with high affinity when the same surface was enzymatically modified to using 3-O-sulfotransferase isoform 1 (3-OST-1) in the presence of 3'-phosphoadenosine 5'-phosphosulfate (PAPS). The 3-OST-1 enzyme is involved in heparan sulfate biosynthesis and introduces a critical 3-O-sulfo group into this glycosaminoglycan affording the appropriate pentasaccharide sequence capable of high affinity binding to ATIII. This experiment demonstrates the specific structural modification of a glycosaminoglycan bound to a biochip using a biosynthetic enzyme, suggesting a new approach to rapid screening glycosaminoglycan-protein interactions.  相似文献   

16.
Heparan sulfate, an extensively sulfated glycosaminoglycan abundant on cell surface proteoglycans, regulates intercellular signaling through its binding to various growth factors and receptors. In the lacrimal gland, branching morphogenesis depends on the interaction of heparan sulfate with Fgf10-Fgfr2b. To address if lacrimal gland development and FGF signaling depends on 2-O-sulfation of uronic acids and 6-O-sulfation of glucosamine residues, we genetically ablated heparan sulfate 2-O and 6-O sulfotransferases (Hs2st, Hs6st1, and Hs6st2) in developing lacrimal gland. Using a panel of phage display antibodies, we confirmed that these mutations disrupted 2-O and/or 6-O but not N-sulfation of heparan sulfate. The Hs6st mutants exhibited significant lacrimal gland hypoplasia and a strong genetic interaction with Fgf10, demonstrating the importance of heparan sulfate 6-O sulfation in lacrimal gland FGF signaling. Altering Hs2st caused a much less severe phenotype, but the Hs2st;Hs6st double mutants completely abolished lacrimal gland development, suggesting that both 2-O and 6-O sulfation of heparan sulfate contribute to FGF signaling. Combined Hs2st;Hs6st deficiency synergistically disrupted the formation of Fgf10-Fgfr2b-heparan sulfate complex on the cell surface and prevented lacrimal gland induction by Fgf10 in explant cultures. Importantly, the Hs2st;Hs6st double mutants abrogated FGF downstream ERK signaling. Therefore, Fgf10-Fgfr2b signaling during lacrimal gland development is sensitive to the content or arrangement of O-sulfate groups in heparan sulfate. To our knowledge, this is the first study to show that simultaneous deletion of Hs2st and Hs6st exhibits profound FGF signaling defects in mammalian development.  相似文献   

17.
The mechanism and inhibitors of Chlamydia trachomatis serovar L2 infection of eukaryotic host cells were studied using a tissue culture model infection system. Potent inhibition of infectivity was observed when elementary bodies (EBs) were exposed to heparin or when HeLa 229 cells were treated with heparinase. No significant inhibition was seen the other way around. The same potent inhibition was observed when EBs were exposed to chemically 2-O-desulfated heparin (2-ODS heparin), which is composed of repeating disaccharide units of IdoA-GlcNS(6S), but not when exposed to chemically 6-ODS heparin or completely desulfated and N-resulfated heparin, which is composed of repeating disaccharide units of IdoA(2S)-GlcNS or IdoA-GlcNS, respectively. The inhibitory effects of 2-ODS heparin could be seen only with oligosaccharides longer than dodecasaccharides. The mutant Chinese hamster ovary (CHO) cell line 677, which is deficient in the biosynthesis of heparan sulfate, was less sensitive to C. trachomatis infection than were wild-type CHO cells. F-17 cells, deficient in 2-O-sulfation of heparan sulfate, had the same sensitivity to infection as wild-type CHO cells did. These data suggest that infection of host cells by EBS results from the specific binding of ligand molecules with affinity for heparin on the EB surface to heparan sulfate proteoglycans on the host cell surface. This binding may depend on host cell heparan sulfate chains that are 6-O-sulfated and longer than dodecasaccharides. The 2-ODS heparin oligosaccharides may be a potential agent for the prevention of C. trachomatis infection.  相似文献   

18.
Interactions of heparin with intact human thrombospondin-1 (TSP1) and with two heparin-binding fragments of TSP1 were characterized using chemically modified heparins, a vascular heparan sulfate proteoglycan, and a series of heparin oligosaccharides prepared by partial deaminative cleavage. The avidity of TSP1 binding increased with oligosaccharide size, with plateaus at 4 to 6 and at 8 to 10 monosaccharide units. The dependence on oligosaccharide size for binding to the recombinant amino-terminal heparin-binding domain of TSP1 was the same as that of the intact TSP1 molecule but differed from that of a synthetic heparin-binding peptide from the type 1 repeats, suggesting that the interaction between intact TSP1 and heparin is primarily mediated by the amino-terminal domain. Based on activities of chemically modified heparins, binding to TSP1 depended primarily on 2-N- and 6-O-sulfation of glucosamine and to a lesser degree on 2,3-O-sulfation and the carboxyl residues of the uronic acids. In contrast, all of these modifications were required for binding of heparin to the type 1 repeat peptides. Affinity purification of heparin octasaccharides on immobilized TSP1 type 1 repeat peptides revealed a preference for oligosaccharides containing the disaccharide sequence IdoA(2-OSO(3))alpha1-4-GlcNS(6-OSO(3)). Binding of these oligosaccharides to the peptide required the Trp residues. These data demonstrate that the heparin-binding specificities of intact TSP1 and peptides from the type 1 repeats overlap with that of basic fibroblast growth factor (FGF2) and are consistent with the ability of these TSP1-derived molecules to inhibit FGF2-stimulated angiogenesis.  相似文献   

19.
The role of heparan sulfate (HS) in regulating blood coagulation has a wide range of clinical implications. In this study, we investigated the role of 3-O-sulfotransferase isoform 5 (3-OST-5) in generating anticoagulant HS in vivo. A Chinese hamster ovary cell line (3OST5/CHO) stably expressing 3-OST-5 was generated. The expression of 3-OST-5 in 3OST5/CHO cells was confirmed by Northern blot analysis, RT-PCR, and the disaccharide analyses of the HS from the cells. We also determined the effects of the HS from 3OST5/CHO on antithrombin-mediated inhibition of factor Xa. Fluorescently labeled antithrombin bound to the surface of 3OST5/CHO cells, suggesting that the antithrombin-binding HS is indeed present on the cell surface. Our results demonstrate that the 3-OST-5 gene is capable of synthesizing anticoagulant HS in CHO cells and has the potential to contribute to the biosynthesis of anticoagulant HS in humans.  相似文献   

20.
Dermatan sulfate (DS) accelerates the inhibition of thrombin by heparin cofactor II (HCII). A hexasaccharide consisting of three l-iduronic acid 2-O-sulfate (IdoA2SO3)-->N-acetyl-D-galactosamine 4-O-sulfate (GalNAc4SO3) subunits was previously isolated from porcine skin DS and shown to bind HCII with high affinity. DS from porcine intestinal mucosa has a much lower content of this disaccharide but activates HCII with potency similar to that of porcine skin DS. Therefore, we sought to characterize oligosaccharides from porcine mucosal DS that interact with HCII. DS was partially depolymerized with chondroitinase ABC, and oligosaccharides containing 2-12 monosaccharide units were isolated. The oligosaccharides were then fractionated by anion-exchange and affinity chromatography on HCII-Sepharose, and the disaccharide compositions of selected fractions were determined. We found that the smallest oligosaccharides able to bind HCII were hexasaccharides. Oligosaccharides 6-12 units long that lacked uronic acid (UA)2SO3 but contained one or two GalNAc4,6SO3 residues bound, and binding was proportional to both oligosaccharide size and number of GalNAc4,6SO3 residues. Intact DS and bound dodecasaccharides contained predominantly IdoA but little D-glucuronic acid. Decasaccharides and dodecasaccharides containing one or two GalNAc4,6SO3 residues stimulated thrombin inhibition by HCII and prolonged the clotting time of normal but not HCII-depleted human plasma. These data support the hypothesis that modification of IdoA-->GalNAc4SO3 subunits in the DS polymer by either 2-O-sulfation of IdoA or 6-O-sulfation of GalNAc can generate molecules with HCII-binding sites and anticoagulant activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号