首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Within the genomes of multicellular organisms, short tandem repeating sequences (STRs) are ubiquitous, yet usage patterns remain obscure. The repeats (AC)n and (GU)n appear frequently in the untranslated regions (UTRs) of messenger RNAs (mRNAs). To investigate STR usage patterns, we used three approaches: (1) comparisons of individual mRNA database sequences including annotations and linked references, (2) statistical analysis of complete, UTR databases and (3) study of a large gene family, the aquaporins. Among 500 (AC)n- or (GU)n-containing mRNAs, 58 (12%) had known functions. Of these, 50 (86%) encoded proteins whose activities involved membranes or lipids, including integral membrane proteins, peripheral membrane proteins, ion channels, lipid enzymes, receptors and secreted proteins. A control sequence (AU)n also occurred in mRNAs, but only 5% encoded membrane-related functions. Investigation of all reported 3' UTR sequences, demonstrated that the STR (AC)n was 9 times more common in mRNAs encoding membrane functions than in the total UTR database (P < 0.001). Similarly, (GU)n was 8 times more common in membrane-function mRNAs than in the total database (P < 0.001). These observations suggest that (AC)n and (GU)n may be UTR signals for some mRNAs encoding membrane-targeted proteins.  相似文献   

3.
4.
5.
6.
The GATA family of transcription factors in Arabidopsis and rice   总被引:17,自引:0,他引:17       下载免费PDF全文
  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
DL Prole  CW Taylor 《PloS one》2012,7(8):e42404
Fungi are major causes of human, animal and plant disease. Human fungal infections can be fatal, but there are limited options for therapy, and resistance to commonly used anti-fungal drugs is widespread. The genomes of many fungi have recently been sequenced, allowing identification of proteins that may become targets for novel therapies. We examined the genomes of human fungal pathogens for genes encoding homologues of cation channels, which are prominent drug targets. Many of the fungal genomes examined contain genes encoding homologues of potassium (K(+)), calcium (Ca(2+)) and transient receptor potential (Trp) channels, but not sodium (Na(+)) channels or ligand-gated channels. Some fungal genomes contain multiple genes encoding homologues of K(+) and Trp channel subunits, and genes encoding novel homologues of voltage-gated K(v) channel subunits are found in Cryptococcus spp. Only a single gene encoding a homologue of a plasma membrane Ca(2+) channel was identified in the genome of each pathogenic fungus examined. These homologues are similar to the Cch1 Ca(2+) channel of Saccharomyces cerevisiae. The genomes of Aspergillus spp. and Cryptococcus spp., but not those of S. cerevisiae or the other pathogenic fungi examined, also encode homologues of the mitochondrial Ca(2+) uniporter (MCU). In contrast to humans, which express many K(+), Ca(2+) and Trp channels, the genomes of pathogenic fungi encode only very small numbers of K(+), Ca(2+) and Trp channel homologues. Furthermore, the sequences of fungal K(+), Ca(2+), Trp and MCU channels differ from those of human channels in regions that suggest differences in regulation and susceptibility to drugs.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号