首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The ultrastructure of hepatic peroxisomes was investigated in Ichthyophis glutinosus (Amphibia: Gymnophiona), employing perfusion fixation and the diaminobenzidine (DAB) technique for the visualization of catalase. The majority of peroxisomes is circular or rod-shaped, although elongated particles occasionally occur. They contain a finely granular matrix, lightly stained after the DAB procedure. Their mean diameter is approximately 0.25 m. Serial sections reveal that the circular and rod-shaped peroxisomal profiles are cross and oblique sections of highly tortuous, tubular organelles exceeding 2 m in length.In addition to tubular profiles, elongated, rectangular particles, as well as straight dumbbell-shaped organelles with distinct marginal plates are observed. They range from 900 to 1650 nm in length (mean = 1200 nm). In the flattened, thin central portion of the dumbbell-shaped particle, the peroxisomal membranes form a cisterna enclosing one or two uniformly thick marginal plates, which display a definite substructure with a periodicity of 10 nm.These findings indicate that peroxisomes in the liver of Ichthyophis exhibit a complex organization. It is suggested that the organelles undergo a specific differentiation process, morphologically characterized by the formation of enlarged segments of unusual shape.This study was supported by grants from the Deutsche Forschungsgemeinschaft, Fa 146/1-2 and Sto 75/9  相似文献   

2.
Peroxisomes in the human hepatoblastoma cell line, HepG2, exhibit distinct alterations of shape, size, and distribution, dependent on culture conditions (cell density, duration in culture, and presence of specific growth factors). Although many cells with elongated tubular peroxisomes are present in thinly seeded cultures, spherical particles forming large focal clusters are found in confluent cultures. The authors have analyzed the ultrastructure and the spatial relationship of peroxisomes of HepG2 cells at different stages of differentiation, using three-dimensional (3D)-reconstruction of ultrathin serial sections, and electronic image processing. Cells were prepared for immunofluorescence using different antibodies against peroxisomal matrix and membrane proteins, as well as for electron microscopy after the alkaline 3,3′-diaminobenzidine staining for catalase. The results indicate that the tubular peroxisomes, which can reach a length of several microns, are consistently isolated, and never form an interconnected peroxisomal reticulum. At the time of disappearance of tubular peroxisomes, rows of spherical peroxisomes, arranged like beads on a string, are observed, suggesting fission of tubular ones. In differentiated confluent cultures, clusters of several peroxisomes are seen, which, by immunofluorescence, appear as large aggregates, but after 3D reconstruction consist of single spherical and angular peroxisomes without interconnections. The majority of such mature spherical peroxisomes (but not the tubular ones) exhibit tail-like, small tubular and vesicular attachments to their surface, suggesting a close functional interaction with neighboring organelles, particularly the endoplasmic reticulum, which is often observed in close vicinity of such peroxisomes.  相似文献   

3.
We have compared the effects of fixation with three commonly used fixatives upon preservation of the antigenicity of six peroxisomal proteins in rat liver using both immunohistochemical staining and Western blotting of fixed tissue extracts. The immunoreactivity of all six peroxisomal proteins was well preserved and peroxisomes were clearly identified in material fixed in Carnoy's fixative. Moreover, the corresponding proteins stained well in Western blots prepared from extracts of Carnoyfixed material. The intensity of the immunohistochemical staining was reduced at different rates for individual peroxisomal proteins after fixation in Baker's formalin, but peroxisomes were still well visualized with antibodies to catalase and some -oxidation enzymes. No evidence of immunohistochemical staining for any peroxisomal antigens was obtained after fixation in Bouin's fluid. For detection of the antibody binding sites in Carnoy's fixed material, the avidin-biotin-peroxidase complex (ABC) with aminoethyl carbazole as chromogen was found to be superior to the methods of peroxidase-antiperoxidase/diaminobenzidine and protein A-gold with silver intensification. Using Carnoy-fixative and the ABC-method, we demonstrate light microscopic immunohistochemical localization of peroxisomal antigens in several rat tissues as well as in human post-mortem liver.  相似文献   

4.
Summary We describe the immunocytochemical localization of four peroxisomal enzymes by light microscopy in human liver and kidney processed routinely by formalin fixation and paraffin embedding. Monospecific antisera against catalase and three enzymes of peroxisomal lipid -oxidation (acyl-CoA oxidase, bifunctional protein (enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase) and 3-ketoacyl-CoA thiolase) were used in conjunction with either the indirect immunoperoxidase method or the protein A—gold technique followed by silver intensification. The sections of formalin-fixed paraffin-embedded tissue had to be deparaffinized and subjected to controlled proteolysis in order to obtain satisfactory immunostaining. Under the conditions employed, peroxisomes were distinctly visualized in liver parenchymal cells with no reaction in bile duct epithelial or sinusoidal lining cells. In the kidney, peroxisomes were confined to the proximal tubular epithelial cells with negative staining of glomeruli, distal tubules and collecting ducts. A positive immunocytochemical reaction was obtained even in paraffin blocks stored for several years. The method offers a simple approach for detection of peroxisomes and evaluation of their various enzyme proteins in material processed routinely in histopathology laboratories and should prove useful in the investigation of the role of peroxisomes in human pathology for both prospective and retrospective studies.  相似文献   

5.
Summary Differential induction of serine: pyruvate aminotransferase (SPT) in rat liver parenchymal cells by administration of glucagon or di-(2-ethylhexyl)phthalate (DEHP) was studied using post-embedding immunocytochemical techniques and morphometric methods. Two groups of rats were fasted for 5 days and daily received peritoneal injection of glucagon (300 g/100 g) or physiological saline. Another two groups of rats were fed on laboratory chow with or without 2% DEHP for 2 weeks. Livers were perfusionfixed, cut into tissue sections (50–100 ), and processed to cytochemistry for catalase, immunocytochemistry for SPT, and conventional procedures for electron microscopy. The morphometric analysis showed that glucagon injection has negligible effect on the volume and numerical density and mean diameter of peroxisomes, whereas volume density of mitochondria was decreased by 25%. By DEHP administration peroxisomes were about 3-fold increased in the volume and numerical density. Mitochondria was increased about 40% in the numerical density, but unchanged in the volume density. Light and electron microscopic immunocytochemistry demonstrated that glucagon injection exclusively enhanced mitochondrial SPT, whereas DEHP administration exclusively induced in peroxisomal SPT. Quantitative analysis showed that by the glucagon injection, the labeling density of mitochondria was increased about 4-fold, but that of peroxisomes was 1.6 times as much as control, while by DEHP administration, the labeling density of peroxisomes was enhanced about 3-fold but that of mitochondria was decreased by 13%. The results clearly indicate that glucagon induces mitochondrial SPT, whereas peroxisome proliferator, DEHP induces peroxisomal SPT.  相似文献   

6.
We have studied the permeability properties of intact peroxisomes and purified peroxisomal membranes from two methylotrophic yeasts. After incorporation of sucrose and dextran in proteoliposomes composed of asolectin and peroxisomal membranes isolated from the yeasts Hansenula polymorpha and Candida boidinii a selective leakage of sucrose occurred indicating that the peroxisomal membranes were permeable to small molecules. Since the permeability of yeast peroxisomal membranes in vitro may be due to the isolation procedure employed, the osmotic stability of peroxisomes was tested during incubations of intact protoplasts in hypotonic media. Mild osmotic swelling of the protoplasts also resulted in swelling of the peroxisomes present in these cells but not in a release of their matrix proteins. The latter was only observed when the integrity of the cells was disturbed due to disruption of the cell membrane during further lowering of the concentration of the osmotic stabilizer. Stability tests with purified peroxisomes indicated that this leak of matrix proteins was not associated with the permeability to sucrose. Various attempts to mimic the in vivo situation and generate a proton motive force across the peroxisomal membranes in order to influence the permeability properties failed. Two different proton pumps were used for this purpose namely bacteriorhodopsin (BR) and reaction center-light-harvesting complex I (RCLHI complex). After introduction of BR into the membrane of intact peroxisomes generation of a pH-gradient was not or barely detectable. Since this pump readily generated a pH-gradient in pure liposomes, these results strengthened the initial observations on the leakiness of the peroxisomal membrane fragments. Generation of a membrane potential () was also not observed when RCLHI complex was introduced into vesicles of purified peroxisomal membranes. The significance of the observed permeability of isolated yeast peroxisomal membranes to small molecules with respect to current and future in vitro import studies is discussed.Abbreviations CL cardiolinin - PE phosphatidylethanolamine - PC phosphatidylcholine - MES 2-(N-Morpholino)ethanesulfonic acid - R18 octadecyl Rhodamine B Chloride - SUVs small unilamellar vesicles - RCLHI-complex reaction center-light-harvesting complex I - BR bacteriorhodopsin - DCCD N,N-dicyclohexylcarbodiimide  相似文献   

7.
Summary The ultrastructure of peroxisomes in the proximal nephron tubules of bovine kidney cortex was studied using ultrathin-sectioning, diaminobenzidine cytochemistry for the visualization of catalase, and by freeze-fracture. Peroxisomes in this nephron segment are up to 1.5 m in diameter and exhibit a peculiar angular shape, which is probably related to the occurrence of multiple straight plate-like inclusions (marginal plates) in the matrix of peroxisomes; they lie directly underneath the peroxisomal membranes. The peroxisomal membrane in such regions follows the outline of the marginal plate. The peculiar shape of peroxisomes allows their unequivocal identification in freeze-fracture preparations. Peroxisomal membranes are recognized by their flat, often rectangular appearance. Intramembrane particles are much more numerous on P-fracture faces than on E-fracture faces. A crystalline lattice-structure with a periodicity of approximately 10 nm can be observed on the flat rectangular areas of E-fracture faces. This lattice structure is intensified after prolonged freeze-etching. Intramembranous particles seem to be superimposed over this pattern. The crystalline pattern on the E-fracture faces of peroxisomal membranes is probably not a membrane structure but it reveals the structure of the membrane-associated marginal plates. A cast of the marginal-plate surface may be generated by a collapse of the peroxisomal membrane half onto the immediately underlying matrix inclusion.  相似文献   

8.
Fluorescent peptides form a new generation of analytical tools for visualizing intracellular processes and molecular interactions at the level of single cells. The peptide-based reporters combine the sensitivity of fluorescence detection with the information specificity of amino acid sequences. Recently we have succeeded in targeting a fluorescent heptapeptide (acetyl-CKGGAKL) carrying a peroxisomal targeting signal (PTS1) to peroxisomes in intact cells. The fluorophores conjugated to the PTS1-peptide were fluorescein, BODIPY and the pH-sensitive SNAFL-2. When added to cells, these fluorescent peptides were internalized at 37°C and typically visible in the cell after 15min or less. Cells lacking an active peroxisomal protein import system, as in the case of Zellweger syndrome, were stained diffusely throughout the cell. Uptake of the peptide probes was not inhibited at 4°C or when the cells were depleted of ATP. Under these conditions translocation to peroxisomes was blocked. This indicates that the uptake by cells is diffusion-driven and not an active process. Using the SNAFL-2-PTS1 peptide, we established by ratio-imaging that peroxisomes of human fibroblasts have an internal pH of 8.2. The concurrent pH gradient over the peroxisomal membrane was dissipated when an ionophore (CCCP) was added. In fibroblasts of chondrodysplasia punctata patients with defects in the peroxisomal import of proteins carrying a PTS2 sequence, import of the PTS1-peptide probe into peroxisomes appeared normal, but these peroxisomes have a pH of 6.8 equal to that of the cytosol. Coupling different fluorophores to the PTS1-peptide offers the possibility of determining in time and space as to how peroxisomes function in living cells.  相似文献   

9.
X‐linked Adrenoleukodystrophy (X‐ALD), an inherited peroxisomal metabolic neurodegenerative disorder, is caused by mutations/deletions in the ATP‐binding cassette transporter (ABCD1) gene encoding peroxisomal ABC transporter adrenoleukodystrophy protein (ALDP). Metabolic dysfunction in X‐ALD is characterized by the accumulation of very long chain fatty acids ≥ C22:0) in the tissues and plasma of patients. Here, we investigated the mitochondrial status following deletion of ABCD1 in B12 oligodendrocytes and U87 astrocytes. This study provides evidence that silencing of peroxisomal protein ABCD1 produces structural and functional perturbations in mitochondria. Activities of electron transport chain‐related enzymes and of citric acid cycle (TCA cycle) were reduced; mitochondrial redox status was dysregulated and the mitochondrial membrane potential was disrupted following ABCD1 silencing. A greater reduction in ATP levels and citrate synthase activities was observed in oligodendrocytes as compared to astrocytes. Furthermore, most of the mitochondrial perturbations induced by ABCD1 silencing were corrected by treating cells with suberoylanilide hydroxamic acid, an Histone deacetylase inhibitor. These observations indicate a novel relationship between peroxisomes and mitochondria in cellular homeostasis and the importance of intact peroxisomes in relation to mitochondrial integrity and function in the cell types that participate in the pathobiology of X‐ALD. These observations suggest suberoylanilide hydroxamic acid as a potential therapy for X‐ALD.

  相似文献   


10.
EMBO J 32 18, 2439–2453 doi:10.1038/emboj.2013.170; published online July302013During cell division, peroxisomes are inherited to daughter cells but some are retained in the mother cells. Our knowledge on how peroxisome inheritance and retention is balanced and how this is regulated for each individual organelle remains incompletely understood. The new findings by Knoblach et al (2013) published in this issue of The EMBO Journal demonstrate that Inp1p functions as a bridging protein to connect ER-resident Pex3p and peroxisomal Pex3p, which anchors peroxisomes to the cortical ER for organelle retention in the mother cell. Asymmetric peroxisome division generates peroxisomes, which lack Inp1p but contain Inp2p instead, and only these peroxisomes are primed for myosin-driven transport to daughter cells.Peroxisomes are single membrane-bound organelles found in almost all eukaryotic cells. They harbour a wide spectrum of metabolic activities that vary among different species, developmental stages and cell types (Schlüter et al, 2010). Eukaryotic cells have evolved elaborate mechanisms to ensure the maintenance of peroxisomes. New peroxisomes can form either de novo by budding from the ER or by growth and division of pre-existing organelles (Lazarow and Fujiki, 1985; Hoepfner et al, 2005). Despite the fact that peroxisomes can form de novo, yeast favours to multiply peroxisomes by growth and division (Motley and Hettema, 2007). It therefore has to be ensured that both mother and daughter cells get their share of peroxisomes during cell division. Thus, some peroxisomes need to be retained in the mother cell, while other peroxisomes are directed for transport and inheritance to daughter cells. Both processes have to be balanced to ensure a successful distribution of the organelles between the mother cell and the newly formed bud.The molecular details of how an even peroxisome distribution of dividing cells are maintained have now been disclosed by Knoblach et al (2013), advancing an exciting scientific journey. This journey originally started by the finding that the partitioning of peroxisomes between mother cell and bud is dependent on actin filaments and the myosin motor protein Myo2p (Hoepfner et al, 2001). Inp1p and Inp2p were identified by the Rachubinski group and Inp2p turned out to function as the peroxisomal tether, which interacts with Myo2p and hooks the organelle onto the actin-track on the road to the bud (Fagarasanu et al, 2006). Inp1p was shown to be a peripheral peroxisomal membrane protein, which acts as a peroxisome-retention factor, tethering peroxisomes to putative anchoring structures within the mother cell and bud (Fagarasanu et al, 2005). Later on, Pex3p, a multi-functional protein of the peroxisomal life cycle, was identified as peroxisomal membrane anchor of Inp1p (Munck et al, 2009). Until now, it was therefore known that peroxisomes hook onto Inp1p by Pex3p and Inp1p connects peroxisomes to cortical structures of unknown nature. Thus, it was an open question how peroxisomes are trapped in the mother cell and which additional factors are required for this process.The work of Knoblach et al (2013) published in this issue of The EMBO Journal now unravelled this mystery, allowing for a more complete picture of the whole process of peroxisome retention and inheritance (Figure 1A). The authors show that peroxisomes are recruited to mitochondria that artificially expose Inp1p on their surface, clearly demonstrating that Inp1p acts as a peroxisome tether. Most importantly, they identified the mechanism of how peroxisomes are directed and anchored to the cell cortex: the ER acts as a membrane anchor for the retention of peroxisomes during cell division. In vitro binding assays revealed that Inp1p contains two independent binding sites for Pex3p, located at the C- and the N-terminal region of the protein, respectively. Since Pex3p exhibits a dual localization at the peroxisomal membrane and at the ER, Inp1p seems to bind to Pex3p of both compartments in vivo and thus link Pex3p molecules across two membranes. Indeed, it turned out that ER-located Pex3p recruits Inp1p to discrete foci in close proximity to the cortical ER. Using the split-GFP assay, the authors confirmed that Inp1p interacts not only with ER-bound Pex3p but also with Pex3p in the peroxisomal membrane. Thus, the core of the ER-peroxisome tether is generated by the Inp1p-mediated linkage of ER-bound Pex3p with peroxisomal Pex3p. The functional relevance of this ER-peroxisome tether is disclosed by the phenotype of peroxisome inheritance mutants. Accordingly, the Pex3p–V81E mutant, affected in the recruitment of Inp1p to the ER, is characterized by a defect of ER retention of peroxisomes, which drives all peroxisomes into the bud and leaves no peroxisomes in the mother cell (Figure 1B).Open in a separate windowFigure 1Peroxisome retention and inheritance (A) free peroxisomes in the mother cell (stage I) are anchored to cortical ER by a tethering complex consisting of two molecules Pex3p, one located at the ER and the other associated with the peroxisomal membrane and Inp1p, which connects the ER-bound and peroxisome-bound Pex3p (stage II). Accordingly, Inp1p contains two Pex3p-binding domains, allowing the protein to function as a bridge between the two Pex3p-containing organelles. Peroxisomes elongate and divide, and Inp2p is loaded onto peroxisomes with an asymmetric distribution (stage III). The peroxisomal population that lacks Inp2p is anchored to the cortical ER, whereas the population of cytosolic peroxisomes containing Inp2p is destined for the transport to the bud (stage IV). To this end, Inp2p interacts with Myo2p and thus triggers the movement of the peroxisome along actin cables to the bud. The process is completed when the peroxisome is released from Myo2p in the bud (stage I). In wild-type cells, the described retention and inheritance process leads to an equal distribution of peroxisomes between mother cell. The described molecular mechanism results in a regulated balance of retention and inheritance of peroxisomes, ensuring that both the mother cell and the newly formed bud gain their share of peroxisomes. (B) However, when the endogenous Pex3p is replaced by a Pex3p-mutant (Pex3p–V81E), which lost its strong binding capacity to Inp1p, peroxisomes are not anchored to the cortical ER anymore, with the consequence that during cells'' division the entire organelle population is transported to the bud and peroxisomes are not retained in the mother cell.To piece together the puzzle, a final gap had to be filled. How is the peroxisomal fraction remaining in the mother cell discriminated from those ferried to the bud during cell division? In budding wild-type cells, Inp1p exhibits a striking asymmetry along the cell division axis. Knoblach et al (2013) show that most peroxisomes of the mother cell contain Inp1p, while peroxisomes that are ferried towards the bud contain little or no Inp1p. Live-cell video microscopy of individual peroxisome revealed that Inp1p-containing peroxisomes were mostly immobile and retained in the mother cell, while highly mobile peroxisomes contained Inp2p and were predominantly found in the bud. The question remains of how peroxisomes lacking Inp1p but containing Inp2p are formed? To tackle this question, the authors took advantage of the fact that cells defective in peroxisome division contain single enlarged peroxisomes and project a tubular extension into the bud upon cell division (Kuravi et al, 2006). Remarkably, Knoblach et al (2013) show that Inp1p and Inp2p localized to opposite ends of the giant peroxisome. Inp1p was confined to the part of the peroxisome that was retained in the mother cell, while Inp2p enriched at the tubule that protruded into the bud.In summary, Knoblach et al (2013) discovered the ER as the site for peroxisome binding to the cell cortex that is responsible for the retention of peroxisomes in the mother cells during cell division and identified Inp1p as a molecular hinge connecting Pex3p of peroxisomal and ER membranes. Furthermore, peroxisome division is shown to result in an asymmetric distribution of inheritance factors with Inp1p-containing organelles remaining tethered to the ER in the mother cell, while Inp2p-containing peroxisomes hook onto myosin motor proteins for movement to the bud. These remarkable discoveries disclose the molecular mechanism of peroxisome retention and inheritance during cell division. Moreover, this study adds to other known functions of Pex3p, which besides its newly discovered role as ER-tether for peroxisomes is also known as an initiator of de novo formation of peroxisomes, a docking factor for the transport of peroxisomal membrane proteins and a tether for the regulated degradation of peroxisomes. This study adds more complexity to the network of regulated processes in peroxisome biogenesis that all merge at Pex3p, and will certainly provide the ground for further exploration.  相似文献   

11.
Summary Genetic heterogeneity in peroxisome-deficient disorders, including Zellweger's cerebrohepatorenal syndrome, neonatal adrenoleukodystrophy and infantile Refsum disease, was investigated. Fibroblasts from 17 patients were fused using polyethylene glycol, cultivated on cover slips, and the formation of peroxisomes in the fused cells was visualized by immunofluorescence staining, using anti-human catalase IgG. Two distinct staining patterns were observed: (1) peroxisomes appeared in the majority of multinucleated cells, and (2) practically no peroxisomes were identified. Single step 12-(1-pyrene) dodecanoic acid/ultraviolet (P12/UV)-selection confirmed that the former groups were resistant to this selection, most of the surviving cells contained abundant peroxisomes, and the latter cells died. In the complementary matching, [1-14C]lignoceric acid oxidation and the biosynthesis of peroxisomal proteins were also normalized. Five complementation groups were identified. Group A: Zellweger syndrome and infantile Refsum disease; Groups B, C and D: Zellweger syndrome; Group E: Zellweger syndrome, neonatal adrenoleukodystrophy and infantile Refsum disease. We compared these groupings with those of Roscher and identified eight complementation groups. There was no obvious relation between complementation groups and clinical phenotypes. These results indicate that the transport, intracellular processing and function of peroxisomal proteins were normalized in the complementary matching and that at least eight different genes are involved in the formation of normal peroxisomes and in the transport of peroxisomal enzymes.  相似文献   

12.
Peroxisomes are now recognized to play important cellular functions and its dysfunction leads to a group of neurological disorders. This study reports peroxisomal enzyme activities in cultured glial cells and peroxisomes isolated from cultured oligodendrocytes and C6 glial cells. Peroxisomal enzyme activities were found to be higher in oligodendroglial cells than in astrocytes or mixed glial cells. We also developed a method for the isolation of peroxisomes from glial cells by a combination of differential and density gradient centrifugation techniques. Peroxisomes from oligodendrocytes in nycodenz gradient were isolated at a density of 1.165 g/ml ± 0.011. Activities of dihydroxyacetone phosphate acyl transferase, -oxidation of lignoceric acid and -oxidation of phytanic acid were almost exclusively associated with the distribution of catalase activity (a marker enzyme for peroxisomes) in the gradient. This protocol should be a resource for studies designed to investigate the structure and function of peroxisomes in brain cells.  相似文献   

13.
Peroxisomes of the hepatocytes of gray mullets, Mugil cephalus, were characterized cytochemically and immunocytochemically using antibodies against the peroxisomal proteins catalase and palmitoyl-coenzyme A (CoA) oxidase. In addition, morphometric parameters of peroxisomes were investigated depending on the hepatic zonation, the age of the animals and the sampling season. Mullet liver peroxisomes were reactive for diaminobenzidine, but presented a marked heterogeneity in staining intensity. Most of the peroxisomes were spherical or oval in shape, although irregular forms were also observed. Their size was heterogeneous, with profile diameters ranging from 0.2 to 3 microm. Peroxisomes tended to occur in clusters, usually near the mitochondria and lipid droplets. They also showed a very close topographical relationship to the smooth endoplasmic reticulum. Mullet liver peroxisomes did not contain cores or nucleoids as rodent liver peroxisomes, but internal substructures were observed in the matrix, consisting of small tubules about 60 nm in diameter and larger semicircles 120 nm in diameter. The volume density of peroxisomes was higher in periportal hepatocytes of mullets sampled in summer than in pericentral hepatocytes, indicating that mullet peroxisomes vary depending on physiological and environmental conditions. By immunoblotting, the mammalian antibodies cross-react with the corresponding proteins in whole homogenates of mullet liver. Paraffin sections immunostained with the antibodies against catalase and palmitoyl-CoA oxidase showed a positive reaction corresponding to peroxisomes localized in the hepatocyte cytoplasm. In agreement, the ultrastructural study revealed that catalase and palmitoyl-CoA oxidase are exclusively localized in the peroxisomal matrix in fish hepatocytes, showing a dense gold labeling. The presence of the peroxisomal beta-oxidation enzyme palmitoyl-CoA oxidase in peroxisomes indicated that these organelles play a key role in the lipid metabolism of fish liver.  相似文献   

14.
Summary The influence of various parameters of fixation and incubation upon the oxidation of DAB by catalase have been analyzed. Crystalline beef liver catalase was fixed with different concentrations of glutaraldehyde and peroxidatic activity was determined spectrophotometrically using DAB as hydrogen donor. Although aldehyde fixation appeared to be important in elicitation of the peroxidatic activity of catalase, the final pigment production after 60 min incubation was optimal with the lowest concentration of glutaraldehyde (1%), after the shortest fixation period (30 min), and at the lowest temperature (5° C) tested. Similarly cytochemical studies with rat kidney sections incubated for 10 min confirmed that the staining of peroxisomes in proximal tubules was strongest after the mildest fixation conditions. The pH and the temperature of incubation were closely interrelated, so that at room temperature (25° C) the maximal pigment production was obtained at pH 10.5 but incubation at 45° C gave the strongest staining at pH 8.5. The production of pigment increased with higher DAB concentrations which required larger amounts of H2O2 in the incubation medium. Cytochemical studies on renal peroxisomes were in agreement with these biochemical findings. The observations indicate that there are several options for the localization of catalase depending on the fixation and incubation conditions. Hence, these conditions should be selected according to the tissue and the purpose of the study. Examples for such selective applications are presented.  相似文献   

15.
Summary Micrococcus cyaneus (strain CCM 856) was studied by electron microscopy of thin sections. The cells exhibit different forms (spherical, flattened and pear-shaped) varying in size from 0.6 to 1.1 m. The cell wall consists of one layer 40 to 60 nm thick, the surface of which is covered with, or expands as, a fuzzy material. The cytoplasmic membrane has an asymmetric triple-layered structure with a thickness varying from 8 to 10 nm, and infolds into the cytoplasm as intracytoplasmic membrane systems with configuration, size and number dependent on the fixation conditions. The shape and arrangement of the cells of M. cyaneus differs from that of other micrococci and therefore its taxonomic status should be re-evaluated.  相似文献   

16.
The association of an ATPase with the yeast peroxisomal membrane was established by both biochemical and cytochemical procedures. Peroxisomes were purified from protoplast homogenates of the methanol-grown yeast Hansenula polymorpha by differential and sucrose gradient centrifugation. Biochemical analysis revealed that ATPase activity was associated with the peroxisomal peak fractions which were identified on the basis of alcohol oxidase and catalase activity. The properties of this ATPase closely resembled those of the mitochondrial ATPase of this yeast. The enzyme was Mg2+-dependent, had a pH optimum of approximately 8.5 and was sensitive to N,N-dicyclohexylcarbodiimide (DCCD), oligomycin and azide, but not to vanadate. A major difference was the apparent K m for ATP which was 4–6 mM for the peroxisomal ATPase compared to 0.6–0.9 mM for the mitochondrial enzyme.Cytochemical experiments indicated that the peroxisomal ATPase was associated with the membranes surrounding these organelles. After incubations with CeCl3 and ATP specific reaction products were localized on the peroxisomal membrane, both when unfixed isolated peroxisomes or formaldehyde-fixed protoplasts were used. This staining was strictly ATP-dependent; in controls performed i) in the absence of substrate, ii) in the presence of glycerol 2-phosphate instead of ATP, or iii) in the presence of DCCD, staining was invariably absent. Similar staining patterns were observed in subcellular fractions and protoplasts of Candida utilis and Trichosporon cutaneum X4, grown in the presence of ethanol/ethylamine or ethylamine, respectively.Abbreviations MES 2-(N-Morpholino)ethanesulfonic acid - DCCD N,N-dicyclohexylcarbodiimide  相似文献   

17.
The localization of methanol oxidase activity in cells of methanol-limited chemostat cultures of the yeast Hansenula polymorpha has been studied with different cytochemical staining techniques. The methods were based on enzymatic or chemical trapping of the hydrogen peroxide produced by the enzyme during aerobic incubations of whole cells in methanol-containing media. The results showed that methanol-dependent hydrogen peroxide production in either fixed or unfixed cells exclusively occurred in peroxisomes, which characteristically develop during growth of this yeast on methanol. Apart from methanol oxidase and catalase, the typical peroxisomal enzymes d-aminoacid oxidase and l--hydroxyacid oxidase were also found to be located in the peroxisomes. Urate oxidase was not detected in these organelles. Phase-contrast microscopy of living cells revealed the occurrence of peroxisomes which were cubic of form. This unusual shape was also observed in thin sections examined by electron microscopy. The contents of the peroxisomes showed, after various fixation procedures, a completely crystalline or striated substructure. It is suggested that this substructure might represent the in vivo organization structure of the peroxisomal enzymes.  相似文献   

18.
The effect of ciprofibrate, a hypolipidemic drug, was examined in the metabolism of palmitic (C16:0) and lignoceric (C24:0) acids in rat liver. Ciprofibrate is a peroxisomal proliferating drug which increases the number of peroxisomes. The palmitoyl-CoA ligase activity in peroxisomes, mitochondria and microsomes from ciprofibrate treated liver was 3.2, 1.9 and 1.5-fold higher respectively and the activity for oxidation of palmitic acid in peroxisomes and mitochondria was 8.5 and 2.3-fold higher respectively. Similarly, ciprofibrate had a higher effect on the metabolism of lignoceric acid. Treatment with ciprofibrate increased lignoceroyl-CoA ligase activity in peroxisomes, mitochondria and microsomes by 5.3, 3.3 and 2.3-fold respectively and that of oxidation of lignoceric acid was increased in peroxisomes and mitochondria by 13.4 and 2.3-fold respectively. The peroxisomal rates of oxidation of palmitic acid (8.5-fold) and lignoceric acid (13.4-fold) were increased to a different degree by ciprofibrate treatment. This differential effect of ciprofibrate suggests that different enzymes may be responsible for the oxidation of fatty acids of different chain length, at least at one or more step(s) of the peroxisomal fatty acid -oxidation pathway.  相似文献   

19.
A recent study by Zheng et al. (2021. J. Cell Biol. https://doi.org/10.1083/jcb.202103156) identifies the ubiquitin-protein ligase (E3) MARCH5 as a dual-organelle localized protein that not only targets to mitochondria but also to peroxisomes in a PEX19-mediated manner. Moreover, the authors demonstrate that the Torin1-dependent induction of pexophagy is executed by the MARCH5-catalyzed ubiquitination of the peroxisomal membrane protein PMP70.

Recent research has begun to slowly elucidate the complex processes that underlie selective autophagic degradation of mammalian peroxisomes. The study by Zheng et al. (1) sheds a light on the mechanism underlying pexophagy, which is induced by mTOR (mechanistic target of rapamycin) inactivation (2). The ubiquitously conserved serine/threonine kinase mTOR has a central function in integrating diverse growth signals and orchestrating their physiological effect on a cellular level, while blocking cell growth–restricting mechanisms like the different autophagy pathways (3). Previous work has demonstrated that amino acid starvation could induce mTOR inhibition-dependent peroxisome degradation by up-regulating the activity of the peroxisomal protein ubiquitin (E3) ligase PEX2 (4), which was especially of interest as PEX2 is also required for peroxisomal matrix protein import during the formation of the organelle (5). However, while these data suggested that the dual function of PEX2 might mark it as a point of convergence for the balance of peroxisome formation and degradation, the Zheng et al. study has identified a role for the E3 ligase MARCH5 (membrane-associated RING-CH 5; 1) that aims at a different aspect of peroxisome biology.Zheng et al. identified the peroxisomal proteins PEX3, PEX19, and PMP70 as close interaction partners of MARCH5 (1). The authors could demonstrate a PEX19-dependent localization of a portion of the MARCH5 population to peroxisomes. Here, MARCH5 can bind and polyubiquitinate the abundant peroxisomal membrane protein PMP70. While it is clear that the increased level of polyubiquitinated PMP70 molecules marks peroxisomes for recognition by ubiquitin-binding autophagy receptors that link the target organelle to the autophagosomal membrane, the identity of the E2 enzyme involved in ubiquitin chain generation as well as the ubiquitin adaptors are unknown (Fig. 1). However, based on published research, NBR1 or p62 are good candidates for the adaptors that engage the autophagy machinery (2). Moreover, the Zheng et al. study demonstrates that MARCH5-mediated polyubiquitination of PMP70 is induced by the mTOR inhibitor Torin1. In return, the described Torin1-induced pexophagy was shown to rely on the peroxisomal localization and activity of the catalytic RING domain of MARCH5 (1).Open in a separate windowFigure 1.The small molecule Torin1 can inhibit the kinase mTOR, resulting in a relief of the mTOR-dependent block of MARCH5 targeting to peroxisomes. MARCH5 is inserted into the peroxisomal membrane in a PEX19- and PEX3-dependent manner. MARCH5 ubiquitinates the abundant peroxisomal membrane protein PMP70 with the help of an unknown ubiquitin (Ub)-conjugating enzyme (E2). The ubiquitinated PMP70 molecules are recognized by ubiquitin-binding autophagy receptors, like NBR1 or p62, that link the organelle to the autophagosome, resulting in the autophagic degradation of the peroxisome via pexophagy.It is interesting to note that the opponent of pexophagy-linked ubiquitin signals on peroxisomes was already identified as the deubiquitinating enzyme USP30 (6). This combination is even more relevant when considering that MARCH5 and USP30 were described as an antagonizing enzyme pair that regulates the autophagic degradation of mitochondria via mitophagy (6). The function of MARCH5 is also linked to other mitochondrial ubiquitination factors, like the E3 ligase Parkin. While both enzymes can contribute to mitophagy induction by ubiquitinating proteins of the outer mitochondrial membrane, they can also modify each other. MARCH5 ubiquitinates Parkin in order to restrict the number of Parkin molecules during mitophagy and to prevent Parkin-mediated cell death (7).After mitophagy induction, Parkin can ubiquitinate MARCH5, which results in the p97-mediated membrane extraction of MARCH5 and a PEX3/PEX16-dependent redistribution of MARCH5 to peroxisomes (8). This mechanism was assumed to rescue MARCH5 from degradation by mitophagy. It will be important to elucidate if there is mechanistic overlap between the Parkin-mediated (8) and the Torin1-dependent (1) targeting of MARCH5. Moreover, it will be interesting to determine if MARCH5 is also engaged in an interplay with the peroxisomal E3 ligases PEX2, PEX10, PEX12, or TRIM37.Mitochondria and peroxisomes share basic components of their fission machineries. Both organelles use the membrane proteins FIS1 and mitochondrial fission factor for the targeting of the membrane-constricting GTPase DRP1 (DLP1; 9). In the case of the mitochondria, MARCH5 can ubiquitinate DRP1 and FIS1 for proteasomal degradation in order to limit mitochondrial However, other data indicate the existence of a feedback mechanism, as DRP1 can also negatively influence MARCH5 activity. In addition, MARCH5 not only limits mitochondrial fission, but also represents a basic requirement for this process. This complex relationship of MARCH5 with mitochondrial fission proteins suggests that it performs a central role in the fine-tuning of the basic regulatory aspects of mitochondrial division (10). Therefore, future studies might not only establish a potential role of MARCH5 in peroxisomal fission but might also uncover aspects that could enable further insights into the related process in mitochondria.The different roles of MARCH5 in organelle fission and autophagic degradation could possibly be interconnected in one bipartite reaction sequence. Mitochondrial fission is crucial for mitophagy and enables the removal of damaged sections of mitochondria or the limitation of organelle size for a more efficient engulfment by autophagosomal membranes (11). Therefore, both processes can be functionally interconnected. Interestingly, it has been shown that fission also precedes pexophagy in yeast cells (12), which are thought to use organelle-specific adaptors instead of ubiquitin as a degradation tag. However, these observations suggest that MARCH5 might coordinate peroxisomal fission with pexophagy even in mammalian peroxisomes.In summary, the Zheng et al. study not only identifies a central mechanistic module required for the turnover of mammalian peroxisomes (1) but also raises many interesting questions that will result in further studies dealing with the interplay of the peroxisomal ubiquitination factors, the crosstalk between mitochondria and peroxisomes, and the organization and regulation of the peroxisomal fission machinery as well as the convergence of peroxisomal fission and pexophagy pathways.  相似文献   

20.
To isolate peroxisomes from Saccharomyces cerevisiae of a quality sufficient for in vitro import studies, we optimized the conditions for cell growth and for cell fractionation. Stability of the isolated peroxisomes was monitored by catalase latency and sedimentability of marker enzymes. It was improved by (i) using cells that were shifted to oleic acid medium after growth to stationary phase in glucose precultures, (ii) shifting the pH from 7.2 to 6.0 during cell fractionation, and (iii) carrying out equilibrium density centrifugation with Nycodenz containing 0.25 M sucrose throughout the gradient. A concentrated peroxisomal fraction was used for in vitro import of catalase A. After 2 h of incubation, 62% of the catalase was associated with, and 16% was imported into, the organelle in a protease-resistant fashion. We introduced immunofluorescence microscopy for S. cerevisiae peroxisomes, using antibodies against thiolase, which allowed us to identify even the extremely small organelles in glucose-grown cells. Peroxisomes from media containing oleic acid were larger in size, were greater in number, and had a more intense fluorescence signal. The peroxisomes were located, sometimes in clusters, in the cell periphery, often immediately adjacent to the plasma membrane. Systematic immunofluorescence observations of glucose-grown S. cerevisiae demonstrated that all such cells contained at least one and usually several very small peroxisomes despite the glucose repression. This finding fits a central prediction of our model of peroxisome biogenesis: peroxisomes form by division of preexisting peroxisomes; therefore, every cell must have at least one peroxisome if additional organelles are to be induced in that cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号